14 Nonstoichiometry, Order, and Disorder in Fluorite-Related Materials for Energy Conversion
Downloaded by TUFTS UNIV on October 21, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch014
LEROY EYRING Department of Chemistry and the Center for Solid State Science, Arizona State University, Tempe, Ariz. 85281
Ordered intermediate phases in fluorite-related model systems and in materials useful as fast ion conductors and nuclear energy sources are reviewed. The rare earth oxides are emphasized as models of extended defects and ordering in such materials. Modern high resolution (3.5 Å) electron optical methods are used to deduce unit cells, suggest structures, and reveal reaction mechanisms. The relationships between ordered structures in the ternary and binary oxides are emphasized; nevertheless, a wide range of order and disorder is observed. Electron micrographs are presented to illustrate the range of direct observations possible and to underline the importance of the technique in elucidating not only structural defects but reaction mechanisms at the unit cell level.
T h e
s t r u c t u r e of a m a t e r i a l is a n e n c y c l o p e d i a o n t h e p r o p e r t i e s of its
constituent atoms a n d is therefore at t h e root of a l l its c h e m i c a l a n d p h y s i c a l p r o p e r t i e s . W e m e a n , of course, t h e structure o f t h e r e a l m a t e r i a l , w h i c h i n c l u d e s its defects most r e s p o n s i b l e f o r t h e r e a c t i v i t y a n d d y n a m i c s of c h e m i c a l a n d p h y s i c a l c h a n g e .
M e c h a n i s m i n reactions c a n
n o t b e u n d e r s t o o d w i t h o u t k n o w l e d g e o f t h e defect s t r u c t u r e .
Under
s t a n d i n g c a n l e a d to i m p r o v e d c o n t r o l o f r e a c t i o n p r o p e r t i e s a n d t o t h e a b i l i t y to d e s i g n n e w m a t e r i a l s .
E l u c i d a t i o n of t h e s t r u c t u r e o f r e a l
m a t e r i a l s of p r a c t i c a l i m p o r t a n c e i n t h e m o s t d i r e c t w a y p o s s i b l e is therefore i m p o r t a n t , a n d these studies w i l l serve as a basis f o r f u r t h e r u n d e r s t a n d i n g . W e seek h e r e n o t a s h a l l o w classification b u t d e e p i n s i g h t of s u b t l e s h a d i n g . 240
Goodenough and Whittingham; Solid State Chemistry of Energy Conversion and Storage Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
14.
EYRiNG
Nonstoichiometry,
Order,
and
241
Disorder
F l u o r i t e - r e l a t e d m a t e r i a l s are a m o n g those c o m m o n l y e n c o u n t e r e d i n e n e r g y c o n v e r s i o n a n d storage. T h e i r v a r i e d usefulness a n d t h e i r l i m i t a tions c a n b e best u n d e r s t o o d i n terms of t h e i r s t r u c t u r e , w h i c h is a palpable
expression
of
their nature.
The
fluorite
structure m a y
be
v i s u a l i z e d i n m a n y w a y s . F o r e x a m p l e , i f a l l the t e t r a h e d r a l interstices i n a c u b i c c l o s e - p a c k e d a r r a y of atoms are
filled
b y atoms of a different
k i n d , the fluorite s t r u c t u r e results. T h e l a t t i c e is f a c e - c e n t e r e d (Fm3m)
cubic
w i t h m e t a l atoms ( M ) at (0, 0, 0 ) a n d the n o n m e t a l atoms
at ( VA, VA, VA ) a n d ( V A , V A , V A )
(X)
a n d e q u i v a l e n t positions. T h i s gives f o u r
f o r m u l a u n i t s p e r u n i t c e l l . A n a l t e r n a t i v e w a y of v i s u a l i z i n g the s t r u c t u r e is to c o n s i d e r the c o o r d i n a t i o n cubes of the m e t a l atoms ( M X ) s h a r i n g Downloaded by TUFTS UNIV on October 21, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch014
8
a l l edges i n a t h r e e - d i m e n s i o n a l c h e s s b o a r d n e t w o r k . C o o r d i n a t i o n t e t r a h e d r a of n o n m e t a l atoms
( X M ) share a l l edges i n a n o n s p a c e - f i l l i n g 4
t h r e e - d i m e n s i o n a l n e t w o r k . S t i l l a n o t h e r w a y of e x p r e s s i n g this s t r u c t u r e is to c o n s i d e r i t as a s t a c k i n g of c l o s e - p a c k e d layers of atoms a l o n g the [1 1 1] d i r e c t i o n i n t h e sequence
α Β γ β Ο α γ Α β α Β γ β Ο α . . .
w h e r e R o m a n capitals represent m e t a l atoms a n d G r e e k letters n o n m e t a l , e a c h i n e q u a l l y s p a c e d c u b i c c l o s e - p a c k e d layers. F i g u r e 1 illustrates a u n i t c e l l of
fluorite
w h e r e circles represent m e t a l a t o m positions a n d
triangles represent n o n m e t a l a t o m positions. T h e o c t a h e d r a l interstices r e p r e s e n t e d b y the d i a m o n d s are a l l e m p t y . T e x t b o o k examples of the fluorite s t r u c t u r e are u s u a l l y the
fluorides
of C a , Sr, a n d B a a n d the oxides of T h a n d U . T o this list m u s t b e a d d e d m a n y others w h e r e the a t o m r a d i u s r a t i o of m e t a l / n o n m e t a l >
0.73.
T h e s e w o u l d i n c l u d e m a n y of the h y d r i d e s a n d oxides of t h e r a r e e a r t h a n d a c t i n i d e elements.
F u r t h e r m o r e , w h e n w e c o n s i d e r a d d i n g or s u b
t r a c t i n g atoms of either t y p e to g i v e
fluorite-related
d e f e c t structures
w h i c h m a y b e o r d e r e d or d i s o r d e r e d , the p o s s i b i l i t i e s b o g g l e t h e m i n d . F l u o r i t e - r e l a t e d m a t e r i a l s h a v e a k n o w n c o m p o s i t i o n a l v a r i a t i o n at least f r o m M 4 X 9 ( M X . 2
2 5
) to M X . A l t h o u g h t h e r e are m a n y other
r e l a t e d m a t e r i a l s of i m p o r t a n c e i n energy c o n v e r s i o n , s u c h as the
fluoritefluorides
Figure 1. The fluorite structure. The large circles represent metal atom positions; the triangles represent nonmetal positions; and the diamonds represent the empty octahedral posi tions in the cubic dose-packed struc ture.
Goodenough and Whittingham; Solid State Chemistry of Energy Conversion and Storage Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
242
SOLID STATE
CHEMISTRY
a n d h y d r i d e s , h e r e w e s h a l l focus a t t e n t i o n almost e x c l u s i v e l y o n o x y g e n deficient phases i n t h e c o m p o s i t i o n r a n g e M O a . ( 2 . 0 > χ > 1.5)
where
t h e o x y g e n d e f i c i e n c y is e i t h e r o r d e r e d o r d i s o r d e r e d . I n these phases a g o o d a p p r o x i m a t i o n is to c o n s i d e r t h e m e t a l a t o m s u b s t r u c t u r e i n t a c t as i n fluorite w i t h s m a l l d i s p l a c e m e n t s
understood.
T h e o x y g e n s u b s t r u c t u r e is t h e n c h a r a c t e r i z e d as possessing
vacancies
o n n o r m a l sites w h i c h m a y b e o r d e r e d i n l o n g o r short r a n g e o r d i s o r d e r e d . T h i s m e a n s t h a t there w i l l a l w a y s b e c o h e r e n c e , b u t t h e r e m a y b e
a
regular or p e r i o d i c variation i n oxygen composition i n the structure. M a n y m e t a l s c a p a b l e of t e t r a v a l e n c y f o r m e x t r e m e l y t h e r m a l l y stable Downloaded by TUFTS UNIV on October 21, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch014
fluorite-related
oxides. I n d e e d , T h 0
( 3 3 0 0 ° db 1 0 0 ° C ) .
2
is t h e h i g h e s t m e l t i n g o x i d e k n o w n
T h e c o n g r u e n t l y m e l t i n g c o m p o s i t i o n s of a l l these
r e f r a c t o r y oxides i n v a c u u m are l o w e r t h a n the d i o x i d e ( e v e n f o r T h 0 ) . 2
Ce0 a
2
loses o x y g e n i n v a c u u m to a c o m p o s i t i o n of C e O i . i at 2 0 0 0 ° C i n 5
tungsten cell, a n d P r a n d T b 0
2
lose o x y g e n
to
substoichiometric
ΜΟι.υ.δ at t h e m e l t i n g p o i n t . T h e m e l t i n g p o i n t of r e d u c e d
substances
is > 2 0 0 0 ° C . T h e e n t h a l p i e s of f o r m a t i o n of the oxides f o r the elements forming
fluorite-related
phases are v e r y h i g h , ^ 2 1 0 - 2 6 0 k c a l / g a t o m of
metal. A f e w o t h e r g e n e r a l statements a b o u t p r o p e r t i e s s h o u l d also b e m a d e . D i f f u s i o n coefficients of m e t a l atoms are g e n e r a l l y v e r y l o w u p to t e m peratures i n excess of o n e - h a l f t h e m e l t i n g p o i n t ; i n contrast, the d i f f u s i o n coefficients of the o x y g e n atoms are r e l a t i v e l y l a r g e . U n d e r these same c o n d i t i o n s the v a p o r i n e q u i l i b r i u m w i t h t h e s o l i d is o x y g e n . M u c h h i g h e r t e m p e r a t u r e s m u s t b e a t t a i n e d b e f o r e m e t a l - c o n t a i n i n g v a p o r species are d e t e c t a b l e . I n short, t h e m e t a l s u b s t r u c t u r e is rigid a n d n o n v o l a t i l e , w h i l e t h e n o n m e t a l s u b s t r u c t u r e is m o b i l e a n d v o l a t i l e .
Fluorite-Related
Materials
in Energy-Winning
Roles
T h e r e is a r o m a n t i c h i s t o r y a n d great l i t e r a t u r e o n these deficient
fluorite-related
anion
phases. T h i s i n c l u d e s W e l s b a c h gas m a n t l e s a n d
N e r n s t g l o w e r s . T h i s c h a p t e r is n o t i n t e n d e d to b e c o m p r e h e n s i v e ; r a t h e r , references
are m a d e a r b i t r a r i l y to t h a t w o r k w h i c h h i g h l i g h t s c u r r e n t
efforts t o c l a r i f y t h e s t r u c t u r a l p r i n c i p l e s b e h i n d d e f e c t
fluorite-related
materials. Solid Electrolytes.
ZTRCONIA- A N D H A F N I A - B A S E D M A T E R I A L S .
When
z i r c o n i a o r h a f n i a react w i t h t h e a l k a l i n e e a r t h oxides ( e s p e c i a l l y c a l c i a ) o r r a r e e a r t h oxides, p s e u d o b i n a r y v a c a n c i e s are f o r m e d .
fluorite-related
phases
with
anion
A t h i g h t e m p e r a t u r e s t h e p h a s e fields are b r o a d
c u b i c s o l i d solutions, a l t h o u g h i n some cases there m a y b e
considerable
diffuse scatter i n t h e i r d i f f r a c t i o n patterns. T h e s e m a t e r i a l s are t e c h n i c a l l y
Goodenough and Whittingham; Solid State Chemistry of Energy Conversion and Storage Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
14.
EYRiNG
Nonstoichiometry,
Order,
and
Disorder
243
i m p o r t a n t b e c a u s e of t h e r a p i d t r a n s p o r t of o x i d e ions at m o d e r a t e l y h i g h temperatures w i t h o u t electronic or cationic conduction.
T h i s ensures a
v a r i e t y of h i g h t e m p e r a t u r e e l e c t r o m e c h a n i c a l uses. A t h i g h e r t e m p e r a t u r e s c u b i c phases o f c o n t i n u o u s l y c h a n g i n g c o m position cover the
field.
A t lower temperatures (
r v a cancy pairs w i t h a cation between.
A l l p r e s s et a l . suggest t h a t these
clusters m a y coalesce to f o r m finite g r o u p s i n Φι o r e x t e n d e d c h a i n s i n Φ . 2
This information was obtained f r o m p o w d e r diffraction data w h i c h p r o v i d e only l i m i t e d conclusions about vacancy ordering. E l e c t r o n d i f f r a c t i o n p a t t e r n s of c a l c i a - s t a b i l i z e d h a f n i a a n d z i r c o n i a s h o w diffuse s c a t t e r i n g i n a d d i t i o n to t h e s r t o n g reflections f r o m t h e
Goodenough and Whittingham; Solid State Chemistry of Energy Conversion and Storage Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
244
SOLID S T A T E
fluorite and
CHEMISTRY
s u b c e l l . A l l p r e s s a n d R o s s e l l ( 8 ) h a v e a n a l y z e d this diffuse scatter
h a v e o b t a i n e d g o o d a g r e e m e n t w i t h the e x p e c t e d d i f f r a c t i o n f r o m
specimens w i t h d o m a i n s of t h e Φι phase of 3 0 - A d i a m e t e r c o h e r e n t l y e m b e d d e d i n specific orientations w i t h i n t h e c u b i c m a t r i x . T h i s is r e m i n i s c e n t of t h e d o m a i n s of C a r t e r a n d R o t h
(2).
Lefevre (9) noted ordering i n Z r 0 - S c 0 2
t u r n e d out to b e r h o m b o h e d r a l Z r S c O i 3
4
2
2
3
c a u s e d b y a phase w h i c h
( J O ) a n d t w o others w i t h w i d e r
c o m p o s i t i o n w i d t h s as w e l l as h i g h e r Ζ ι Ό
2
content.
Bevan ( J J )
and
c o - w o r k e r s h a v e d e t e r m i n e d t h a t the c o m p o s i t i o n w i d t h of these phases is less t h a n at first t h o u g h t a n d h a v e a s s i g n e d t h e m t h e i d e a l f o r m u l a s Zr Sc Oi , Zri Sc O , and Z r Downloaded by TUFTS UNIV on October 21, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch014
3
4
0
2
4
2 6
isomorphous w i t h M O i 7
4 8
Sci Ou . Zr Sc Oi 4
7
3
4
w a s f o u n d (12)
2
to b e
i n the b i n a r y phases to b e d e s c r i b e d later. T h e
2
s t r u c t u r a l feature e m p h a s i z e d i n these results is a s t r i n g of o x y g e n v a c a n cies a l o n g t h e [ 1 1 1 ]
w h i c h gives units of M O i
F
7
2
c o m p o s e d of a s i x -
c o o r d i n a t e d M a t o m s u r r o u n d e d w i t h t r i g o n a l s y m m e t r y b y six s e v e n c o o r d i n a t e d M atoms.
T h e s e u n i t s are s e p a r a t e d b y a f u l l y o x i d i z e d
M O i 4 g r o u p a l o n g [ 1 1 l ] - l i k e beads of t w o types i n a s t r i n g t o f o r m 7
F
the s t r u c t u r e o f Z r i S c O 0
4
2 6
( s p a c e g r o u p R3).
T h e s e b e a d e d strings, a l l
o r i e n t e d p a r a l l e l to the t h r e e f o l d axis, are e d g e - s h a r e d to f o r m a n i n t e r p e n e t r a t i n g n e t w o r k of t h e t w o k i n d s of u n i t s .
T h e Z r a n d S c atoms
o c c u p y the m e t a l sites r a n d o m l y i n b o t h structures. I n the Z r Y b O i 3
4
2
p h a s e (13),
m o d i f i c a t i o n s are o b s e r v e d .
w h e r e the l a r g e r Y b is present, t w o
O n e is i s o s t r u c t u r a l w i t h Z r S c O i , a n d t h e 3
4
2
o t h e r ( a l o w t e m p e r a t u r e f o r m ) has some o r d e r i n g of m e t a l atoms w i t h Z r o c c u p y i n g t h e s i x - c o o r d i n a t e d m e t a l sites a n d r a n d o m o c c u p a n c y
of
the s e v e n - c o o r d i n a t e d sites. I n the other r a r e e a r t h z i r c o n i a s o l i d s o l u tions (11),
w h e r e the size d i s c r e p a n c y b e t w e e n the atoms increases, t h e r e
is l i t t l e e v i d e n c e of o r d e r i n g . T h e o r d e r e d phases of s i m i l a r c o m p o s i t i o n o b s e r v e d b y K o m e s s a r o v a and
S p i r i d i n o v (14)
i n t h e H f O ^ S c ^ O s system a n d i n d e x e d as r h o m b o
h e d r a l u n i t cells a r e p r o b a b l y closely r e l a t e d to these Z r 0 · S c 0 2
2
3
phases.
C o l l o n g u e s a n d c o - w o r k e r s (JO, J 5 ) as w e l l as m a n y others ( J ) h a v e f o u n d p y r o c h l o r e phases i n these t e r n a r y o x i d e systems. phase, Α
2
3 +
Β
2
4
A l t h o u g h this
Ό , is r e l a t e d to fluorite, the shifts i n o x y g e n positions are 7
so great t h a t t h e s t r u c t u r e is best c o n s i d e r e d as i n t e r p e n e t r a t i n g f r a m e w o r k s of [ A 0 ] 2
a n d [ B O ] w i t h the A i n l i n e a r c o o r d i n a t i o n a n d Β i n
octahedral coordination.
e
T h e radius ratio, r( A
3 +
)/r(B
) , is
4 +
between
ca. 1.20 a n d 1.60. T H O R I A - R A R E E A R T H OXIDE SYSTEMS.
S o l i d solutions b e t w e e n t h o r i a
a n d the r a r e e a r t h oxides a r e w e l l k n o w n a n d h a v e b e e n u s e d f o r years as o x y g e n - c o n d u c t i n g s o l i d electrolytes. I n e a c h case s t u d i e d t h e r e is a w i d e - r a n g e s o l i d s o l u t i o n h a v i n g a fluorite s t r u c t u r e u p to a m a x i m u m at m o d e r a t e t e m p e r a t u r e s of a b o u t 4 0 %
( M 0 ) i n T h 0 . N o ordered 2
3
2
Goodenough and Whittingham; Solid State Chemistry of Energy Conversion and Storage Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
14.
Nonstoichiometry,
EYRiNG
i n t e r m e d i a t e phases
Order,
i n this s y s t e m
and at l o w
Disorder
245
temperatures
have
been
described. On and
the M 0 - r i c h side at v e r y h i g h t e m p e r a t u r e s , h o w e v e r , S i b i e u d e 2
F o e x ( 16)
3
h a v e f o u n d e v i d e n c e of a r e m a r k a b l e c o m p l e x i t y s h o w i n g
phases r e l a t e d to t h e A - , B - , C - , X - , a n d Η-type sesquioxides of v a r i a b l e c o m p o s i t i o n as w e l l as to n u m e r o u s other h e x a g o n a l phases of a p p a r e n t l y n a r r o w c o m p o s i t i o n . T h e C - t y p e phase is, of course,
fluorite-related,
but
n o o r d e r e d i n t e r m e d i a t e n a r r o w c o m p o s i t i o n phases h a v e b e e n i n d i c a t e d i n t h e t e r n a r y system thus far. U R A N I U M DIOXIDE—RARE E A R T H OXIDE SYSTEMS.
Downloaded by TUFTS UNIV on October 21, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch014
W e i t z e l and
h a v e r e c e n t l y p r e p a r e d s e v e r a l oxides of c o m p o s i t i o n
(17)
Keller
(M .5Uo.5)0 0
w h e r e M is a r a r e e a r t h a t o m ; t h e y h a v e s h o w n t h e m to b e s t r i c t l y
2
fluorite
i n spite of the u n u s u a l presence of U ( V ) a n d U ( V I ) i n e i g h t - c o o r d i n a t i o n . M a n y studies h a v e s h o w n t h e f o r m a t i o n of fluorite s o l i d solutions of wide
composition
UYeOi
2
range.
O u r a t t e n t i o n is d r a w n to
3Y 0 -U0 2
3
It is i s o s t r u c t u r a l w i t h t h e Z r M O i 3
4
?
(18).
phases d i s c u s s e d a b o v e a n d w i t h t h e
2
b i n a r y oxides of c o m p o s i t i o n M O i
or
3
w h i c h w a s the first c r y s t a l of this s t r u c t u r e d e t e r m i n e d
2
to b e d i s c u s s e d b e l o w as t h e s t r u c
t u r a l e n d m e m b e r of the h o m o l o g o u s series i n the r a r e e a r t h h i g h e r oxides. These
are t h e o n l y k n o w n o r d e r e d
fluorite-related
t e r n a r y oxides
in
this f a m i l y . M a n y reactor
Fluorite-Related Oxides for the Nuclear Industry. fuels a n d r a d i a t i o n p o w e r sources are
fluorite-related
oxides.
These sub
stances c h a r a c t e r i s t i c a l l y m u s t operate i n p l a c e for l o n g p e r i o d s of t i m e , at h i g h t e m p e r a t u r e s , i n s t r o n g r a d i a t i o n fields, a n d w i t h g r o w i n g levels of i m p u r i t y . U n d e r l y i n g a n y r a t i o n a l l y b a s e d p r o g r a m to i m p r o v e t h e p e r f o r m a n c e characteristics of these m a t e r i a l s m u s t b e a s o u n d k n o w l e d g e of t h e i r s t r u c t u r e a n d texture, e s p e c i a l l y t h e i r defect s t r u c t u r e , as a f u n c t i o n of t e m p e r a t u r e , pressure of o x y g e n , r a d i a t i o n
field,
and level
of
impurity. A t t e n t i o n w i l l b e f o c u s e d h e r e o n t h e structures of fluorite-related Pu0
2
(U, Pu)0
2
2
2
as w e l l as the p l u t o n i u m oxides.
FLUORITE Μ0 .δ. 2
Cm,
oxygen-deficient
oxides of the a c t i n i d e elements. T h e s e i n c l u d e U 0 , T h 0 , D i o x i d e s are k n o w n for T h , P a , U , N p , P u , A m ,
B k , a n d C f . T h e l a t t i c e p a r a m e t e r s are c o m p a r e d i n F i g u r e 2.
enormous oxygen
The
v a r i a t i o n of the t h e r m o d y n a m i c s t a b i l i t y is reflected i n t h e
a c t i v i t y r e q u i r e d to m a i n t a i n s t o i c h i o m e t r y at 1000 ° C
which
varies m o r e t h a n 20 orders of m a g n i t u d e . Th0
2
is o n l y s l i g h t l y s u b s t o i c h i o m e t r i c i n the presence of T h e v e n
near the m e l t i n g point.
U0
2
b e g i n s to lose o x y g e n a p p r e c i a b l y i n t h e
p r e s e n c e of U at ~ 1 5 0 0 ° C a n d reaches a m o n o t e c t i c c o m p o s i t i o n of ~ U O i . . 6 5
at 2 5 0 0 ° C at a
T h e heavier actinide dioxides typically show
l i t t l e d e v i a t i o n f r o m s t o i c h i o m e t r y u n t i l a t e m p e r a t u r e of a f e w h u n d r e d
Goodenough and Whittingham; Solid State Chemistry of Energy Conversion and Storage Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
246
SOLID STATE
CHEMISTRY
Downloaded by TUFTS UNIV on October 21, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch014
A C T I N I D E OXIDE
LANTHANIDE Figure 2.
OXIDE
Lattice parameters for fluorite-related rare earth and actiniae
oxides
degrees is r e a c h e d , a n d t h e n q u i t e s u d d e n l y t h e y enter a p h a s e of w i d e c o m p o s i t i o n r a n g e of fluorite structure. A n u n d e r s t a n d i n g o f the d e g r e e a n d n a t u r e of s h o r t - or l o n g - r a n g e o r d e r i n g of defects i n these
Μ0 .δ 2
phases has not p r o g r e s s e d v e r y far. A b r i e f r e v i e w of w o r k u p to a b o u t 1970 a l o n g these lines offers p h a s e d i a g r a m s a n d references ( 19). R e c e n t l y S0rensen
(20)
has u n d e r t a k e n m e a s u r e m e n t s
(and
the
c o r r e l a t i o n of the w o r k of o t h e r s ) of t h e p a r t i a l m o l a r t h e r m o d y n a m i c q u a n t i t i e s f o r o x y g e n i n nônstoichiometric p l u t o n i u m a n d p l u t o n i u m u r a n i u m oxides. H e has p r e v i o u s l y d o n e a s i m i l a r analysis o n the C e 0 _ e 2
s y s t e m (21).
I n e a c h of these systems a c a r e f u l analysis of t h e t h e r m o
d y n a m i c d a t a shows s u r p r i s i n g d e v i a t i o n s f r o m i d e a l s o l u t i o n . I n e a c h case a d e r i v e d p h a s e d i a g r a m i n d i c a t e s s e v e r a l subregions i n the M 0 . e 2
p h a s e i n w h i c h the slopes of A G
0 2
VS. log X have characteristic values.
I n t h e C e 0 . 6 p h a s e i n a d d i t i o n to n u m e r o u s nônstoichiometric subregions 2
w i t h i n w h i c h consistent t h e r m o d y n a m i c p r o p e r t i e s are o b s e r v e d , are s u p e r i m p o s e d i n d i c a t i o n s of b e l o n g i n g to a h o m o l o g o u s s u c h subregions
there
s t a b i l i t y at p a r t i c u l a r s t o i c h i o m e t r i c s
series M 0 n
2 n
_ . 2
I n t h e P u O * system t h r e e
( f r o m P u O ^ - P u O i ^ ) a n d t w o t w o - p h a s e regions are
i n d i c a t e d . T h e t w o - p h a s e regions are i n t h e c o m p o s i t i o n r a n g e PuOi.9945 a n d P u O i 999 . T h e ( U , P u ) 0 . « phase separates, b y the same t r e a t m e n t , 8
2
i n t o five subregions w i t h n o i n d i c a t i o n of s p e c i a l s t a b i l i t y at a n y n a r r o w c o m p o s i t i o n . T h e results c o v e r t h e c o m p o s i t i o n r a n g e 2.00 > χ > H i g h t e m p e r a t u r e x - r a y d i f f r a c t i o n observations
(20,
21)
1.85. i n these
systems h a v e s h o w n superstructures of m o n o c l i n i c s y m m e t r y a b o u t 9 0 0 ° C
Goodenough and Whittingham; Solid State Chemistry of Energy Conversion and Storage Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
14.
Nonstoichiometry,
EYRiNG
Order, and
247
Disorder
i n the C e 0 . 6 system. H o w e v e r , i n P u 0 . 6 o r w i t h a n a d m i x t u r e of u r a n i a 2
2
o n l y fluorite structures w e r e f o r m e d . I t seems a p p a r e n t t h a t e v e n at these h i g h t e m p e r a t u r e s ( a l t h o u g h o n l y u p to l i t t l e m o r e t h a n o n e - h a l f t h e m e l t i n g t e m p e r a t u r e s ) there is c o n s i d e r a b l e o r d e r , at least short-range order.
T h i s o r d e r exists i n spite of a h i g h m o b i l i t y o f o x y g e n
atoms
w h i c h at t h e h i g h e s t t e m p e r a t u r e s m u s t s p e n d a g o o d d e a l of t i m e b e t w e e n positions o f m i n i m u m e n e r g y ( 2 2 ) . The M O 7
i 2
p h a s e has d e f i n i t e l y b e e n e s t a b l i s h e d f o r C m a n d C f ( 2 3 ,
2 4 ) , a n d t h e r e is clear e v i d e n c e f o r o r d e r i n i n t e r m e d i a t e regions i n t h e CmOi.
8 2
a n d at t w o c o m p o s i t i o n s i n t h e B k 0 _ 6 system ( 2 5 ) . 2
Downloaded by TUFTS UNIV on October 21, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch014
T a b l e I s u m m a r i z e s t h e k n o w n i n t e r m e d i a t e phases
among the
a c t i n i d e oxides i n M O * , 1.5 < χ < 2.0. T h e names of the phases are u s e d a d v i s e d l y f o l l o w i n g t h e n o m e n c l a t u r e f o r t h e l a n t h a n i d e oxides. Table I. Μ
I n t e r m e d i a t e Phases a m o n g t h e A c t i n i d e O x i d e s
ΜΟ^Β(σ)
Th Pa U Νρ Pu Am Cm Bk Cf
M0 (i) lm71
M0 è(i)
ΜΟ . -δ(α)
1M±
2 00
Χ
Χ Χ Χ Χ χ
i
Triclinic
a b c a 0 7
= 13.8A = 16.2A —12.1A = 107.4° — 100.1° = 92.2°
ROisis
11
Triclinic
a = 6.5 A b = 9.9A c = 6.5A a = 90.0° β = 99.6° γ=96.3°
TbOi.833
12
Pn
a =
,
P
(
r
T l
.
0
1
W
l
h b
n u
7
1
4
)
χ " i * )
6.7A
6 = 23.2A c = 15.5A 0 = 125.2° PrOi.833
12
Pn
a 6 c 0
R0 .ooo
00
Fm3m
a =
5.393A
(Pr0 )
a =
5.220A
(TbOi.95)
2
= 6.687A = 11.602A = 15.470A = 125°15' 2
If a phase occurs in the PrO* as well as in the TbO* system R is used, otherwise the specific symbol is used. β
Goodenough and Whittingham; Solid State Chemistry of Energy Conversion and Storage Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
14.
EYWNG
Nonstoichiometry,
Order, and Disorder
251
Intermediate Rare E a r t h Oxide Phases
Downloaded by TUFTS UNIV on October 21, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch014
Relation
to Basic Structure
a =
2a,
a
=
at +
1/26, -
l/2c
α =
a, +
1/26,
6 =
3/26, +
c =
l / 2 a , — 1/26,
a =
a, +
6 =
5 / 2 ( - 6 ,
—
CHEMISTRY
moderate
300°C).
T h e u n i t ceUs f o r s e v e r a l m e m b e r s of t h e h o m o l o g o u s series M 0 n
where η =
d i f f r a c t i o n a n d h a v e b e e n a d d e d to those a l r e a d y k n o w n f o r η = oo.
2 n
-2
7, 9, 10, 11, a n d 12 h a v e b e e n d e t e r m i n e d ( 2 9 ) u s i n g e l e c t r o n
T h e s e are s h o w n i n p r o j e c t i o n a l o n g [211]
4 and
i n F i g u r e 3 a n d are
d e s c r i b e d i n d e t a i l i n T a b l e I I I . I n a d d i t i o n , p o l y m o r p h i s m occurs i n t h e zeta ( n =
9 ) p h a s e a n d p e r h a p s i n others.
A l l t h e phases h a v e t h e same a axis. T h e a r r a n g e m e n t of v a c a n c i e s a l o n g this axis, w h i c h is a v e c t o r of t h e k i n d V i [ 2 1 1 ] , are s h o w n i n F
Downloaded by TUFTS UNIV on October 21, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch014
F i g u r e 4. T h i s feature of t h e i o t a s t r u c t u r e is c o n s i d e r e d t h e largest h e l d i n c o m m o n b y t h e m e m b e r s of t h e h o m o l o g o u s series of b i n a r y oxides ( n = 7, 9 , 1 0 , 11, 1 2 ) . T h e o d d m e m b e r s of the series also h a v e t h e same c axis a n d h e n c e t h e i o t a ac p l a n e ( 135 )
F
as a c o m m o n f e a t u r e . A s F i g u r e
3 s h o w s , t h e e v e n m e m b e r s h a v e a n ac p l a n e i n c o m m o n also, b u t c is different i n this case.
A n o t h e r e l e m e n t w h i c h w e n t i n t o this s t r u c t u r a l
p r i n c i p l e hypothesis was the h i g h resolution structure images of the delta
10 Figure 3. Projections of the unit cells of members of the homologous series along the common a axis, [211] F
Goodenough and Whittingham; Solid State Chemistry of Energy Conversion and Storage Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
Downloaded by TUFTS UNIV on October 21, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch014
14.
Nonstoichiometry,
EYRiNG
Figure
4.
Order, and
253
Disorder
Arrangement of vacancy pairs along the a axis, common to members of the homologous series
[211]
F
p h a s e ( T b n 0 o ) w h i c h a p p e a r e d to s h o w ( F i g u r e 5 ) the positions of t h e 2
vacancies i n the u n i t c e l l as w o u l d b e p r e d i c t e d ( F i g u r e 6 ) . D e s p i t e this a p p a r e n t success, a p p l i c a t i o n of h i g h r e s o l u t i o n c r y s t a l s t r u c t u r e i m a g i n g to structures s u c h as the
fluorite
type h a d not been
d e v e l o p e d p r e v i o u s l y ; h e n c e great care m u s t b e t a k e n i n the i n t e r p r e t a t i o n of the images o b t a i n e d . H i g h r e s o l u t i o n c r y s t a l s t r u c t u r e i m a g i n g is c a p a b l e of g i v i n g a t w o d i m e n s i o n a l p o i n t - t o - p o i n t i m a g e of the c r y s t a l p o t e n t i a l to a r e s o l u t i o n of a b o u t 3.5 A . T h i s is possible for crystals w h e n there is a short axis of o n l y o n e - c o o r d i n a t i o n p o l y h e d r o n i n the d i r e c t i o n of v i e w i n g a n d r a t h e r l a r g e axes i n the other t w o directions.
S u c h a structure exhibits l a r g e
v a r i a t i o n s i n p o t e n t i a l w h e n v i e w e d d o w n this short axis. I n a d d i t i o n , t h e c r y s t a l m u s t b e t h i n ( < 100 A ) , o r i e n t e d w i t h i n ~ 0.1°, a n d v i e w e d at the correct defocus. U n d e r these c o n d i t i o n s c r y s t a l s t r u c t u r e images of structures b a s e d o n t h e R e 0
3
s t r u c t u r e , for e x a m p l e , c a p a b l e of i n t u i t i v e
interpretation have been produced The
fluorite
(31).
superstructures, o n t h e other h a n d , are n o t l i k e l y
exhibit large potential variations i n any direction. A n a d d e d
to
disadvantage
is that t h e shortest axis for these m a t e r i a l s is the 6.75 A a axis. T h i s strains the t h i n phase object a p p r o x i m a t i o n o n w h i c h the c a l c u l a t i o n s are b a s e d a n d h e n c e requires that the t e c h n i q u e b e s h o w n to a p p l y . T o a d d t o t h e
Goodenough and Whittingham; Solid State Chemistry of Energy Conversion and Storage Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
Downloaded by TUFTS UNIV on October 21, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch014
254
SOLID STATE
Figure 5.
Figure 6.
Crystal structure image of Tb O . enhanced. tl
u
Possible structures of delta (Pr O ) n
20
Dark field,
CHEMISTRY
optically
projected down
[211]
Goodenough and Whittingham; Solid State Chemistry of Energy Conversion and Storage Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
F
14.
Nonstoichiometry,
EYRiNG
Order,
and
255
Disorder
difficulty, the r e c i p r o c a l l a t t i c e axes p e r p e n d i c u l a r to t h e p r o j e c t i o n axis are r a t h e r l o n g , p r o d u c i n g f e w b e a m s i n a r e a s o n a b l e s i z e d a p e r t u r e . T h e stakes i n success are h i g h , h o w e v e r , since t h i s t e c h n i q u e a l o n e c a n r e v e a l t e x t u r a l details d i r e c t l y , a n d t h e c a p a b i l i t y of t r e a t i n g a n y i m p o r t a n t class of substances s u c h as the
fluorite
m a t e r i a l s is v i t a l .
In
v i e w of s u c h u n f a v o r a b l e c i r c u m s t a n c e s i t is i m p e r a t i v e to c o m p a r e c a l c u l a t e d a n d o b s e r v e d images to a v o i d serious errors i n the i n t e r p r e t a t i o n . W i t h this i n m i n d S k a r n u l i s , S u m m e r v i l l e , a n d E y r i n g
(32)
have
t e s t e d t h e a p p l i c a b i l i t y of t h e m e t h o d o n t h e p r o t o t y p e of t h e h o m o l o g u o s series, t h e i o t a p h a s e ( P r O i ) , the o n l y one of the i n t e r m e d i a t e phases 7
Downloaded by TUFTS UNIV on October 21, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch014
for w h i c h complete
2
s t r u c t u r a l d a t a are a v a i l a b l e ( 3 3 ) .
m u l t i s l i c e m e t h o d of C o w l e y a n d M o o d i e (34)
The
n-beam
is t h e basis of t h e i m a g e
contrast c a l c u l a t i o n s . Calculated
Images
of
(Pr Oi ), [211] 7
2
atoms for P r O i 7
M0
2
the
Iota
Zone.
F
Phase
F i g u r e 7 shows the p r o j e c t i o n of t h e i d e a l
w h e n v i e w e d d o w n the (111)F a n d t h e ( 2 1 1 ) axes.
The
F
c o o r d i n a t i o n c u b e is also s h o w n to f a c i l i t a t e o r i e n t a t i o n .
8
C a l c u l a t e d η-beam images of t h e [211] z o n e for 25-, 165-, a n d 235-Â t h i c k crystals are s h o w n i n F i g u r e 8 u s i n g i o n i c s c a t t e r i n g factors.
The
d e f e c t of focus of t h e m i c r o s c o p e is t a k e n to b e —1000 A . T h e o r i g i n is p l a c e d at t h e top left c o r n e r w i t h t w o of t h e axes (a = figure
b =
along the
c)
edges.
T h e c a l c u l a t e d t h i n c r y s t a l images at 1000-A u n d e r f o c u s
correspond
to t h e p r o j e c t i o n of t h e c o l u m n s of o x y g e n v a c a n c i e s i n t h e s t r u c t u r e — t h e r e b e i n g t w o p e r u n i t c e l l i n this case.
M a n y v a r i e d images
c a l c u l a t e d w h e n m a n y thicknesses a n d defects of focus are u s e d
are (32),
b u t t h i c k e r crystals t e n d to s h o w o n l y one w h i t e spot p e r u n i t c e l l ( e.g., at 2 3 5 - A t h i c k n e s s , 1000-A u n d e r f o c u s
w i t h ionic scattering
factors).
T h i s f e a t u r e correlates w i t h t h e strings of s i x - c o o r d i n a t e d m e t a l atoms. T h e i m a g e s f o r t h i c k e r crystals d o n o t h a v e a one-to-one c o r r e l a t i o n w i t h the projected potential a n d hence cannot be considered true crystal s t r u c t u r e i m a g e s . T h e y do, h o w e v e r , h a v e the p e r i o d i c i t y a n d s y m m e t r y of t h e s t r u c t u r e a n d f o r this r e a s o n are p o w e r f u l tools i n i d e n t i f y i n g a n d c o r r e l a t i n g o b s e r v e d images. Zr Sc Oi , 3
4
2
[211]
F
Zone.
T h i s p h a s e is i s o s t r u c t u r a l w i t h
Pr Oi , 7
2
a n d f o r this r e a s o n differences i n t h e images m a y b e u s e d to i n f e r differ ences i n f o r m factors of t h e m e t a l atoms.
T h e η-beam c a l c u l a t i o n s f o r
this phase u s i n g a t o m i c s c a t t e r i n g factors are s h o w n i n F i g u r e 8. generalizations can be made.
A s i n the case for P r O i 7
2
Some
the thin crystal
images c o r r e l a t e d w e l l w i t h t h e p r o j e c t e d p o t e n t i a l ( e.g., 24r-48-A t h i c k ness, 9 0 0 - 1 0 0 0 - A u n d e r f o c u s , a t o m i c s c a t t e r i n g f a c t o r s )
(32).
T h e same
Goodenough and Whittingham; Solid State Chemistry of Energy Conversion and Storage Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
256
SOLID STATE
CHEMISTRY
CATION AND ANION SITES
^
AT RELATIVE INTERVALS
•
OF
8 [111], TO E A C H
— Δ
OTHER
COLUMNS
OF
Downloaded by TUFTS UNIV on October 21, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch014
VACANCIES
ANION
·
AND
OCTAHEDRAL
CATIONS
Figure 7. Projections of the ideal atom positions of Pr 0 down (a) the [111] axis where the line intersections, filled triangles, and empty triangles represent columns of metal and nonmetal sites at rehtive intervals of 1/12[111 ] to each other. The columns of nonmetal vacancies and six-coordinated metal atoms are indicated by filled circles and (b) the [211] axis where metal atom sites are marked with a plus sign; the nonmetal sites are marked by a multiplication sign; nonmetal vacancies are marked with a square; and filled circles again indi cate columns of six-coordinated metal atoms. M0 cubes are also outlined to facilitate interpretation. 1
1%
F
F
F
8
is t r u e except f o r a shift i n o r i g i n f o r crystals a b o u t 165 A t h i c k as observed for P r O i . 7
2
T h e images d e r i v e d u s i n g i o n i c s c a t t e r i n g factors
h a v e m o r e f r i n g e , b u t i m a g e s s h o w i n g t w o spots p e r u n i t c e l l o c c u r at 1 2 0 - 1 4 4 - A a n d 1 0 0 0 - A u n d e r f o c u s ( 3 2 ) .
I n b o t h cases t h e t h i c k e s t
crystals s h o w one spot p e r u n i t c e l l Calculated Images of P r O i , [ H 1 ] F Zone. T h e s e i m a g e s s h o w i n g 7
2
a n h e x a g o n a l a r r a y of spots at a l l thicknesses a n d defects of focus a l m o s t
Goodenough and Whittingham; Solid State Chemistry of Energy Conversion and Storage Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
Downloaded by TUFTS UNIV on October 21, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch014
14.
EYRiNG
Nonstoichiometry,
Order, and
257
Disorder
Figure 8. Calculated images of Pr 0 and Zr Scfi . The type of scattering factors and the defect of focus are shown at the bottom, while the number of slices (~ 6.75À per slice) is shown at the left. 7
lt
s
12
u n i f o r m a l l y i n d i c a t e one spot p e r u n i t c e l l , a l t h o u g h there is a n o r i g i n shift i n some cases. Observed Images of the Iota Phase Images o f R7O12 Phases, [ 2 1 1 ] Z o n e . t y p i c a l i m a g e s of P r O i 7
Figure 9(a)
w i t h o n e spot p e r u n i t c e l l .
2
and (b)
show
S u c h images are
c o m p a r a b l e to some of those c a l c u l a t e d f o r t h i c k crystals. F i g u r e s h o w s a n i m a g e of Z r S c O i 3
4
2
9(c)
i n w h i c h t w o spots p e r u n i t c e l l a p p e a r i n
Figure 9. Observed (100) crystal structure images of Pr 0 and Zr Sc A : (a) typical image of Pr O ; (b) thick-crystal image of Pr Ô , and (c) thincrystal image of Zr Sc 0 showing vacancy arrangement 7
7
7
tf
lt
7
s
4
s
12
12
Goodenough and Whittingham; Solid State Chemistry of Energy Conversion and Storage Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
4
lt
Downloaded by TUFTS UNIV on October 21, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch014
258
SOLID STATE
CHEMISTRY
Figure 10. Observed (111) images of Pr 0 and Zr Sc 0 : (a) typical image, (b) two twin orientations of Zr Sc^0 with a region of C-type oxide between 7
7
s
lt
s
4
lt
lt
t h e u p p e r r i g h t s i d e . T h i s c o u l d b e a r e a s o n a b l y t h i n c r y s t a l , e.g., 1 2 0 144 A t o c o r r e l a t e w i t h t h e c a l c u l a t e d images.
I n g e n e r a l the o b s e r v e d
i m a g e s of t h e i o t a p h a s e s h o w v a r i a t i o n s as d o the c a l c u l a t e d i m a g e s ; h o w e v e r , t h e correlations are sometimes a m b i g u o u s . Images of P r 0 7
1 2
Phases, (111)
Zone.
T h e r e is g o o d
agreement
b e t w e e n c a l c u l a t e d a n d o b s e r v e d images i n t h i s z o n e ; F i g u r e 10(a) the observed image.
c o o r d i n a t e d cations i n t h e d i r e c t i o n of the b e a m . m a y o b s e r v e t w o regions of Z r S c 0 3
of M 0 2
3
shows
T h e spots c a n b e c o r r e l a t e d w i t h c o l u m n s of s i x -
4
1 2
In Figure 10(b)
one
i n t w i n orientation w i t h an overlay
( C - t y p e ) at t h e t w i n b o u n d a r y . T h e [ 1 1 1 ] z o n e axis is c o m m o n F
t o a l l three regions. Discussion of the Iota Phase Images.
D e s p i t e its l i m i t a t i o n s this
t e c h n i q u e shows great p r o m i s e i n c o r r e l a t i n g c a l c u l a t e d a n d
observed
images
projected
even i f the point-to-point correspondence
w i t h the
p o t e n t i a l does n o t exist f o r t h e t h i c k crystals i m a g e d so far. I t is difficult i n these o x y g e n l a b i l e m a t e r i a l s t o observe t h i n crystals w i t h o u t c o m p o s i t i o n c h a n g e i n t h e v a c u u m of t h e m i c r o s c o p e u n d e r the h e a t i n g of t h e e l e c t r o n b e a m . A t t h e least a n u n a m b i g u o u s i d e n t i f i c a t i o n c a n b e m a d e o f e a c h phase, a n d the i m a g e , w h i l e n o t i n t u i t i v e l y interprétable, c a n g i v e s o m e h e l p i n s o r t i n g out t h e s t r u c t u r e since images c a l c u l a t e d f r o m w r o n g structures d o n o t agree w e l l . I n t h e case of p a s s i v e crystals, t h i n e n o u g h samples c o u l d b e u s e d t o observe images w i t h contrast a g r e e i n g w i t h t h e projected potential.
Goodenough and Whittingham; Solid State Chemistry of Energy Conversion and Storage Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
14.
EYRiNG
Nonstoichiometry,
Images of Beta, Epsilon, Observations.
Order,
and
Disorder
259
and Zeta Phases
Summerville a n d E y r i n g (55)
have continued h i g h
r e s o l u t i o n c r y s t a l s t r u c t u r e i m a g i n g of o t h e r o r d e r e d i n t e r m e d i a t e phases i n a n a t t e m p t to c l a r i f y the s t r u c t u r a l p r i n c i p l e w h i c h w o u l d e l u c i d a t e the h o m o l o g o u s series i n these
fluorite-related
materials.
T h e existence of a b i f u r c a t e d , e v e n - o d d , h o m o l o g o u s series i n t h e r a r e e a r t h oxides w a s c l e a r l y i n d i c a t e d i n e a r l i e r w o r k ( 2 9 ) . to i m a g e m e m b e r s of the e v e n g r o u p . ( P r 4 0 4 ) are s h o w n i n F i g u r e 11. 4
T h e s t r o n g spots at t h e corners of a
Downloaded by TUFTS UNIV on October 21, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch014
2
It was important
S o m e images of t h e b e t a p h a s e
Figure 11.
(100)
lt
Crystal structure images of beta
Goodenough and Whittingham; Solid State Chemistry of Energy Conversion and Storage Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
260
SOLID S T A T E
rectangle (nearly a square)
CHEMISTRY
c o r r e s p o n d to o n e u n i t c e l l i n t h i s
[211]
p r o j e c t i o n ( F i g u r e 3 ) . T h e r e is c o n s i d e r a b l e contrast w i t h i n t h e u n i t c e l l . If the W c l i n i c unit cell w i t h η =
12 s h o w n i n p r o j e c t i o n i n F i g u r e 3
were t w i n n e d along ( 1 1 0 ) , the unit c e l l actually observed w o u l d result. r
S u c h a unit cell w i t h expected
v a c a n c i e s is s h o w n i n F i g u r e 12 i n
projection. I m a g e s c a l c u l a t e d o n t h e basis of this s t r u c t u r e , except t h a t t h e m e t a l atoms a b o u t t h e v a c a n c i e s w e r e a l l o w e d to r e l a x just as t h e y d o i n i o t a p h a s e ( 3 2 ) , are s h o w n i n F i g u r e 13 f o r three thicknesses a n d a — 9 0 0 - A d e f e c t of focus.
T h e o x y g e n atoms a r e n o t s h i f t e d i n this c a l c u l a t i o n
Downloaded by TUFTS UNIV on October 21, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch014
except to r e m o v e those c o r r e s p o n d i n g to the v a c a n c i e s . T h e c a l c u l a t e d i m a g e s f o r t h i n crystals at — 9 0 0 - A defocus c o r r e s p o n d t o t h e p r o j e c t e d a n i o n v a c a n c i e s of t h e m o d e l as t h e y d i d i n the case of i o t a p h a s e ; h o w e v e r , i m a g e s f o r t h i c k e r crystals are q u i t e different. T h e o b s e r v e d i m a g e s o f F i g u r e 11 c o r r e l a t e w e l l w i t h those c a l c u l a t e d at a d e f o c u s of — 9 0 0 - A a n d at 162- a n d 2 4 3 - A t h i c k n e s s r e s p e c t i v e l y as shown.
A l l t h i n g s c o n s i d e r e d , t h e a g r e e m e n t is b e t t e r t h a n s h o u l d b e
expected.
A t least t h e PI s t r u c t u r e of F i g u r e 12 is c o m p a t i b l e w i t h the
observations. T h e t h e r m a l d e c o m p o s i t i o n t e m p e r a t u r e of m e m b e r s of t h e h o m o logous series decreases f r o m i o t a to b e t a , w h i c h is the last of the series o b s e r v e d i n P r O * except f o r P r 0 . 2
°
oxygen
vacancy
T h i s decrease
of t h e r m a l s t a b i l i t y
·
seven c o o r d i n a t e
•
eight
coordinate
cation cation
Figure 12. Diagrammatic representations of the proposed structures of the beta phase, (a) Model with symmetry P I . (b) Model with symmetry P m . Indices refer to fluorite subcell.
Goodenough and Whittingham; Solid State Chemistry of Energy Conversion and Storage Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
Downloaded by TUFTS UNIV on October 21, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch014
14.
EYRiNG
Nonstoichiometry,
Order,
and
Disorder
261
Figure 13. Calculated images of beta phase with the defect of focus and the thickness of the crystal indicated suggests t h e p o s s i b i l i t y of d i s o r d e r i n these phases. F i g u r e s 14 a n d 15 i l l u s t r a t e s u c h d i s o r d e r . I n one case t h e r e is a s h i f t i n t h e i n t e n s i t y o f c e r t a i n spots a l o n g a definite b o u n d a r y , a n d i n t h e o t h e r t h e r e is a loss of the regular pattern over one unit cell.
Figure 14. Crystal structure image from (100) , showing image variations which may correspond to domains of each of the proposed polymorphs of beta Jt
Goodenough and Whittingham; Solid State Chemistry of Energy Conversion and Storage Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
Downloaded by TUFTS UNIV on October 21, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch014
262
SOLID STATE
Figure
IS.
Figure
Crystal structure image of beta from a (100) apparent stacking faults
lt
16.
Crystal structure image from a (100)
10
CHEMISTRY
zone
zone of
showing
epsilon
Goodenough and Whittingham; Solid State Chemistry of Energy Conversion and Storage Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
14.
EYEING
Nonstoichiometry,
Order,
and
A n i m a g e of t h e e p s i l o n phase ( P r i O 0
1 8
Disorder
263
) is s h o w n i n F i g u r e 16. T h e
corners of t h e u n i t c e l l are s h a r p spots w i t h c o n s i d e r a b l e d e t a i l i n t h e contrast w i t h i n t h e u n i t c e l l . Images for this p h a s e are p r e s e n t l y b e i n g c a l c u l a t e d , b u t t h e results a r e n o t f a r e n o u g h a l o n g t o m e r i t d i s c u s s i o n . F i g u r e 17 d e p i c t s i m a g e s of z e t a phase. A t t h e t o p of t h e figure a p r o j e c t i o n of t h e be p l a n e is o b s e r v e d to b e f a i r l y r e g u l a r l y s p a c e d b u t w i t h o b v i o u s fluctuation of t h e intensities. A n i n t e r g r o w t h of i o t a a n d z e t a w i t h a repeat d i s t a n c e of b
7
&9 Is c l e a r l y d i s c e r n e d at t h e b o t t o m b u t
i n this case w i t h t h e ab p l a n e p r o j e c t e d .
T h e z e t a u n i t cells h a v e t w o
spots p e r u n i t c e l l , w h e r e a s t h e y are n o t r e s o l v e d i n i o t a . C a l c u l a t i o n s
Downloaded by TUFTS UNIV on October 21, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch014
h a v e n o t b e e n m a d e for z e t a , b u t s i n c e t w o spots p e r u n i t c e l l are seen i n t h e i m a g e s of t h e d e l t a p h a s e ( F i g u r e 5 ) , i t m a y n o t b e s u r p r i s i n g to see t h e m i n z e t a . D i s c u s s i o n o f t h e O b s e r v e d R e s u l t s . T h e i n t e r p r e t a t i o n s as set f o r w a r d here (32)
e x t e n d t h e s t r u c t u r a l m o d e l of K u n z m a n n a n d E y r i n g
Figure 17.
(211)
F
crystal structure image of the zeta phase
Goodenough and Whittingham; Solid State Chemistry of Energy Conversion and Storage Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
264 (29)
SOLID STATE
CHEMISTRY
a n d are consistent w i t h t h e v i e w t h a t i n t h e o d d m e m b e r s of the
series every n t h ( 1 3 5 )
F
p l a n e of cations is s i x - c o o r d i n a t e d , w i t h
those
i n between b e i n g a l l seven- or eight-coordinated. T h e oxygen vacancies o n e a c h s i x - c o o r d i n a t e d c a t i o n o c c u r a l o n g t h e b o d y d i a g o n a l [111] t h e c o o r d i n a t i o n c u b e at a n a n g l e of 73° to t h e ( 135 )
F
I n the e v e n m e m b e r s t w i n n i n g at t h e u n i t c e l l l e v e l a l o n g produces
puckered {135}
F
of
plane. (110)
F
planes s u c h t h a t t h e i r a v e r a g e d i r e c t i o n is
p a r a l l e l to ( 1 1 0 ) . I n the case of b e t a , f o r e x a m p l e , t h e r e are a l t e r n a t e F
segments of ( 1 3 5 )
F
and (531)
planes of s i x - c o o r d i n a t e d cations w h i c h
F
m a k e u p the &-face of the m o n o c l i n i c u n i t c e l l .
T h e s e are ( 1 0 1 )
F
on
Downloaded by TUFTS UNIV on October 21, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch014
average. Images of Phase Transformations Fluarite-Related
Binary
and Intergrowth
in
Oxide Systems
W h e n the rare e a r t h oxides w h i c h h a v e a p p r e c i a b l e o x y g e n d i s s o c i a t i o n pressures at m o d e r a t e t e m p e r a t u r e s a r e s t u d i e d i n t h e v a c u u m of t h e m i c r o s c o p e u n d e r t h e h e a t i n g of the e l e c t r o n b e a m , phase reactions are n o t o n l y possible, t h e y are i n e v i t a b l e . T h e r e f o r e , w h i l e i m a g e s of t h e o r d e r e d phases w e r e o b s e r v e d , specimens i n the act of t r a n s f o r m a t i o n were recorded.
Summerville a n d E y r i n g (32)
have observed numerous
cases, a f e w of w h i c h w i l l b e r e h e a r s e d h e r e . Diffraction Patterns. S t r e a k i n g a l o n g b* is a l w a y s o b s e r v e d i n t h e d i f f r a c t i o n p a t t e r n w h e n d i s o r d e r is o b s e r v e d i n the i m a g e .
Before the
s t r e a k i n g b e c o m e s extensive, i t is r e p l a c e d b y t h e d i f f r a c t i o n spots of t h e n e w phase.
I t is v e r y c o m m o n to find d i f f r a c t i o n patterns c o n t a i n i n g
d i f f r a c t i o n spots f r o m t w o o r m o r e phases i n t h e same z o n e i n d i c a t i n g the t o p o t a c t i c i n t e r g r o w t h of these phases.
T h e s e observations suggest t h a t
d u r i n g r e a c t i o n t h e r e is d i s o r d e r a l o n g b w h i c h is soon r e p l a c e d b y o r d e r i n this d i r e c t i o n b u t b y m o r e t h a n one phase. T h e n finally the n e w p h a s e occurs alone.
T h e s e changes i n the h o m o l o g o u s
series o c c u r w i t h a n
a d v a n c i n g front p a r a l l e l to { 1 3 5 } o r to t h e p u c k e r e d planes i f t h e r e a c t i o n F
occurs b e t w e e n e v e n m e m b e r s . C o n v e n t i o n a l d o m a i n s are
Images of Systems in Phase Reactions.
r a r e l y seen i n images of these m a t e r i a l s . A s m e n t i o n e d a b o v e a n d as s h o w n i n F i g u r e 1 8 ( a ) , a m o n g the h o m o l o g o u s series a p l a n a r r e a c t i o n f r o n t seems m o s t t y p i c a l . I n this case t h e z e t a p h a s e is d e c o m p o s i n g
to
i o t a , a n d a l t e r n a t i n g layers one u n i t c e l l w i d e suggest.the m e c h a n i s m of r e a c t i o n . O n the o t h e r h a n d , i n the Ρ Γ 0 Ι 2 - Ρ Γ 0 3 phase r e g i o n w h e r e the 7
2
structures are not so closely r e l a t e d , coherent i n t e r g r o w t h results f r o m nucleation and growth i n a more conventional w a y Figures 18(b)
a n d 19.
as i l l u s t r a t e d i n
T h e l a t t e r is of a Zr^ScyO* c o m p o s i t i o n of
^
Μ Ο ι . . T h e e d g e of the c o n v e n t i o n a l d o m a i n s are seen to b e q u i t e c l e a n β 4
Goodenough and Whittingham; Solid State Chemistry of Energy Conversion and Storage Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
Downloaded by TUFTS UNIV on October 21, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch014
14.
EYRiNG
Nonstoichiometry,
Order,
and
Figure 18. (a) Crystal structure showing intergrowth with iota, (b) ture image showing a domain of which is largely sigma
265
Disorder
image from (100) (HI)ρ Crystal struc Fr O in a crystal phase. 9
1
it
w i t h l i t t l e d i s t u r b a n c e i n the s e m i c o h e r e n t interface. I n F i g u r e 19 p e r f e c t register b e t w e e n t h e [111] d i r e c t i o n of b o t h phases is o b s e r v e d t h e Z r S c 0 i 2 substrate a n d t h e S c 0 8
4
2
3
between
i n c l u s i o n s of 70Â i n d i a m e t e r .
D i s o r d e r i n Images. T h e o c c u r r e n c e of fine scale d i s o r d e r i n i m a g e s is c o m m o n l y o b s e r v e d . A t e q u i l i b r i u m the Z r * a n d S c 4
3 +
in Zr Sc Oi 8
4
2
are
r a n d o m a n d the o x y g e n l a t t i c e is r e g u l a r . F i g u r e 20 s h o w s d i s o r d e r w h i c h m a y arise f r o m i n c o m p l e t e r a n d o m i z a t i o n of the Z r * a n d S c 4
Zr Sc Oi 3
4
2
3 +
i n the
s p e c i m e n w h i c h leads t o d i s o r d e r i n t h e o x y g e n s u b s t r u c t u r e .
I n o t h e r cases d i s o r d e r is a p p a r e n t o n a l a r g e r scale, g i v i n g a l m o s t a s u p e r s t r u c t u r e repeat p a t t e r n . F i g u r e 21 shows n o t o n l y this k i n d of d i order i n the P r O i 7
2
m a t r i x b u t also e p s i l o n a n d b e t a ( a n d p e r h a p s Φ')
i n a c r y s t a l of i o t a . T h e p e r i o d i c i t y characteristics of t h e o r d e r e d i n c l u sions c h a n g e w i t h t i m e . F i g u r e 2 2 shows t h e r e l a t i v e o r i e n t a t i o n o f t h e i n t e r g r o w n regions i n the s p e c i m e n of F i g u r e 2 1 .
Goodenough and Whittingham; Solid State Chemistry of Energy Conversion and Storage Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
Downloaded by TUFTS UNIV on October 21, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch014
266
SOLID STATE
Figure
19.
Domains
Figure 20.
of Sc O t
s
in a matrix of Zr Sc 0 images s
4
lt
Disorder evident in (111) images of 7
CHEMISTRY
as seen in
Zr Sc 0 s
k
19
Goodenough and Whittingham; Solid State Chemistry of Energy Conversion and Storage Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
(H1)
F
Downloaded by TUFTS UNIV on October 21, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch014
EYRiNG
Nonstoichiometry,
Figure 21.
Order, and
Intergrowth
in Pr O . n
tn
267
Disorder
t
[211 ]
F
zone
Figure 22. Schematic representation of the intergrowth phases shown in Figure 21
Goodenough and Whittingham; Solid State Chemistry of Energy Conversion and Storage Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
268
SOLID S T A T E
Comments on the Results of Structure Fluorite-Related (a) from
Rare Earth
Imaging
CHEMISTRY
of
Oxides
C r y s t a l s t r u c t u r e images of g o o d r e s o l u t i o n h a v e b e e n o b t a i n e d
crystals of s e v e r a l phases i n t h e h o m o l o g o u s series
of
fluorite-
r e l a t e d oxides. (b)
T h e c a l c u l a t e d images of t h i n crystals c o r r e s p o n d t o the p r o
j e c t e d p o t e n t i a l of t h e k n o w n structure. (c)
T h e o b s e r v e d images correlate w e l l w i t h those c a l c u l a t e d f o r
t h i c k crystals i n w h i c h t h e s t r u c t u r e is k n o w n . (d)
T h e t h i c k c r y s t a l images d o n o t p r o v i d e a n i n t u i t i v e l y i n t e r
Downloaded by TUFTS UNIV on October 21, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch014
prétable p i c t u r e , b u t t h e c o r r e l a t i o n of p e r i o d i c i t y a n d s y m m e t r y
affords
u n e q u i v o c a l i d e n t i f i c a t i o n of t h e phases o b s e r v e d . (e)
P h a s e reactions c a n b e f o l l o w e d i n s u b s t a n t i a l d e t a i l ; h o w e v e r ,
m o r e m u s t b e d o n e to m o d e l t h e m a c c u r a t e l y . (f)
I t w i l l b e necessary
to c o n t i n u e u s i n g c a l c u l a t e d i m a g e s
to
m i n i m i z e errors i n i n t e r p r e t a t i o n . (g)
I n systems i n w h i c h t h i n crystals m a y b e o b s e r v e d i n t u i t i v e
i n t e r p r e t a t i o n s h o u l d b e possible e v e n to t h e p o i n t of l o c a t i n g o x y g e n vacancies i n General
fluorite-related
crystals.
Comments
F l u o r i t e - r e l a t e d materials are i m p o r t a n t to n e w e n e r g y a n d storage p r o c e d u r e s .
conversion
S o m e of these are b i n a r y , others t e r n a r y , or e v e n
m o r e c o m p l e x . T h e y i n v o l v e m a n y m e t a l atoms a n d u s u a l l y o x y g e n , rine, or hydrogen.
fluo
Significant i m p r o v e m e n t i n e x i s t i n g m a t e r i a l s a n d t h e
c r e a t i o n of n e w materials are r e q u i r e d as fossil fuels, w h i c h h a v e b e e n t h e c o n v e n t i o n a l sources of energy, are d i s p l a c e d . C e n t r a l to this material's e v o l u t i o n is a k n o w l e d g e of s t r u c t u r a l details at the u n i t c e l l l e v e l .
S u c h i n f o r m a t i o n is n e e d e d t o u n d e r s t a n d t h e i r
f u n c t i o n a n d f a i l u r e a n d to d i r e c t t h e process of g e n e r a t i n g alternatives. A l t h o u g h t h e fluorite structure itself is u b i q u i t o u s a n d s i m p l e , a l m o s t a l l u s a b l e m a t e r i a l s h a v i n g structures r e l a t e d to i t h a v e e x t e n d e d defects. A r e v i e w of these o r d e r e d a n d d i s o r d e r e d
phases has b e e n
r e v e a l i n g a m u l t i t u d e of phases of fine scale c o m p o s i t i o n a l
sketched, variability
w i t h u n d o u b t e d short-range o r d e r a n d , i n a d d i t i o n , a m u l t i t u d e of o r d e r e d intermediate
phases w h i c h are often
h o m o l o g o u s series M 0 n
2 n
compositionally
m e m b e r s of
an
-2.
M a n y details of the h o m o l o g o u s series i n t h e r a r e e a r t h o x i d e s y s t e m h a v e b e e n d i s c u s s e d — p r i n c i p a l l y those aspects w h i c h h a v e b e e n d i s c o v e r e d b y m e a n s of h i g h r e s o l u t i o n e l e c t r o n o p t i c a l t e c h n i q u e s .
This
has i n c l u d e d the d e t e r m i n a t i o n of t h e u n i t cells of the h o m o l o g u e s .
The
use of c a l c u l a t i o n s to g i v e c o n f i d e n c e to i m a g e i n t e r p r e t a t i o n has b e e n
Goodenough and Whittingham; Solid State Chemistry of Energy Conversion and Storage Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
14.
EYRiNG
Nonstoichiometry,
Order and Disorder
269
d e m o n s t r a t e d . T h e images c a n t h e n b e u s e d t o s h o w r e a c t i o n patterns a n d d i s o r d e r i n phase reactions. F i n a l l y recent results o n t h e C e 0 - 2 series w e r e p r e s e n t e d to i l l u strate that e v e n i n this closely r e l a t e d o x i d e system n o t a l l t h e h o m o l o g u e s h a v e t h e same structure as those o f P r O * o r T b O * . M u c h remains to b e d o n e b e f o r e a c l e a r u n d e r s t a n d i n g o f t h e m a n i f o l d of structures w h i c h a r e c a l l e d fluorite-related is e v o k e d , b u t t h e quest w i l l b e w o r t h t h e effort. n
2 n
Downloaded by TUFTS UNIV on October 21, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch014
Acknowledgment T h e c u r r e n t s u p p o r t of t h e U . S . E n e r g y R e s e a r c h a n d D e v e l o p m e n t Administration ( a n d earlier support of the U . S . A t o m i c E n e r g y C o m m i s s i o n ) f o r that p a r t o f the w o r k d e s c r i b e d here a n d a t t r i b u t e d to t h e a u t h o r a n d his co-workers is g r a t e f u l l y a c k n o w l e d g e d .
Literature Cited 1. Duclot, M., Vicat, J., Deporter, C., J. Solid State Chem. (1970) 2, 236. 2. Carter, R. E., Roth, W. L., in "Electrochemical Force Measurements in High Temperature Systems," C. B. Alcock, Ed., pp. 125-144, Institution of Mining and Metallurgy, London, 1968. 3. Delamarre, C., Rev. Int. Hautes Temp. Refract. (1972) 9, 209. 4. Michel, D., Mater. Res. Bull. (1972) 8, 943. 5. Allpress, J. G., Rossell, H. J., Scott, H. G., Mater. Res. Bull. (1974) 9, 455. 6. Rossell, H. J., Scott, H. G., J. Solid State Chem. (1975) 13, 345. 7. Allpress, J. G., Rossell, H. J., Scott, H. G., J. Solid State Chem. (1975) 14, 264. 8. Allpress, J. G., Rossell, H. J., J. Solid State Chem. (1975) 15, 68. 9. Lefevre, J., Ann. Chem. (1963) 8, 135. 10. Collongues, R., Queipoux, F., Perez y Jorba, M., Gilles, J. C., Bull. Soc. Chim. Fr. (1965) 1141. 11. Thornber, M. R., Bevan, D. J. M., Summerville, E., J. Solid State Chem. (1970) 1, 545. 12. Thornber, M. R., Bevan, D. J. M., Graham, J., Acta Cryst. (1968) B24, 1183. 13. Thornber, M. R., Bevan, D. J. M., J. Solid State Chem. (1970) 1, 536. 14. Komissarova, L. N., Spiridinov, F. M., Dokl. Akad. Nauk SSSR (1968) 182, 834. 15. Collongues, R., Perez y Yorba, M., Lefevre, J., Bull. Soc. Chim. Fr. (1961) 70. 16. Sibieude, F., Foëx, M., J. Nucl. Mater. (1975) 56, 229. 17. Weitzel, H., Keller, C., J. Solid State Chem. (1975) 13, 136. 18. Bartram, S. F., Inorg. Chem. (1965) 5, 749. 19. Eyring, L., in "Solid State Chemistry," C. N . R. Rao, Ed., pp. 565-634, Marcel Dekker, New York, 1974. 20. Sørensen, Proc. Int. Conf. Plutonium and Other Actinides, 5th, Sept. 1975, Baden-Baden, Germany 21. Sørensen, O. T., J. Solid State Chem. (1976) 18, 217. 22. O'Keeffe, M., in "Fast Ion Transport," W. van Gool, Ed., pp. 233-247, North Holland, 1973.
Goodenough and Whittingham; Solid State Chemistry of Energy Conversion and Storage Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
SOLID STATE CHEMISTRY
270
23. Chikalla, T. D., Turcotte, R. P., Natl. Bur. Stand. (U.S.) Spec. Publ. 364 (1972) 319.
24. Turcotte, R. P., Haire, R. G., private communication. 25. Turcotte, R. P., Chikalla, T. D., Eyring, L., J. Inorg. Nucl. Chem. (1971) 33, 3749.
26. McCarthy, G. J., Fischer, R. D., Johnson, G. G., Jr., Gooden, C. E., in Natl. Bur. Stand. Spec. Publ. 364 (1972) 397. 27. Ray, S. P., Cox, D. E., J. Solid State Chem. (1975) 15, 333. 28. Ray, S. P., Nowick, A. S., Cox, D. E., J. Solid State Chem. (1975) 15, 344. 29. Kunzmann, P., Eyring, L., J. Solid State Chem. (1975) 14, 229. 30. Height, T. M., Bevan, D. J. M., private communication. 31. Iijima, S., Acta Cryst. (1973) A 2 9 , 18. 32. Skarnulis, A. J., Summerville, E., Eyring, L., to be published. 33. Von Dreele, R. B., Eyring, L., Bowman, A . L., Yarnell, J. L., Acta Cryst. Downloaded by TUFTS UNIV on October 21, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch014
(1975) B 3 1 , 971.
Cowley, J. M., Moodie, A . F., Acta Cryst. (1957) 35. Summerville, E., Eyring, L., to be published.
34.
RECEIVED
July
10, 609.
27, 1976.
Goodenough and Whittingham; Solid State Chemistry of Energy Conversion and Storage Advances in Chemistry; American Chemical Society: Washington, DC, 1977.