15 Morphology and Dynamic Viscoelastic Behavior of Blends of Styrene-Butadiene Block
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on July 15, 2016 | http://pubs.acs.org Publication Date: June 1, 1979 | doi: 10.1021/ba-1979-0176.ch015
Copolymers G E R A R D KRAUS, L . M . F O D O R , and K. W . R O L L M A N N Phillips Petroleum Co., Bartlesville, O K 74004
Different
block
length
block copolymers their mixtures
distributions
can cause wide changes
ogy at constant
overall polymers
Block
had the expected
morphology.
Broadening
tion by blending appearance mately,
polymers
of cylindrical
to complex
Polymers
monomer
in domain
composition
of substantially spherical, of different and lamellar
tropy in the storage
structures
modulus
led to
and, ulti
morphologies.
by electron
behavior.
morphology
block distribu
block lengths
polybutadiene-continuous
between
(75 wt %
uniform
block length
and blends were characterized
the polybutadiene
and
morphol
polystyrene-continuous
the styrene
copy and by their viscoelastic established
styrene-butadiene x
styrene). length
in
of the linear SBS or (SB) "star" type
Correlations
on one hand
and
micros were aniso-
and the height and position
tan δ maximum
on the
of
other.
T T T h e n a b l o c k c o p o l y m e r is b l e n d e d with the h o m o p o l y m e r o f o n e o f * * t h e m o n o m e r s o f w h i c h i t is c o m p o s e d , t h e h o m o p o l y m e r w i l l enter the b l o c k p o l y m e r d o m a i n s t r u c t u r e o n l y w h e n its m o l e c u l a r w e i g h t does n o t greatly e x c e e d that o f the b l o c k sequences o f l i k e c o m p o s i t i o n ( 1 , 2 ) . W h e n i t does so, t h e h o m o p o l y m e r forms its o w n , u s u a l l y m u c h larger, d o m a i n s w h i c h m a y a b s o r b some of t h e l i k e - b l o c k sequences i n t h e i r surface regions. I n t h e present s t u d y w e e x a m i n e t h e s i t u a t i o n w h e r e b o t h c o n s t i t u ents o f t h e b l e n d a r e b l o c k c o p o l y m e r s of t h e same t w o m o n o m e r s , b u t w h e r e t h e b l o c k lengths m a y v a r y w i d e l y b e t w e e n constituents. 0-8412-0457-8/79/33-176-277$05.00/0 © 1979 American Chemical Society
Cooper and Estes; Multiphase Polymers Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
As a
278
MULTIPHASE POLYMERS
constraint o n the e n o r m o u s n u m b e r o f s u c h b l e n d s possible, t h e t o t a l c o m p o s i t i o n of t h e b l e n d is h e l d fixed. T h e m o n o m e r s chosen are styrene a n d b u t a d i e n e at a n o v e r a l l b l e n d c o m p o s i t i o n of 7 5 % styrene
(by
w e i g h t ).
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on July 15, 2016 | http://pubs.acs.org Publication Date: June 1, 1979 | doi: 10.1021/ba-1979-0176.ch015
Experimental
Block polymers were prepared b y organolithium-initiated polymeri zation i n cyclohexane solution b y using the sequential monomer addition t e c h n i q u e ( 3 ) . P o l y m e r s w e r e b o t h of t h e l i n e a r - S B S a n d " r a d i a l " branched ( S B ) * type. Blends were prepared i n cyclohexane solution, either b e f o r e o r after c o u p l i n g the i n i t i a l l y l i n e a r S B L i p r e c u r s o r . C o u p l i n g agents i n v e s t i g a t e d w e r e e t h y l acetate ( f o r l i n e a r c o u p l i n g ) , e p o x i d i z e d soybean o i l ( E S O ) , a n d S i C l j . B l o c k m o l e c u l a r w e i g h t s w e r e c a l c u l a t e d f r o m m o n o m e r charges a n d i n i t i a t o r levels a n d c o r r e c t e d f o r "scavenger l e v e l , " i.e., the a m o u n t of R L i d e s t r o y e d b y system i m p u r i t i e s . T h e s e n o m i n a l b l o c k lengths w e r e , i n general, i n g o o d a g r e e m e n t w i t h g e l - p e r m e a t i o n c h r o m a t o g r a p h i c molecular weights. B l o c k l e n g t h p o l y d i s p e r s i t y indices* for b l e n d s w e r e c a l c u l a t e d o n t h e a s s u m p t i o n that t h e b l o c k p o l y m e r s , as p r e p a r e d , w e r e c o m p o s e d of m o n o d i s p e r s e b l o c k s . T h i s is ,of course, a n a p p r o x i m a t i o n justified o n l y b y the narrowness o f the m o l e c u l a r w e i g h t d i s t r i b u t i o n i n p o l y m e r i z a t i o n s of t h e present t y p e . T h e b l o c k heterogeneity i n d i c e s g i v e n h e r e s h o u l d , therefore, b e r e g a r d e d as r e l a t i v e measures of b r e a d t h of d i s t r i b u t i o n . Polymers a n d blends were w o r k e d u p b y evaporating the cyclohexane solvent a n d m a s s i n g the p o l y m e r o n a 1 4 0 ° C r o l l m i l l . F i l m s w e r e t h e n p r e p a r e d b y c o m p r e s s i o n m o l d i n g ( 5 m i n at 2 0 0 ° C ) or, i n o n e set o f experiments, b y e x t r u s i o n t h r o u g h a slit d i e . D y n a m i c v i s c o e l a s t i c meas-
Table I.
Blend Compositions Precoupling
Wt
Compo sition
Compo nent
Fraction
A
—
1.00
19
Β
1 2 Blend
0.64 0.36 1.00
30 7.6
120 13.4
1 2 Blend
0.64 0.36 1.00
13 11
137 10
1 2 Blend
0.64 0.36 1.00
1 2 Blend
0.64 0.36 1.00
C
D
Ε
Block Length M /1000 Ms/1000 B
—
—
56
—
—
Styrene (%)
(M /W ) w
n 8
75
1
80 63.8 74.2
2.4
91.3 47.6 75.7
3
6 13.5
144 7.5
96.3 35.9 74.5
3.5
14.9
150 6.1
100 29.1 74.5
3.7
— —, —
—
—
Cooper and Estes; Multiphase Polymers Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
15.
KRAUS
279
Styrene-Butadiene Block Copolymers
urements were m a d e w i t h a R h e o v i b r o n M o d e l D D V - I I viscoelastometer i n the tensile m o d e at 35 H z . U l t r a t h i n sections of p o l y m e r films w e r e prepared b y cryomicrotomy, stained w i t h O s 0 vapor ( 4 ) , a n d examined under a Philips E M - 3 0 0 electron microscope. 4
Results T a b l e I describes five c o m p o s i t i o n s , e a c h of 7 5 %
styrene
content,
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on July 15, 2016 | http://pubs.acs.org Publication Date: June 1, 1979 | doi: 10.1021/ba-1979-0176.ch015
p r e p a r e d b y c o u p l i n g d i b l o c k S B L i m o l e c u l e s of v a r y i n g b l o c k l e n g t h w i t h a p o l y f u n c t i o n a l e p o x i d e . T h e d a t a are a r r a n g e d i n o r d e r of i n c r e a s 104,
1
I
1
-120
1
1
-80
1
1
-40
ι o
t C
0
ι
ι 40
ι
ι 80
ι
I .001
Figure 1. Storage modulus and loss tangent (35 Hz) for block polymer with uniform polystyrene blocks (composition A). Compression molded.
Cooper and Estes; Multiphase Polymers Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on July 15, 2016 | http://pubs.acs.org Publication Date: June 1, 1979 | doi: 10.1021/ba-1979-0176.ch015
280
MULTIPHASE POLYMERS
Figure 2.
Electron micrograph of composition A
i n g p o l y d i s p e r s i t y of ( n o m i n a l ) p o l y s t y r e n e ( P S ) b l o c k lengths.
While
the p o l y b u t a d i e n e ( P B ) b l o c k s also v a r y i n l e n g t h , t h e i r p o l y d i s p e r s i t y is c o n s i d e r a b l y less. F i g u r e 1 s h o w s storage m o d u l u s a n d loss tangent v s . t e m p e r a t u r e plots f o r c o m p o s i t i o n A , w h i c h is n o t a b l e n d . A s s h o w n b y F i g u r e 2, the m o r p h o l o g y is spheres of P B i n a c o n t i n u u m of P S . T h e loss t a n g e n t c l e a r l y shows t h e P B glass
t r a n s i t i o n at
b r a n c h of t h e P S m a x i m u m n e a r
— 90°C
100°C.
a n d the ascending
T h e results
are e x a c t l y
as
e x p e c t e d f r o m t h e s p h e r i c a l m o r p h o l o g y , except that t h e t e m p e r a t u r e of t h e P B t a n δ m a x i m u m lies s e v e r a l degrees l o w e r t h a n t h a t of p o l y b u t a d i e n e of t h e a p p r o p r i a t e m i c r o s t r u c t u r e and 1 0 % vinyl) for which Τ (tan 8
m a x
) =
-
( c a . 5 0 % trans, 4 0 % cis, 80°C.
Cooper and Estes; Multiphase Polymers Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
15.
KRAus
281
Styrene-Butadiene Block Copolymers
F i g u r e 3 shows t h e s a m e k i n d of d a t a f o r b l e n d C , i n w h i c h P B b l o c k lengths a r e s i m i l a r , b u t t h e P B b l o c k s differ g r e a t l y i n l e n g t h ; F i g u r e 4 shows a n e l e c t r o n m i c r o g r a p h o f this c o m p o s i t i o n .
T h e mor-
p h o l o g y of this b l e n d is c l e a r l y l a m e l l a r , w i t h c o n s i d e r a b l e
orientation
i n one direction.
( T h e u n e v e n spacings of l i g h t a n d d a r k b a n d s
result
f r o m l a m e l l a e s e c t i o n e d at v a r i o u s angles. ) T h e d i r e c t i o n o f o r i e n t a t i o n
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on July 15, 2016 | http://pubs.acs.org Publication Date: June 1, 1979 | doi: 10.1021/ba-1979-0176.ch015
is that o f m o l d
flow.
T h e d y n a m i c d a t a a r e e n t i r e l y consistent w i t h this
10 i
1
4
120
80
-40
0
0
.
40
100
Figure 3. Storage modulus and loss tangent (35 Hz) for composition with bimodal polystyrene block length distribution (composition C). Compression molded: (\\) parallel to direction of mold flow; (±) normal to direction of mold flow.
Cooper and Estes; Multiphase Polymers Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on July 15, 2016 | http://pubs.acs.org Publication Date: June 1, 1979 | doi: 10.1021/ba-1979-0176.ch015
282
MULTIPHASE POLYMERS
Figure 4. morphology.
Electron micrograph of composition C
I n t h e d i r e c t i o n of m o l d
flow,
£ ' a n d tan δ are n o t too
g r e a t l y d i f f e r e n t f r o m F i g u r e 1 b u t n o r m a l t o t h e flow d i r e c t i o n , t h e r e s i n is m u c h softer ( s m a l l e r E ' ), a n d t h e P B t a n δ p e a k is s t r o n g l y a c c e n t u a t e d . T h e above
results a r e f o r c o m p r e s s i o n - m o l d e d
samples.
A closer
i n v e s t i g a t i o n o f these resins i n e x t r u d e d film is s u m m a r i z e d i n F i g u r e s 5 a n d 6. N o t e t h e r e l a t i v e i s o t r o p y i n m e c h a n i c a l p r o p e r t i e s of t h e s p h e r i c a l m o r p h o l o g y f o r the single anisotropy for the b l e n d . £ m a x ) is consistently
characteristic
p o l y m e r a n d the strong
N o t e also t h a t f o r the l a m e l l a r b l e n d Τ ( t a n
— 8 0 ° to — 8 1 ° C , t h e n o r m a l v a l u e f o r p o l y b u t a -
d i e n e i n d e p e n d e n t of o r i e n t a t i o n . T h e reason f o r t h e d e p r e s s i o n of Τ ( t a n 8
) i n t h e s i n g l e p o l y m e r is e v i d e n t l y t h e constraint t h e p o l y b u t a d i e n e
m&x
Cooper and Estes; Multiphase Polymers Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
15.
KRAUS
283
Styrene-Butadiene Block Copolymers
d o m a i n s find themselves
u n d e r as t h e r e s u l t o f differences i n t h e r m a l
c o n t r a c t i o n of t h e phases as t h e y c o o l f r o m T ( p o l y s t y r e n e ) . g
T h e smaller
coefficient of e x p a n s i o n of glassy p o l y s t y r e n e causes t h e cavities a c c o m modating
the polybutadiene
i n c l u s i o n s t o s h r i n k less t h a n
the free
c o n t r a c t i o n of p o l y b u t a d i e n e , p l a c i n g the latter p h a s e i n a state of h y d r o static tens ion a n d l o w e r i n g T . I n t h e l a m e l l a r m o r p h o l o g y t h e r e is n o g
the p o l y b u t a d i e n e l a m e l l a e m e r e l y t h i n o u t a n d t h e
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on July 15, 2016 | http://pubs.acs.org Publication Date: June 1, 1979 | doi: 10.1021/ba-1979-0176.ch015
s u c h constraint;
Figure 5. Effect of orientation on E ' and tan δ in extrudedfilm(35 Hz) of composition A. Direction of measurement with respect to extrusion direction: (O) 0% f Φ) 22.5% (A) 45°, (Π) 67.5% (X) 9 0 ° .
Cooper and Estes; Multiphase Polymers Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on July 15, 2016 | http://pubs.acs.org Publication Date: June 1, 1979 | doi: 10.1021/ba-1979-0176.ch015
284
MULTIPHASE POLYMERS
Figure 6.
normal T
g
Effect of orientation on E ' and tan δ in extruded film (35 Hz) of composition C . Notation as in Figure 5.
is o b s e r v e d .
C o m p a r i s o n of Figures 3 a n d 6 indicates the
d e g r e e o f o r i e n t a t i o n t o b e greater i n t h e c o m p r e s s i o n - m o l d e d s a m p l e . R e t u r n i n g n o w to composition B , i n w h i c h the P S block distribution is less severe t h a n i n C , w e n o t e that e v i d e n t l y b o t h r o d - l i k e a n d l a m e l l a r morphologies are about equally probable. Figures
7 a n d 8 were
obtained
T h e morphologies shown i n
on presumably
identically
prepared
s a m p l e s ; t h e y a p p e a r t o b e t h e result o f s m a l l a d v e n t i t i o u s v a r i a t i o n s i n m o l d i n g technique and/or thermal history. T h e data of T a b l e I I , w h i c h
Cooper and Estes; Multiphase Polymers Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
15.
KRAUS
285
Styrene-Butadiene Block Copolymers
is a s u m m a r y of t h e p r i n c i p a l m o r p h o l o g y - r e l a t e d features of t h e d y n a m i c v i s c o e l a s t i c d a t a , c l e a r l y c o n f i r m t h e different m o r p h o l o g i e s . T h e r o d - l i k e P B d o m a i n s of F i g u r e 7 cause o n l y m o d e s t a n i s o t r o p y since P S r e m a i n s c o n t i n u o u s i n b o t h d i r e c t i o n s of o r i e n t a t i o n . Τ ( t a n δ ) is a g a i n d e p r e s s e d , as c y l i n d r i c a l P B d o m a i n s c a n n o t contract f r e e l y u n d e r the constraint of the glassy c o n t i n u u m . E l e c t r o n m i c r o g r a p h s of c o m p o s i t i o n s D a n d Ε are s h o w n i n F i g u r e s
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on July 15, 2016 | http://pubs.acs.org Publication Date: June 1, 1979 | doi: 10.1021/ba-1979-0176.ch015
9 a n d 10. I t is e v i d e n t that i n Ε p o l y b u t a d i e n e is t h e c o n t i n u o u s ( w i t h some r u b b e r i n t h e p o l y s t y r e n e d o m a i n s )
phase
w h i l e D represents
t r a n s i t i o n f r o m l a m e l l a r to p o l y b u t a d i e n e - c o n t i n u o u s m o r p h o l o g y .
a
Again
the d y n a m i c m e c h a n i c a l d a t a ( T a b l e I I ) a r e consistent w i t h these obser-
Figure 7.
Composition Β in rod-like form
Cooper and Estes; Multiphase Polymers Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
286
MULTIPHASE POLYMERS
Table II.
Resin
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on July 15, 2016 | http://pubs.acs.org Publication Date: June 1, 1979 | doi: 10.1021/ba-1979-0176.ch015
A B C D Ε α
b
c
(M /M ) w
n
s
Continuous Phase
1.0 2.4
Morphology and
Discrete Phase
PS PS
P B (spheres) P B (rods) alternating lamellae alternating lamellae P B P S (complex PB P S (ellipsoids)
3 3.5 37
d
Compression-molded samples. E'20 = storage modulus at 20°C.
Figure 8.
Composition Β in lameUar form
Cooper and Estes; Multiphase Polymers Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
15.
KRAus
287
Styrene-Butadiene Block Copolymers
Dynamic Viscoelastic Properties" Parallel to Flow* Tftan B J (°C) ma
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on July 15, 2016 | http://pubs.acs.org Publication Date: June 1, 1979 | doi: 10.1021/ba-1979-0176.ch015
tarifa* 0.021 0.024 0.061 0.030 0.181 0.296 c d
-
9 9 8 8 7 7
4 0 4 0 6 9
Normal to Flow* E ' (MPa) M
1760 1550 1260 1850 330 140
Tftan B ) (°C)
E'„ (MPa)
-94 -90 -83 -80 -76 -78
1680 1300 520 530 170 130
max
tan$
mas
0.026 0.044 0.137 0.120 0.244 0.300
This composition has been observed in two distinct morphologies ; see text. Predominantly.
Figure 9.
Morphology of composition D
Cooper and Estes; Multiphase Polymers Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on July 15, 2016 | http://pubs.acs.org Publication Date: June 1, 1979 | doi: 10.1021/ba-1979-0176.ch015
288
MULTIPHASE POLYMERS
Figure 10.
Morphology of composition Ε
v a t i o n s , s h o w i n g m u c h s m a l l e r storage m o d u l i a n d l a r g e t a n δ m a x i m a n e a r — 8 0 ° C f o r t h e P B d o m a i n s . M e c h a n i c a l a n i s o t r o p y is a b s e n t i n E . T h e a b o v e results
s h o w c l e a r l y that, i n the s y s t e m
at
hand,
the
b r o a d e r the d i s t r i b u t i o n of P S b l o c k l e n g t h , the greater the t e n d e n c y the m i n o r P B p h a s e to b e c o m e c o n t i n u o u s .
It is also o b v i o u s that
d y n a m i c m e c h a n i c a l d a t a t e l l a great d e a l a b o u t the m o r p h o l o g y .
of the The
h e i g h t of the P B loss m a x i m u m increases as the r u b b e r b e c o m e s increas i n g l y l o a d b e a r i n g w h i l e at the same t i m e E' decreases.
Mechanical
anisotropy
p r o n o u n c e d f o r the l a m e l l a r s t r u c t u r e . butadiene
tan δ peak
is d e p r e s s e d
p o l y s t y r e n e is the c o n t i n u o u s
( b e t w e e n the transitions )
resulting from
orientation
is
most
F i n a l l y , t h e p o s i t i o n of the p o l y f o r those m o r p h o l o g i e s
in which
phase.
Cooper and Estes; Multiphase Polymers Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
15.
KRAUS
289
Styrene-Butadiene Block Copolymers
S o m e seventy b l e n d s w e r e e x a m i n e d b y d y n a m i c v i s c o e l a s t i c meas urements o n l y . T h e y d i f f e r e d i n m o l e c u l a r w e i g h t of t h e constituents, l i n e a r i t y of t h e constituent b l o c k p o l y m e r m o l e c u l e s , ( S B S v s . [ S B ] * ) , t y p e a n d s t o i c h i o m e t r y of c o u p l i n g , o r d e r of c o u p l i n g ( b e f o r e a n d after b l e n d i n g ) , c o m p o s i t i o n of t h e fractions, a n d b l e n d r a t i o — a l w a y s , h o w ever, subject to t h e constraint of 7 5 % styrene content.
A l t h o u g h differ
ences i n viscoelastic b e h a v i o r w e r e o b s e r v e d , t h e most d e c i s i v e v a r i a b l e Downloaded by UNIV OF CALIFORNIA SAN DIEGO on July 15, 2016 | http://pubs.acs.org Publication Date: June 1, 1979 | doi: 10.1021/ba-1979-0176.ch015
b y f a r w a s b l o c k - l e n g t h heterogeneity.
F i g u r e 11 s h o w s a p l o t o f t h e
h e i g h t of t h e t a n δ m a x i m u m v s . ( M / M „ ) . w
ranges of b l o c k heterogeneity be expected.
s
O n e c a n easily spot t h e
i n w h i c h different m o r p h o l o g i e s are t o
T h i s p a t t e r n is c o n f i r m e d b y F i g u r e 12 i n w h i c h t h e h e i g h t
of t a n δ is p l o t t e d against its p o s i t i o n . T h e r e are several reasons, aside f r o m e x p e r i m e n t a l error, f o r t h e v a r i a b i l i t y i n properties at e q u a l ( M / w
M ) . n
s
O n e is that M / M „ is o n l y o n e of m a n y p o s s i b l e , n o n e q u i v a l e n t w
w a y s of expressing b l o c k l e n g t h heterogeneity a n d is n o t necessarily t h e most relevant o n e to t h e present s i t u a t i o n . A l s o , as i n T a b l e I, i n t h e e x p a n d e d s t u d y the P B b l o c k s d o v a r y i n size, e v e n i f m u c h less t h a n t h e P S b l o c k s . L a c k of m o r p h o l o g i c a l u n i q u e n e s s , as i n b l e n d B , c o m p l i c a t e s the p i c t u r e i n t h e o v e r l a p r e g i o n near M / M w
n
=
2.5. F i n a l l y , there is a
tendency for abnormally h i g h Γ (tan 8 ) i n the compositions w i t h the mMX
b r o a d e s t P S b l o c k d i s t r i b u t i o n . A t t a i n m e n t of s u c h d i s t r i b u t i o n s r e q u i r e s use of s u b s t a n t i a l a m o u n t s o f p o l y m e r w i t h P S b l o c k s of less t h a n 10,000 .40
INVERTED·Ε (S IN Β)
ο BRANCHED Δ LINEAR .30
.20 c
B' .10
. -
CYL. (Β IN S ) ^ SPHERICAL (Β IN S)
Δ
*
r
- ^ LAMELLAR ο o_4
-il (M /M ) w
n
$
Figure 11. Maximum low temperature loss tangent (35 Hz) measured normal to mold flow vs. styrene block length heterogeneity. Circles— branched polymers, triangles—linear polymers, solid symbols—electron micrographs displayed.
Cooper and Estes; Multiphase Polymers Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
290
MULTIPHASE POLYMERS
.40
o BRANCHED
_INVERTED| (S IN B)
Δ LINEAR .30 h
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on July 15, 2016 | http://pubs.acs.org Publication Date: June 1, 1979 | doi: 10.1021/ba-1979-0176.ch015
H
E
.20
c
CO
ο α ·Β'
.10
°
ο
ο ο
Δ
Q
-100 12.
Figure
-90 Height
T(tanÔ
x
m a x
.)
c°
ο
i-o ο ο °LAMELLAR
CYLINDRICAL — Û _ ° — 2 ^ SPHERICAL (Β IN S ) J °£ (B IN S ) " " A
-70
-80
and position of low temperature Notation as in Figure 11.
loss
maximum.
m o l e c u l a r w e i g h t (5000 w a s t h e shortest b l o c k u s e d i n this w o r k ) .
In
this r a n g e o f b l o c k m o l e c u l a r w e i g h t s , interphase effects b e g i n to h a v e a n effect o n t h e p o s i t i o n of t h e P B loss m a x i m u m ( 5 ) . E x t r e m e differences i n P B b l o c k l e n g t h c u r i o u s l y a p p e a r to e x t e n d the r a n g e
i n P S block heterogeneity
morphologies
are possible.
i n which
F o r example,
polystyrene-continuous
F i g u r e 13 shows
a
straight
b l e n d of linear S B S polymers i n w h i c h b o t h kinds of blocks v a r y tenfold in length ( composition F ) :
Wt Fraction Component 1 Component 2 Blend
S/B/S 150000/100000/150000 15000/10000/15000
0.60 0.40 1.00
I n spite of ( M / M ) w
n
Styrene (%)
8
=
_ (M /M ) w
75 75 75
n
(1) (1) 2.9
2.9, t h e m o r p h o l o g y appears to b e b a s i c a l l y
s p h e r i c a l , a l b e i t w i t h c o n s i d e r a b l e c o n n e c t i v i t y of p o l y b u t a d i e n e d o m a i n s . M o r e o v e r , f o r this b l e n d t a n 8
m a x
= 0.028, T ( t a n S
m a x
) =
-
88°C, with
v i r t u a l l y n o a n i s o t r o p y i n storage m o d u l u s , consistent w i t h s p h e r i c a l o r short r o d - s h a p e d p o l y b u t a d i e n e d o m a i n s .
Cooper and Estes; Multiphase Polymers Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on July 15, 2016 | http://pubs.acs.org Publication Date: June 1, 1979 | doi: 10.1021/ba-1979-0176.ch015
15.
KRAUS
291
Styrene-Butadiene Block Copolymers
Figure 13.
Morphology of composition
F
Discussion T h e o b s e r v a t i o n t h a t b r o a d , b i m o d a l styrene, b l o c k l e n g t h d i s t r i b u tions t e n d to f a v o r c o n t i n u i t y of t h e p o l y b u t a d i e n e phase is n o t c o n f i n e d to 7 5 % styrene content.
T h u s , a l i m i t e d s t u d y at 5 0 % styrene
showed
that p o l y b u t a d i e n e - c o n t i n u o u s c o m p o s i t i o n s c o u l d b e p r e p a r e d b y b r o a d b l e n d i n g i n p l a c e of the n o r m a l a l t e r n a t i n g l a m e l l a r structures characteristic of this c o m p o s i t i o n . S i n c e s i m p l e b l e n d i n g of t h e finished b l o c k p o l y m e r s a n d c o u p l i n g b l e n d s of S B L i d i - b l o c k p o l y m e r s d i d n o t p r o d u c e m a r k e d l y
different
results, i t seems c l e a r t h a t t h e b l o c k l e n g t h d i s t r i b u t i o n p e r se is m o r e
Cooper and Estes; Multiphase Polymers Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
292
MULTIPHASE POLYMERS
i m p o r t a n t i n g o v e r n i n g m o r p h o l o g y t h a n the d i s p o s i t i o n of these b l o c k s over i n d i v i d u a l molecules. E x t e n s i v e use is m a d e i n this w o r k of the effects of o r i e n t a t i o n o n m e c h a n i c a l properties i n b l o c k p o l y m e r s w i t h c y l i n d r i c a l a n d l a m e l l a r structures.
T h e s e effects are,
i n general,
k n o w n f r o m earlier
( 6 , 7 ) ; t h e y a d d c o n v i n c i n g e v i d e n c e to the m o r p h o l o g i c a l
studies
assignments
made.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on July 15, 2016 | http://pubs.acs.org Publication Date: June 1, 1979 | doi: 10.1021/ba-1979-0176.ch015
It s h o u l d b e clear that t h e conclusions of this w o r k are l i m i t e d to b l o c k p o l y m e r s i s o l a t e d f r o m the p o l y m e r i z a t i o n solvent ( c y c l o h e x a n e ) by
evaporation
and
subsequently
m i x i n g a n d shaping techniques.
processed
by
O b v i o u s l y , other
conventional
thermal
morphologies
could
b e r e a l i z e d i n m a n y instances b y c a s t i n g films f r o m solvents of v a r y i n g q u a l i t y f o r the t w o b l o c k sequences. Conclusions Different block length distributions i n SBS a n d ( S B )
X
block polymers
a n d t h e i r m i x t u r e s c a n cause w i d e changes i n d o m a i n m o r p h o l o g y a t constant o v e r a l l m o n o m e r c o m p o s i t i o n , w h i c h l e a d to
characteristically
different l i n e a r v i s c o e l a s t i c p r o p e r t i e s . Acknowledgment T h e authors are i n d e b t e d to J . O . G a r d n e r f o r the e l e c t r o n m i c r o graphs d i s p l a y e d i n this r e p o r t . Literature
Cited
1. Inoue, T., Soen, T., Hashimoto, T., Kawai, H . , Macromolecules (1970) 3, 87. 2. Niinomi, M . , Akovali, G . , Shen, M . , J. Macromol.Sci.,(1977) B13, 133. 3. Zelinski, R. P., Childers, C. W., Rubber Chem. Technol. (1968) 41, 161. 4. Kato, K., Polym. Eng.Sci.,(1967) 7, 38. 5. Kraus, Gerard, Rollmann, K. W., J. Polym.Sci.,Polym. Phys. Ed. (1976)
14, 1133.
6. Charrier, Jean-Michel, Ranchoux, Robert J. P., Polym. Eng. Sci., (1971) 11,
381.
7. Folkes, M . J., Keller, Α., Polymer (1971) 12, RECEIVED
April
222.
14, 1978.
Cooper and Estes; Multiphase Polymers Advances in Chemistry; American Chemical Society: Washington, DC, 1979.