1 Surface Photochemistry: Temperature Effects on the Emission of Aromatic Hydrocarbons Adsorbed on Silica Gel P. D E MAYO, L. V. NATARAJAN, and W. R. WARE
Organic Phototransformations in Nonhomogeneous Media Downloaded from pubs.acs.org by 179.61.201.83 on 11/12/18. For personal use only.
Photochemistry Unit, Department of Chemistry, The University of Western Ontario, London, Ontario, Canada N6A 5B7
The emission of aromatic hydrocarbons, in particular that of pyrene, adsorbed on silica gel serves as a surface probe. The changes in silica gel structure imposed by heat treatment in vacuum (700°C) are revealed in poorly resolved spectra, multiple exponential fluorescence decay, ground state association and shortened lifetimes for pyrene emission. Coadsorbed water or alcohols, after heat treatment, render the surface more homogeneous, as indicated by well resolved spectra, an approach to single exponential decay, longer lifetimes, diminished ground state association and even formation of dynamic excimers. For a decanol-covered surface, cooling results in the disappearance of dynamic excimers, and a single exponential decay of pyrene with a life time of 600 nsec. Quenching studies have yielded an activation energy for diffusion on the dry silica gel surface of around 4 Kcal/mol. The p h o t o c h e m i s t r y a n d photophysics of m o l e c u l e s a d s o r b e d o n solid s u b s t r a t e s have hitherto r e c e i v e d little a t t e n t i o n a n d , c o m p a r e d with their g a s phase a n d solution c o u n t e r p a r t s , a r e very poorly u n d e r stood. Many interesting questions await experimental a n d theoretical investigation. For example, what is t h e effect of a n a s y m m e t r i c a l interaction w h e r e only a portion of a m o l e c u l e interacts with a surface g r o u p a n d t h e r e m a i n d e r is essentially in t h e v a p o r p h a s e ? What is the effect of the a b s e n c e of rapidly time averaged interactions such as one has in solution? H o w fast d o m o l e c u l e s m o v e o n a s u r f a c e a n d w h a t is t h e activation e n e r g y f o r diffusion? How does the surface i n f l u e n c e the c o u r s e of a p h o t o c h e m i c a l t r a n s f o r m a t i o n , w h i c h m a y be either inter- or i n t r a m o l e c u l a r " or o c c u r via free r a d i c a l s ? ' This p a r t i a l list of q u e s t i o n s is g i v e n to i l l u s t r a t e t h e c o n s i d e r a b l e p o t e n t i a l in s u r f a c e p h o t o p h y s i c s a n d p h o t o c h e m i s t r y f o r t h e exhibition of u n i q u e phenomena, for interesting modifications of t h e behavior of excited states a s c o m p a r e d with behavior in o t h e r m e d i a , a n d for studies of molecular dynamics on the surface. 1
2
3
6
T h e excited m o l e c u l e is a u n i q u e s u r f a c e p r o b e . The decay time provides a clock which c a n be used to study such d y n a m i c s . Since both singlets a n d triplets a r e potential p r o b e s , t h e time scale extends from seconds to picoseconds. In a d d i t i o n , t h e n a t u r e o f a n y p h o t o 0097-6156/85/ 0278-0001 $06.00/0 © 1985 American Chemical Society
ORGANIC PHOTOTRANSFORMATIONS IN NONHOMOGENEOUS MEDIA
2
c h e m i c a l p r o d u c t s may give information about translational radical m o tion. T h e o c c u r r e n c e of p h o t o s e n s i t i z a t i o n a n d q u e n c h i n g m a y a l s o allow o n e to examine questions c o n c e r n i n g mobility. T h i s c o n t r i b u t i o n will d e a l m a i n l y with r e c e n t p h o t o p h y s i c a l s t u d i e s of t h e b e h a v i o r o f a r o m a t i c h y d r o c a r b o n s o n s i l i c a g e l a n d modified silica gel surfaces. T h e s u r f a c e of s i l i c a gel c o n s i s t s of s i l o x a n e b r i d g e s between tetracovalent silicon atoms. T h e p r e s e n c e of g e m i n a l , vicinal and isolated silanol groups, s o m e t i m e s together with tightly bound water, render the surface inhomogeneous and provide binding sites, via hydrogen b o n d i n g , for the 7r-electron systems or n o n - b o n d i n g electron p a i r s of p o l a r g r o u p s of a d s o r b e d m o l e c u l e s ( F i g . 1 , 2 ) . The n u m b e r of s i l a n o l g r o u p s o n the s i l i c a gel s u r f a c e d e p e n d s o n the t e m p e r a t u r e pretreatment. W h e n s i l i c a g e l is h e a t e d i n v a c u u m , a d s o r b e d w a t e r i s r e m o v e d first a n d at t e m p e r a t u r e s above 2 5 0 ° C t h e c o n c e n t r a t i o n of p u r e l y p h y s i s o r b e d w a t e r is n e g l i g i b l e . A s t h e t e m p e r a t u r e is r a i s e d a b o v e this p o i n t , t h e n u m b e r of s i l a n o l s is r e d u c e d f r o m 6 / 1 0 0 A to approximately 2 / Ί 0 0 Â at 5 0 0 ° C a n d Ί / Ί 0 0 Â at 8 0 0 ° C . In t h e temperature range of 500 to 700 ° C the surface concentration of g e m i n a l hydroxyl g r o u p s r e m a i n s roughly c o n s t a n t but the ability to regenerate silanols by exposure to water vapor decreases rather suddenly. 2
2
2
7
e
T h u s , h e a t i n g t h e s i l i c a g e l to t e m p e r a t u r e s a b o v e 5 0 0 ° C f o l l o w e d by rehydration changes the proportion and distribution of isolated geminal silanol sites. At higher temperatures only isolated silanol groups remain. P r i o r a d s o r p t i o n of w a t e r a n d a l c o h o l s o n t o t h e d e h y d r a t e d s u r f a c e c a n d r a s t i c a l l y c h a n g e t h e i n t e r a c t i o n of t h a t s u r f a c e with t h e a d s o r b e d s p e c i e s of i n t e r e s t . These additives generally render the surface more homogeneous and can be used to influence d y n a m i c behavior and static interactions. E x a m p l e s t a k e n f r o m r e c e n t w o r k in o u r l a b o r a t o r i e s will n o w b e given to illustrate these p h e n o m e n a . In a l l c a s e s , t h e s a m p l e s w e r e evacuated. D e t a i l s o f s a m p l e p r e p a r a t i o n a r e t o b e f o u n d in t h e references cited below. Evidence for Surface Inhomogeneity T h a t all b i n d i n g sites a r e not e q u i v a l e n t with r e s p e c t to their i n f l u e n c e o n t h e g r o u n d a n d excited state b e h a v i o r of a n adsorbed molecule is i n d i c a t e d by s e v e r a l d i f f e r e n t t y p e s o f e v i d e n c e : (a) s p e c t r a l b a n d w i d t h , ( b ) c o m p l e x i t y of t h e f l u o r e s c e n c e d e c a y , ( c ) t h e i n f l u e n c e of c o a d s o r b a t e s ( d ) t h e i n f l u e n c e of s u r f a c e t r e a t m e n t and ( e ) g r o u n d state association. T h e s e will be d i s c u s s e d in t u r n . Pyrene absorption and emission spectra exhibit much vibronic structure. If p y r e n e is a d s o r b e d o n s i l i c a g e l p r e t r e a t e d s o a s t o have only isolated silanol groups, the spectra are considerably b r o a d e n e d with loss of s t r u c t u r e as c o m p a r e d to t h e s p e c t r a o b t a i n e d w h e n t h e s u r f a c e is e i t h e r " w e t " o r c o n t a i n s p h y s i - a n d / o r c h e m i s o r b e d methanol. T h i s is i l l u s t r a t e d i n F i g . 3 . T h u s , it w o u l d s e e m t h a t t h e i s o l a t e d s i l a n o l s p r o v i d e a v a r i e t y of s i t e s w i t h d i f f e r e n t i n t e r a c t i o n s , a n e f f e c t w h i c h is m o d i f i e d by c o a d s o r b e d a l c o h o l s o r w a t e r . M o r e d r a m a t i c e v i d e n c e f o r a n i n h o m o g e n e o u s s u r f a c e is p r o v i d e d by t h e c o m m o n o b s e r v a t i o n of m u l t i e x p o n e n t i a l d e c a y . It i s , in f a c t , very unusual to observe single exponential decay when aromatic hydrocarbons are absorbed on silica gel, quite independently of 9
1.
D E MAYO E T A L .
Aromatic
Hydrocarbons
Adsorbed
OH
ο ι
I
-Si-
on Silica
Gel
I
-Si
Si-
a
Η
HO
H - ' ^ H - - O"
HO
X
•Si— I
H
I
—Si— I
F i g u r e 1.
T y p e s of silanol f u n c t i o n s o n t h e s u r f a c e of s i l i c a g e l . (a) lone: (b) vicinal; (c) geminal and (d) bonded water. ( R e p r o d u c e d b y p e r m i s s i o n f r o m Pure and Applied Chemistry. 54. 1623. 1982.)
F i g u r e 2.
B o n d i n g of s i l a n o l f u n c t i o n s with a r o m a t i c h y d r o carbons. ( R e p r o d u c e d b y p e r m i s s i o n f r o m Pure and Applied Chemistry. 54. Ί623. 1982.)
3
ORGANIC PHOTOTRANSFORMATIONS IN NONHOMOGENEOUS MEDIA
4
Figure 3.
Effect of m e t h a n o l a d d i t i o n o n t h e e m i s s i o n s p e c t r a of pyrene adsorbed on silica gel. The silica gel was h e a t e d in v a c u u m to 7 0 0 C f o r 4 h o u r s . 1) Ο MeOH; 2) 3.375 χ 1 0 * ; 3) 7.5 χ 10~ : 4) 1.25 χ 1 0 ~ ; 5) 3.75 χ 10~ ; 6) 5 χ 10~ ; 7) 7.5 χ 1 0 " . M e t h a n o l c o n c e n t r a t i o n s a r e in m o l e / g S i 0 . The excitation wavelength: 332 n m . The pyrene coverage is 0 . 0 5 m g / g S i 0 ( R e p r o d u c e d by p e r m i s s i o n f r o m Canadian Journal of Chemistry. 62, 1279, 1984.) e
5
4
5
4
4
4
2
2
1.
DE MAYO ET AL.
Aromatic
Hydrocarbons
Adsorbed
on Silica
5
Gel
w h e t h e r o r not t h e y a r e e x c i m e r - f o r m i n g s p e c i e s in s o l u t i o n . also quite c o m m o n to a c h i e v e r e a s o n a b l e fits ( a s m e a s u r e d r e d u c e d x ) with a four p a r a m e t e r m o d e l :
It by
is the
2
I
F
( t )
«
A
l
e
+
A e 0
a l t h o u g h t h i s is i n m a n y c a s e s o n l y a u s e f u l a p p r o x i m a t i o n to a t i m e e v o l u t i o n t h a t is m o r e c o m p l e x , a n d t h e n u m b e r o f p a r a m e t e r s is n o t a d i r e c t i n d i c a t i o n of the n u m b e r of e n v i r o n m e n t a l l y d i f f e r e n t p h o t o a c t i v e species. If t h e s u r f a c e is m o d i f i e d by c o a d s o r b e d a l c o h o l s o r w a t e r , the d e c a y t i m e s of p y r e n e a n d n a p h t h a l e n e , f o r e x a m p l e , l e n g t h e n d r a m a tically and b e c o m e essentially single e x p o n e n t i a l s . We interpret this a s a c h a n g e to a h o m o g e n e o u s s u r f a c e a l t h o u g h , a s will be d i s c u s s e d below, increased motion d u r i n g the excited state lifetime may contribute to t h e c o l l a p s e of d o u b l e e x p o n e n t i a l d e c a y to give a s i n g l e e x p o n e n t i a l decay function. T h i s p h e n o m e n o n is i l l u s t r a t e d i n F i g . 4 f o r n a p h thalene. As has been previously reported, w h e n p y r e n e is a d s o r b e d on s i l i c a g e l t h e r e is e v i d e n c e f o r g r o u n d s t a t e a s s o c i a t i o n w h i c h is n o t present in s o l u t i o n o r t h e v a p o r phase, " but w h i c h has been described as being present when pyrene is d i s s o l v e d in a plastic medium. T h i s is a l s o a m a n i f e s t a t i o n o f s u r f a c e i n h o m o g e n e i t y s o m e sites e n h a n c e the t e n d e n c y to f o r m a g r o u n d state bimolecular c o m p l e x , w h e r e a s other sites contain isolated pyrene molecules. The i n t e r a c t i o n d i f f e r e n c e s a r e sufficient to yield s i g n i f i c a n t s p e c t r a l shifts in absorption and the ground state complex emits with the characteristic pyrene excimer fluorescence. F i g . 5 s h o w s a t y p i c a l s e t of s p e c t r a illustrating this association and Fig. 6 presents evidence that this o b s e r v a t i o n is n o t d u e t o m i c r o c r y s t a l f o r m a t i o n . 9
9
1
1 3
4
Evidence
for
Motion
on
the
Surface
Photophysical and photochemical studies have provided conclusive evidence for extensive motion on a m i c r o s e c o n d or even submicros e c o n d time scale for excited a n d / o r g r o u n d state molecules adsorbed on silica gel surfaces. T h r e e l i n e s of a r g u m e n t h a v e b e e n p r e s e n t e d : ( a ) A single photosensitizer molecule can sensitize many more m o l e c u l e s t h a n a r e initialy nearest n e i g h b o r s , ( b ) Both d y n a m i c and static quenching of f l u o r e s c e n c e are observed. (c) Surface modification strongly influences the dynamics on the surface and under the a p p r o priate conditions dynamic excimer f o r m a t i o n , analogous to the behavior i n s o l u t i o n , is s e e n . The evidence f r o m photosensitization derives f r o m the Rose Bengal (RB) sensitized dimerization of a c e n a p h t h y l e n e . ' It is o b s e r v e d that o n e RB m o l e c u l e c a n y i e l d , by r e p e a t e d e x c i t a t i o n , d i m e r i c m o l e cules with a high c o n v e r s i o n . This requires that d i m e r s move away f r o m the RB m o l e c u l e s a n d that m o n o m e r s m o v e to o c c u p y these v a cant places. Evidence has been p r e s e n t e d that t h e RB m o l e c u l e s a r e firmly fixed to the s u r f a c e a n d thus the a c e n a p h t h y l e n e monomers and dimers must be undergoing extensive motion on the surface d u r i n g 1
1
1 5
6
ORGANIC PHOTOTRANSFORMATIONS IN NONHOMOGENEOUS MEDIA
Figure 4·
T h e d e c a y of n a p h t h a l e n e f l u o r e s c e n c e . Emission w a v e l e n g t h is 3 3 3 n m ( a ) s i l i c a g e l h e a t e d i n o p e n f o r 4 h o u r s at 8 0 0 ° C ; ( b ) s i l i c a gel w a s h e a t e d in v a c u u m for 4 h o u r s at 8 0 0 ° C . ( R e p r o d u c e d by p e r m i s s i o n f r o m Canadian Journal of Chemistry. 62, 1279, 1984.)
air
1.
DE MAYO ET AL.
Aromatic
Hydrocarbons
Adsorbed
on Silica
Gel
W A V E L E N G T H (nm) F i g u r e 5.
Ground s t a t e a s s o c i a t i o n o f p y r e n e and p y r e n e " e x c i m e r " emission. E x c i t a t i o n and e m i s s i o n o p e c t r a o f p y r e n e on s i l i c a g e l ( ); e x c i t a t i o n ( o b s e r v e d a t 390 nmï and e m i s s i o n ( e x c i t e d w i t h 331 nm f o r a 0 = 1 s u r f a c e c o v e r a g e sample ( . · · ) ; e x c i t a t i o n (0=1, o b s e r v e d a t 480 nm) and e m i s s i o n (0=3, e x c i t e d w i t h 345 nmj. (Reproduced by p e r m i s s i o n from the J o u r n a l o f P h y s i c a l C h e m i s t r y , 8 6 , 3781, 1982.)
A Β
WAVELENGTH ( N M )
F i g u r e 6.
E x c i t a t i o n s p e c t r a of pyrene i n d i f f e r e n t s t a t e s of association. A) E x c i t a t i o n s p e c t r u m o f p y r e n e monomer ( e m i s s i o n a t 393 nm) . B) E x c i t a t i o n spectrum o f p y r e n e dimer ( e m i s s i o n a t 470 nm). C) E x c i t a t i o n s p e c t r u m o f pyrene m i c r o c r y s t a l .
1
ORGANIC PHOTOTRANSFORMATIONS IN NONHOMOGENEOUS MEDIA
8
t h e t i m e of i r r a d i a t i o n . T h e d i m e r i z a t i o n is a l s o o b s e r v e d u p o n d i r e c t irradiation. It i s k n o w n t h a t t h e c i s / t r a n s r a t i o i s s e n s i t i v e t o t h e r e l a t i v e i m p o r t a n c e of t h e p a r t i c i p a t i o n of t h e s i n g l e t a n d triplet in t h e dimerization. S i n c e t h e s i n g l e t , w h i c h y i e l d s t h e c i s d i m e r is p r e s u m a b l y s h o r t l i v e d ( r < 1 n s e c ) , t h e c i s y i e l d is a m e a s u r e o f n e a r e s t neighbor dimerization. The triplet yields both cis and trans dimers and it i s o b s e r v e d t h a t s u r f a c e m o d i f i c a t i o n b y t h e c o a d s o r p t i o n o f d e c a n o l strongly decreases the C / T ratio, thus suggesting enhanced triplet d i m e r i z a t i o n , a t t r i b u t a b l e to e n h a n c e d m o l e c u l a r m o b i l i t y . Here we are d e a l i n g w i t h m o t i o n d u r i n g t h e l i f e t i m e o f t h e t r i p l e t , p r e s u m e d to b e , a s is f o u n d i n s o l u t i o n , o f t h e o r d e r o f m i c r o s e c o n d s . 1
1
1
Pyrene excimer formation provides pyrene and decanol are coadsorbed, one e m i s s i o n at 4 7 0 n m g r o w i n g in with the solution, ie. , -X,t I
p
-
c(e
- X -
L
e
additional evidence. If can observe the excimer-like s a m e k i n e t i c s a s is s e e n i n 1
1
t
9
)
z
T h i s is i l l u s t r a t e d i n F i g . 7 . This implies motion during the pyrene singlet lifetime, which is o f t h e order of s e v e r a l hundred nanoseconds. F u r t h e r e v i d e n c e is s e e n i n t h e q u e n c h i n g e x p e r i m e n t to be d e s c r i b e d below.
Dynamics
on
the
Surface
T h e q u e s t i o n of d y n a m i c b e h a v i o r of a d s o r b e d m o l e c u l e s will n o w be discussed in m o r e d e t a i l . In s o l u t i o n , so called Stern-Volmer b e h a v i o r is c o m m o n p l a c e , b u t it w a s s u r p r i s i n g t o o b s e r v e t h i s s a m e l i n e a r b e h a v i o r w h e n q u e n c h i n g w a s s t u d i e d in t h e a d s o r b e d state. Both q u a n t u m yield ratios and lifetime ratios have been observed to give linear plots a g a i n s t t h e s u r f a c e c o n c e n t r a t i o n of q u e n c h e r s . For example, f e r r o c e n e q u e n c h e s t h e d i m e r i z a t i o n of a c e n a p h t h y l e n e that originates from the triplet state. Fig. 8 illustrates this linear S t e r n - V o l m e r plot o b t a i n e d f r o m a study of the cis a n d trans d i m e r yield a s a f u n c t i o n of f e r r o c e n e c o n c e n t r a t i o n s . Linear Stern-Volmer plots have also b e e n o b s e r v e d f o r q u e n c h i n g of p y r e n e m o n o m e r f l u o r e s c e n c e by h a l o n a p h t h a l e n e s . Linear plots of both l p / l p and f /T have been observed, where f is t h e a v e r a g e l i f e t i m e c a l c u l a t e d f r o m eq. 1: 1
0
A T T
*
2
A T 1 1
A
T
+
A T
2
+ A T 2 2
+
A
(
1
)
T
A r g u m e n t s have b e e n a d v a n c e d e l s e w h e r e t h a t t h e q u e n c h i n g of p y r e n e o n s i l i c a g e l by 2 - h a l o n a p h t h a l e n e s is d i f f u s i o n c o n t r o l l e d . This is in c o n t r a s t t o t h e b e h a v i o r i n s o l u t i o n w h e r e t h e q u e n c h i n g is i n e f f i c i e n t . It w a s p o s t u l a t e d t h a t o n t h e s u r f a c e t h e r a t e of s e p a r a t i o n of e n c o u n t e r p a i r s is s l o w e d to t h e p o i n t w h e r e t h e r a t e of q u e n c h i n g is d e t e r m i n e d by t h e e n c o u n t e r r a t e . C e n t r a l t o t h i s a r g u m e n t is t h e 1
1
1.
D E MAYO E T AL.
F i g u r e 7·
Aromatic
Hydrocarbons
Adsorbed
on Silica
9
Gel
E m i s s i o n d e c a y p r o f i l e of p y r e n e e x c i m e r at λ = 4 7 0 n m c o a d s o r b e d with 1 - d e c a n o l ( p y r e n e 8. 1 χ 1 0 " mol/g; l-decanol, 1.8 χ 1 0 ~ m o l / g of s i l i c a g e l ) . ( R e p r o d u c e d b y p e r m i s s i o n f r o m t h e Journal of Physical Chemistry, 87, 460, 1983.) 6
4
Ο
1
2
3
x l O ' V i o l (dm)"
2
[Ferrocene] Figure 8.
S t e r n - V o l m e r plot of the q u e n c h i n g of a c e n a p h t h y l e n e c i s ( O ) a n d t r a n s ( O ) d i m e r f o r m a t i o n by ferrocene. ( R e p r o d u c e d by p e r m i s s i o n f r o m the Journal of American Chemical Society. 104, 4635, 1982).
in
ÎO
ORGANIC PHOTOTRANSFORMATIONS IN NONHOMOGENEOUS MEDIA
observation that 2 - c h l o r o , bromo and iodonapthaienes quench on the s u r f a c e with a p p r o x i m a t e l y t h e s a m e rate w h e r e a s in s o l u t i o n t h e rates are: I > B r > C I , w i t h a r a n g e of a p p r o x i m a t e l y t e n . Thus, this q u e n c h i n g r e a c t i o n is a s s u m e d to be a u s e f u l p r o b e of s u r f a c e d i f fusion. In c o n n e c t i o n w i t h m o d e l i n g t h e d y n a m i c s o n s u r f a c e s t h e r e l a t e d s o l u t i o n m o d e l is of i n t e r e s t . If o n e h a s t h e s c h e m e : hv
A
* A"
>
v
l /
k
A Then
i t
+
* (AQ)*
A
\
hVp
-
A e
I
«
A (e
k
A
follows
Ip
2
k
A
6 - — >
Prod
5
+
Q +
hv
£
that
+ A e
±
x
(2)
Δ
2
- X , t E
k
- \ t * ) 0
-
1
3
e
(3)
where 2
λ
ι , 2 ±
=
k
l
[ ( ^
+
+
k
k
2
2
+
+
3
k
t
Q
1
+
k [Q]
-
3
4
k
k
4
+
-
k
5
k
5
+
k
-
k
6
6
)
2
+
4 k
3
k
4
[ Q ] ]
1
/
2
(4) If k 4 Also.
= 0. o r If In g e n e r a l
l j
'
1
+
k
q
k4
T
«
k3.
one
observes
0
single
exponential
decay.
(
5
)
i.e., one expects linear Stern-Volmer plots from intensity m e a s u r e m e n t s but not f r o m r / r plots e x c e p t in s p e c i a l c a s e s s u c h a s w h e n k3 » k4. If Q = A i n t h e s c h e m e , then one has the excimer case. It should be noted that when excimer kinetics are followed, the c o e f f i c e n t s of t h e t w o t e r m s i n I Ε a r e e q u a l a n d o p p o s i t e i n s i g n giving one just one preexponential A3, and that the difference of e x p o n e n t i a l s i m p l i e s a " g r o w i n g i n " of the e x c i m e r e m i s s i o n , provided t h a t at t = 0, [ A ^ l = 0. Otherwise, one has 0
- X , t
-X,t
1.
DE MAYO ET AL.
Aromatic
Hydrocarbons
Adsorbed
on Silica
Gel
11
and one c a n observe either sign for A5. In a d d i t i o n , it i s i m p l i c i t i n this simple analysis that lp a n d l g c a n be s e p a r a t e d experimentally. W i t h t h i s b a c k g r o u n d it i s p o s s i b l e t o d i s c u s s t h e r e s u l t s o b t a i n e d w i t h pyrene on silica gel when the pyrene m o n o m e r a n d excimer emission is s t u d i e d . At all but quite low t e m p e r a t u r e s o n e o b s e r v e s decay behavior w h i c h c a n be r e p r e s e n t e d by E q . 2 . It i s i m p o s s i b l e t o separate the effects of multiple absorption sites, i.e., surface inhomogeneity, from the effect of d y n a m i c excimer formation and feedback, the latter effect b e i n g r e s p o n s i b l e for the two c o m p o n e n t d e c a y in s o l u t i o n . H o w e v e r , if t h e s u r f a c e i s d e c a n o l c o v e r e d , then o n e o b s e r v e s e m i s s i o n in t h e e x c i m e r r e g i o n that fits E q . 3 r a t h e r well at r o o m t e m p e r a t u r e s u g g e s t i n g that the d y n a m i c s a r e d o m i n a t e d by t h e g r o w t h of t h e e x c i m e r p o p u l a t i o n , s t a r t i n g w i t h [ A £ ] = 0 at t = 0. However, w h e n o n e c o m p a r e s t h e v a l u e s of λ f o r t h e d e c a y in t h e monomer and excimer regions, the λ] and λ2 values do not c o r r e s p o n d as r e q u i r e d by the s i m p l e m o d e l . The m o n o m e r - e x c i m e r behavior has been studied as a function of t e m p e r a t u r e o n b o t h d r y s i l i c a g e l a n d s i l i c a g e l to w h i c h various coadsorbates have been a d d e d . On dry ( 7 0 0 ° ) silica g e l , where we expect only isolated silanol groups to be present, the following b e h a v i o r is o b s e r v e d : (a) The lifetime lengthens on cooling but is still a double e x p o n e n t i a l a t 10 K. (b) T h e Ι470Ί390 °f emission intensities increases by l o w e r i n g of t e m p e r a t u r e . This m a y be d u e to i n c r e a s e in the concentration of ground state dimers which are r e s p o n s i b l e for t h e e x c i m e r like 4 7 0 n m e m i s s i o n . The red shift in t h e excitation s p e c t r u m c o r r e s p o n d i n g to 4 7 0 n m e m i s s i o n i n c r e a s e s with d e c r e a s e of t e m p e r a t u r e . (c) One never observes A4/A5 to be negative. (d) T h e d a t a is r e p r o d u c i b l e a s o n e g o e s u p a n d d o w n in temperature. A typical plot of f l u o r e s c e n c e intensity for t w o t e m p e r a t u r e s is s h o w n in F i g . 9. Of g r e a t e r i n t e r e s t is t h e b e h a v i o r of p y r e n e o n d e c a n o l c o v e r e d (~ m o n o l a y e r ) s i l i c a g e l a s t h e t e m p e r a t u r e i s l o w e r e d . The following observations are relevant: (a) A4/A5 * -1, that is t h e e x c i m e r g r o w t h is o b s e r v e d a n d t h e s o l u t i o n b e h a v i o r is r o u g h l y d u p l i c a t e d . (b) The observed spectral resolution of t h e p y r e n e vibronic structures suggests a quite h o m o g e n e o u s surface. (c) At low temperature the monomer emission is quite a c c u r a t e l y d e s c r i b e d by a s i n g l e e x p o n e n t i a l a n d t h e lifetime is - 6 0 0 n s e c . T h i s l o n g m o n o m e r l i f e t i m e is c o n s i s t e n t with that o b s e r v e d in low t e m p e r a t u r e glasses. ' (d) T h e λ v a l u e s o b t a i n e d by a n a l y s i s of t h e m o n o m e r and excimer decay do not c o r r e s p o n d , as required by t h e solution model. T h e d a t a relevant to t h e s e o b s e r v a t i o n s a r e p r e s e n t e d in T a b l e s 1 a n d 2. Thus, the decanol coadsorption appears to increase significantly the d y n a m i c excimer formation but t h e residual surface inhomogeneity still prevents one from observing all t h e f e a t u r e s of solution-like behavior. r
a
t
i
o
1 6
1 7
12
ORGANIC PHOTOTRANSFORMATIONS IN NONHOMOGENEOUS MEDIA
rch
U-C 570
I
500
I
450
I
400
λ/nm
Figure 9.
Effect of t e m p e r a t u r e o n t h e p y r e n e " e x c i m e r " i n t e n s i t y . Excitation wavelength: 345 n m . The pyrene c o n c e n t r a t i o n is 1 m g / g d r y S i 0 2
1.
DE MAYO ET AL.
Table I.
Aromatic
293
R
Adsorbed on Silica
Gel
A
J L
0.05
9
as a Function of Temperature
τ
χ
228
A
r
2
0.135
REMARKS
2
66
λ λ
270
0.14
263
0.09
90
250
0.13
375
0.06
152
225
0.10
575
0.04
327
200
—
540
—
-
150
586
— — — — —
-
150
— — — — —
293
0.09
80 10 80
13
Pyrene Monomer Decay Time on Decanol-Covered Si0
T
Hydrocarbons
623 620 613 588 237
-
-
0.138
Note: Pyrene coverage i s 2.5 mg/g
60
^0^-
_3
Decanol coverage i s 1 χ 10
mol/g SiO,
Ε
χ
Β 1 ί
«
331
-
393
f
nm
Single expo nential
ORGANIC PHOTOTRANSFORMATIONS IN NONHOMOGENEOUS MEDIA
14
Table I I . Pyrene Excimer-like Emission on Decanol-Covered Si0
Τ
293
A
l
0.43
T
2
l
104
as a Function of Temperature
A
2
-0.44
T
2
26
V
A
-1.02
270
0.45
166
-0.39
37
-0.87
250
0.26
283
-0.19
47
-0.73
225
0.022
485
0.018
150
0.013
533
80
0.016
10
124
—
0.02
61
—
550
0.023
60
—
0.014
560
0.025
54
—
250
0.31
260
-0.22
47
-0.71
293
0.49
109
-0.49
27
-1.0
Mote: Pyrene coverage i s 2.5 mg/g SiO, Decanol coverage i s 1 χ 10
mol/g SiO.
REMARKS
1
λ
ΕΧ
-
λ
ΕΜ
~
3
7
0
nm
1.
DE MAYO ET AL.
Aromatic
Hydrocarbons
Adsorbed
on Silica
Gel
15
T h e r a p i d d e c r e a s e in t h e e x c i m e r - l i k e e m i s s i o n w i t h t e m p e r a t u r e on decanol-covered silica gel, illustrated in Figs. 10, 11, is c o n s i s t e n t with a t e m p e r a t u r e c o e f f i c i e n t f o r p y r e n e d i f f u s i o n of 4 to 6 K c a l / m o l , b u t e x a c t c a l c u l a t i o n is m o d e l d e p e n d e n t a n d n o t j u s t i f i e d a t this time. N e v e r t h e l e s s , t h e q u a l i t a t i v e b e h a v i o r is r e a s o n a b l e . T h e q u e n c h i n g of p y r e n e m o n o m e r e m i s s i o n by 2 - b r o m o n a p h t h a lene on dry silica gel has also been studied as a function of temperature. Linear S t e r n - V o l m e r plots a r e obtained either with f / r o r w i t h τ^/Τι a n d τ$/τ2 v s [Q] w h e r e [ Q l is a s u r f a c e c o n c e n t r a t i o n . Fig. 12 i l l u s t r a t e s t h e f / f plot. The rate constants derived from these Stern-Volmer plots give a r e m a r k a b l y g o o d A r r h e n i u s plot as shown in F i g . 1 3 , with a n activation e n e r g y of -4 Kcal/mol. This a c t i v a t i o n e n e r g y is i n t e r p r e t e d a s t h a t a s s o c i a t e d w i t h d i f f u s i o n o f t h e two m o l e c u l e s o n the s u r f a c e . In t h i s c o n t e x t it is s i g n i f i c a n t t h a t t h e e n e r g y is o f t h e o r d e r o f h y d r o g e n b o n d e n e r g i e s . 0
0
The A r r h e n i u s plots f r o m τ and r data give activation e n e r g i e s a b o v e a n d b e l o w t h i s v a l u e o f 4 K c a l / m o l w h i c h is c o n s i d e r e d t o b e an average. T h e low t e m p e r a t u r e studies o n d e c a n o l c o v e r e d silica g e l a l s o a l l o w e d of t h e o b s e r v a t i o n of p y r e n e p h o s p h o r e s c e n c e (Fig. 1 4 ) ; t h e p h o s p h o r e s c e n c e d i s a p p e a r e d a t t e m p e r a t u r e s a b o v e 2 0 0 ° K. λ
Summary
2
and
Conclusions
T h e m o s t i n h o m o g e n e o u s s u r f a c e a s j u d g e d by t h e p y r e n e p r o b e is t h a t w h i c h r e s u l t s f r o m h e a t i n g in a v a c u u m at h i g h temperature (700°C). One sees multiple exponential decay, poorly resolved s p e c t r a , bimolecular ground state association and shortened lifetimes. If t h e s u r f a c e is p r e p a r e d by c o a d s o r b i n g a l c o h o l s o r w a t e r , a m u c h m o r e h o m o g e n e o u s s u r f a c e r e s u l t s , as i n d i c a t e d by t h e a p p r o a c h of the d e c a y to o n e c o m p o n e n t , longer lifetimes, a n d d i m i n i s h e d b i m o l e cular ground state association. In a d d i t i o n , the surface containing c o a d s o r b e d a l c o h o l s o r w a t e r a l l o w s m o r e r a p i d d i f f u s i o n a n d o n e is a b l e to o b s e r v e d y n a m i c e x c i m e r f o r m a t i o n o n a t i m e s c a l e of s e v e r a l hundred nanoseconds. Q u e n c h i n g studies have yielded an activation energy for diffusion o n t h e d r y s i l i c a g e l s u r f a c e of a r o u n d 4 K c a l / m o l .
16
ORGANIC PHOTOTRANSFORMATIONS IN NONHOMOGENEOUS MEDIA
1.
DE MAYO ET AL.
F i g u r e 11.
Aromatic
Hydrocarbons
Adsorbed
17
on Silica Gel
E f f e c t of l o w e r i n g t h e t e m p e r a t u r e o n t h e p y r e n e e x c i m e r formation. T h e s i l i c a g e l is c o v e r e d w i t h d e c a n o l (Ί χ 10" mol/g S i 0 ) . Pyrene is 2 . 5 m g / g S i 0 . E m i s s i o n s p e c t r u m o f p y r e n e a t 2 0 0 ° K. The excitation wavelength: 345 n m . 3
2
F i g u r e 12.
e
Effect of t e m p e r a t u r e o n t h e q u e n c h i n g of p y r e n e m o n o m e r e m i s s i o n by 2 - b r o m o n a p h t h a l e n e . S t e r n - V o l m e r plots at different t e m p e r a t u r e s .
2
18
ORGANIC PHOTOTRANSFORMATIONS IN NONHOMOGENEOUS MEDIA
360h
lnk
q
1
χ 10 Κ ' 3
F i g u r e 13.
A r r h e n i u s plot of q u e n c h i n g by 2 - b r o m o n a p h t h a l e n e .
F i g u r e 14.
P h o s p h o r e s c e n c e e m i s s i o n of s i l i c a gel s u r f a c e at 6 0 ° K . 360 n m .
]
of
pyrene
monomer
emission
pyrene on decanol covered The excitation wavelength:
1.
DE MAYO ET AL.
Aromatic
Hydrocarbons
Adsorbed
on Silica Gel
19
L i t e r a t u r e Cited 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17.
Bauer, R.K.; Borenstein, R.; de Mayo, P.; Okada, K.; Rafalska, M.; Ware, W.R.; Wu, K.C. J. Am. Chem. Soc., 1982, 104, 4635. Nicholls, C. H.; Leermakers, P.A. Adv. Photochem., 1971, 8, 315. Frederick, B.; Johnston, L . J . ; de Mayo, P.; Wong, S.Κ., Can. J. Chem., 1984, 62, 403. Johnston, L.J.; de Mayo, P.; Wong, S.K. J. Org. Chem., 1984, 49, 20. Leffler, J.Ε.; Zupancic, J.J. J. Am. Chem. Soc., 1980, 102, 259. Leffler, J . E . ; Barbas, J. T., J. Am. Chem. Soc., 1981, 103, 7768. Fripiat, J.J.; Uytterhoeven, J . , J. Phys. Chem., 1962, 66, 800. Kiselev, A.V.; Lygin, V.I., "Infrared Spectra of Surface Com pounds", Chapters 4-7, John Wiley and Sons, New York, 1975. Bauer, R.K.; de Mayo, P.; Natarajan, L.V.; Ware, W.R., Can. J. Chem., 1984, 62, 1279. Hara, K.; de Mayo, P.; Ware, W. R.; Weedon, A.C.; Wong, G.S.K.; Wu, K.C. Chem. Phys. Lett., 1980, 69, 105. Bauer, R.K.; de Mayo, P.; Ware, W.R.; Wu, K.C. J. Phys. Chem., 1982, 86, 3781. Bauer, R.K.; de Mayo, P.; Okada, K.; Ware, W.R.; Wu, K.C. J. Phys. Chem., 1983, 87, 460. de Mayo, P.; Natarajan, L.V.; Ware, W.R. Chem. Phys. Lett., 1984, 107, 187. Avis, P.; Porter, G. Trans. Faraday. Soc., 1974, 1057. Okada, Κ., unpublished observations. Kawski, A.; Weyna, I.; Kojro, Z.; Kubicki, A. Z. Naturforsch, 1983, 38a, 1103. Barradas, I.; Ferreira, J.A. and Thomaz, M.F. Trans. Faraday Soc., 1973, 388.
RECEIVED January 10, 1985