Palladium(0)-Catalyzed Asymmetric C–H Alkenylation for Efficient

Sep 9, 2016 - Catalytic Enantioselective Transformations Involving C–H Bond Cleavage by Transition-Metal Complexes. Christopher G. Newton , Shou-Guo...
0 downloads 0 Views 520KB Size
Article pubs.acs.org/Organometallics

Palladium(0)-Catalyzed Asymmetric C−H Alkenylation for Efficient Synthesis of Planar Chiral Ferrocenes De-Wei Gao, Yiting Gu, Shao-Bo Wang, Qing Gu,* and Shu-Li You* State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China S Supporting Information *

ABSTRACT: Pd(0)-catalyzed intramolecular C−H alkenylation was achieved with excellent yields and enantioselectivity for the construction of planar chiral ferrocenes. It is compatible with a broad range of substrates and various functional groups. Notably, the enantioselective and diastereoselective synthesis of planar chiral ferrocenes was realized by cascade C−H arylation and alkenylation reaction for the first time. Additionally, the product was easily converted into a N,O-bidentate ligand, showing promising chiral induction in asymmetric alkynylation of 1-naphthaldehyde.



INTRODUCTION Transition-metal-catalyzed asymmetric C−H bond functionalization has witnessed significant progress in the past decade,1 allowing for rapid access to diverse scaffolds.2 Among various approaches, enantioselective C−H alkenylation has proved to be a powerful strategy to form carbon−carbon bonds. In the past several years, asymmetric C−H alkenylation reactions have been achieved by the strategy of desymmetrization or kinetic resolution using a monoprotected amino acid as a chiral ligand.3 However, a relatively high catalyst loading and external oxidant are often required in this process, which restricts the practical applications of these methods. To the best of our knowledge, the only exceptional example of Pd(0)-catalyzed asymmetric C−H alkenylation reaction without external oxidant was reported by Cramer and co-workers, who employed TADDOL-derived phosphoramidite as an efficient ligand.4 Therefore, it remains urgent to develop a general catalytic system for highly enantioselective C−H alkenylation reactions. Planar chiral ferrocenes have gained much attention given their wide applications in both industry and academia.5 Consequently, extensive efforts have been devoted to the installation of planar chirality on the backbone of ferrocene.6 Undoubtedly, asymmetric C−H bond functionalization would be the most expedient and straightforward approach due to its effectiveness and step economy feature. Since 2013, our group has made efforts toward the development of enantioselective synthesis of planar chiral ferrocenes by employing a Pd(II)/ monoprotected amino acid (MPAA) catalytic system.7 Notably, Cui and Wu simultaneously reported an elegant synthesis of planar chiral ferrocenes by using a similar catalytic system.3b,8 Subsequently, many groups have made significant contributions in this field by using different strategies.9 Among them, Kang, © XXXX American Chemical Society

Gu, and our group reported that Pd(0) catalyst derived from Pd(OAc)2 and (Ra)-BINAP could efficiently promote asymmetric intramolecular C−H arylation reactions.9a,b,e While these methodologies are highly efficient to access planar chiral ferrocenes by asymmetric C−H arylation, there is no report on C−H alkenylation and diastereoselective synthesis of planar chiral ferrocenes. Herein, we report Pd(0)-catalyzed enantioselective synthesis of planar chiral ferrocenes by asymmetric alkenylation. In addition, diastereo- and enantioselective synthesis of planar chiral ferrocenes has been realized for the first time by a cascade asymmetric C−H arylation/alkenylation reaction.



RESULTS AND DISCUSSION We began our investigation on the asymmetric C−H alkenylation using 1a as a model substrate under our previously developed reaction conditions.9e However, the yield of the reaction is not reproducible probably due to the insolubility of Cs2CO3. Fortunately, it was found that the addition of water (15 μL/0.3 mmol) gave 2a in 99% yield with 99% ee (Scheme 1). Thus, the optimized conditions were obtained as the following: 2.5 mol % of Pd(OAc)2, 5 mol % of (Ra)-BINAP, 1.5 equiv of Cs2CO3, 0.3 equiv of pivalic acid, and water (15 μL/ 0.3 mmol) in p-xylene at 80 °C under argon. With the optimized conditions in hand, we started to examine the generality of the substrate scope (Table 1). Substrates 1b−c bearing two methyl groups are competent substrates, and their desired products 2b,c were obtained in excellent yields (93−96%) and enantioselectivity (98% ee). Substrates with fused ring skeletons (1d−e) are also well Received: July 17, 2016

A

DOI: 10.1021/acs.organomet.6b00569 Organometallics XXXX, XXX, XXX−XXX

Article

Organometallics

98% yields, 96−99% ee, 2g−m). Notably, substrates containing a potentially coordinating group such as a pyridine or oxazoline motif underwent C−H alkenylation smoothly, affording products in 95−98% yields and 94−99% ee (2n−p). Moreover, nearly quantitative yield and excellent enantioselectivity were achieved for a pentamethyl-bearing ferrocene substrate (1q) by the addition of another batch of Pd(OAc)2 and (Ra)-BINAP. Finally, planar chiral ruthenocene could also be synthesized in the presence of 5 mol % of Pd(OAc)2 and 10 mol % of (Ra)BINAP (2r). Subsequently, the asymmetric C−H functionalization process was applied for the enantioselective and diastereoselective synthesis of planar chiral ferrocenes. As shown in Table 2, the reaction of 1s gave the desired product 2s in 76% yield and 99% ee with good diastereoselectivity (11:1 dr). Additionally, substrate 1t, bearing a methyl group on the phenyl ring, gave product 2t in 66% yield, 99% ee, and 10.2:1 dr. The reaction of substrate 1u bearing a naphthyl group led to planar chiral

Scheme 1. Pd(0)-Catalyzed Asymmetric C−H Alkenylation

tolerated (63−67% yields, 98−99% ee) under the reaction conditions. Notably, C−H alkenylation of (2-bromocyclopent1-enecarbonyl)ferrocene (1f) occurred smoothly to afford product 2f in 81% yield with >99% ee. To our delight, substituents such as keto, alkenyl, ester, and amide on the other Cp ring (1g−m) did not impact the reaction outcome (80−

Table 1. Substrate Scope for Intramolecular C−H Alkenylationa,b,c

a Reaction conditions: 1 (0.3 mmol), Pd(OAc)2 (2.5 mol %), (Ra)-BINAP (5 mol %), Cs2CO3 (1.5 equiv), pivalic acid (0.3 equiv), water (15 μL) in p-xylene at 80 °C. bIsolated yield. cDetermined by HPLC analysis. dAddition of another batch of Pd(OAc)2 (2.5 mol %), (Ra)-BINAP (5 mol %).

B

DOI: 10.1021/acs.organomet.6b00569 Organometallics XXXX, XXX, XXX−XXX

Article

Organometallics

Scheme 3. Synthesis of N,O-Bidentate Ligand and Its Application in Asymmetric Alkynylation of 1Naphthaldehyde

Table 2. Control of the Enantioselectivity and Diastereoselectivitya,b,c

uration of the desired products of C−H alkenylation is assigned to be Rp by analogy.



CONCLUSION In summary, we have developed a Pd(0)-catalyzed intramolecular asymmetric C−H alkenylation to synthesize planar chiral ferrocene derivatives by using commercially available (Ra)-BINAP as the chiral ligand. This method features a wide substrate scope, good to excellent yields, and excellent enantioselectivity. Notably, the enantioselective and diastereoselective synthesis of planar chiral ferrocenes was realized for the first time via a cascade C−H alkenylation and arylation reaction. Moreover, the product from this methodology was demonstrated as a valuable starting material for the synthesis of chiral ligands.

a

Reaction conditions: 1 (0.3 mmol), Pd(OAc)2 (5 mol %), (Ra)BINAP (10 mol %), Cs2CO3 (1.5 equiv), pivalic acid (0.3 equiv), water (30 μL) in p-xylene at 80 °C. bIsolated yield of major diastereoisomer. cEnantioselectivity was determined by HPLC analysis; diastereoselectivity was determined by isolated yield. dWith Pd(OAc)2 (2.5 mol %), (Ra)-BINAP (5.0 mol %), and water (15 μL). e At 100 °C.

ferrocene 2u in 58% yield and 3.3:1 dr with excellent enantioselectivity (98% ee).



SYNTHETIC APPLICATION To demonstrate the practicability of this method, we performed a gram-scale reaction by utilizing substrate 1a on a 4 mmol scale (Scheme 2). Gratifyingly, the desired product 2a could be isolated in 96% yield without any erosion of enantioselectivity (99% ee).



EXPERIMENTAL SECTION

General Procedure for the Enantioselective Synthesis of Planar Chiral Ferrocene Derivatives. In a 10 mL Schlenk-type sealed tube, substrate 1 (0.3 mmol), Pd(OAc)2 (1.7 mg, 0.0075 mmol, 2.5 mol %), (Ra)-BINAP (9.3 mg, 0.015 mmol, 5.0 mol %), Cs2CO3 (146.7 mg, 0.45 mmol, 1.5 equiv), pivalic acid (9.2 mg, 0.09 mmol, 30 mol %) and water (15 μL) were dissolved in p-xylene (1.5 mL) under argon. The tube was sealed with a Teflon-lined cap, and the reaction mixture was stirred at 80 °C. After the reaction was complete (monitored by TLC), the reaction mixture was cooled to room temperature and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (ethyl acetate/ petroleum ether, 1:10 to 1:1, v/v) to afford the desired product 2. Compound (Rp)-2a: deep red solid (87.5 mg, 99% yield, > 99% ee). Analytical data for (Rp)-2a: mp = 79.8−82.6 °C. [α]D20 = +2254.4 (c = 0.0125, chloroform, >99% ee). 1H NMR (400 MHz, CDCl3): δ 4.64 (d, J = 1.6 Hz, 2H), 4.34 (t, J = 1.2 Hz, 1H), 4.12 (s, 5H), 2.26−1.84 (m, 4H), 1.66−1.45 (m, 4H). 13C NMR (100 MHz, CDCl3): δ 197.7, 154.0, 136.3, 90.5, 73.7, 72.79, 72.76, 66.4, 65.9, 24.5, 22.1, 22.0, 20.8. IR (film): 2919, 2852, 1668, 1421, 1186, 1008, 819, 757 cm−1. HRMS (ESI): calcd for C17H1756FeO [M + H]+ 293.0623, found 293.0622. Anal. Calcd for C17H16FeO: C, 69.89; H, 5.52. Found: C, 69.72; H, 5.49. The enantiomeric excess was determined by Daicel Chiralcel OD-H (0.46 cm × 25 cm), hexanes/IPA = 90/10, 1.0 mL/min, λ = 254 nm, t(minor) = 5.928 min, t(major) = 6.276 min. Compound (Rp)-2b: deep red liquid (92.5 mg, 96% yield, 98% ee). Analytical data for (Rp)-2b: [α]20D = +1108.8 (c = 0.0125, chloroform, 98% ee). 1H NMR (400 MHz, CDCl3): δ 4.71 (d, J = 1.2 Hz, 2H), 4.40 (s, 1H), 4.20 (s, 5H), 2.34−2.16 (m, 2H), 1.87 (AB, JAB = 17.6 Hz, 1H), 1.72 (BA, JBA = 17.6 Hz, 1H), 1.49−1.36 (m, 2H), 0.99 (s, 3H), 0.87 (s, 3H). 13C NMR (100 MHz, CDCl3): δ 198.1, 152.8,

Scheme 2. Gram-Scale Reaction

The product 2o obtained from this methodology was applied in the synthesis of a novel chiral ligand. As shown in Scheme 3, 2o was subjected to the addition reaction of phenylmagnesium bromide, giving N,O-bidentate ferrocenyl ligand 3o in 84% yield with excellent diastereoselectivity (>95:5 dr). To be noted, most N,O-bidentate ferrocenyl ligands reported in the literature were prepared from chiral starting materials.10 Furthermore, 3o could effectively catalyze the alkynylation of 1-naphthaldehyde affording the secondary propargylic alcohol in nearly quantitative yield with promising enantioselectivity. The absolute configuration of 3o is assigned to be (Rp,S) based on X-ray crystallographic analysis (see the Supporting Information for details). Consequently, the absolute configC

DOI: 10.1021/acs.organomet.6b00569 Organometallics XXXX, XXX, XXX−XXX

Article

Organometallics

analytical purity, they are provided to illustrate the best values obtained to date). The enantiomeric excess was determined by Daicel Chiralpak AD-H (0.46 cm × 25 cm), hexanes/IPA = 90/10, 1.0 mL/ min, λ = 254 nm, t(minor) = 8.907 min, t(major) = 9.486 min. Compound (Rp)-2h: deep red liquid (93.0 mg, 93% yield, 99% ee). Analytical data for (Rp)-2h: [α]20D = +2313.5 (c = 0.00625 chloroform, 99% ee). 1H NMR (400 MHz, CDCl3): δ 5.11 (s, 1H), 4.92 (t, J = 1.2 Hz, 1H), 4.70 (t, J = 2.4 Hz, 1H), 4.63 (d, J = 2.0 Hz, 1H), 4.45 (t, J = 1.2 Hz, 1H), 4.42 (t, J = 1.2 Hz, 1H), 4.30 (d, J = 2.4 Hz, 1H), 4.22− 4.19 (m, 2H), 2.27−1.95 (m, 4H), 1.92 (s, 3H), 1.79−1.54 (m, 4H). 13 C NMR (100 MHz, CDCl3): δ 197.2, 153.1, 139.0, 136.9, 110.2, 91.4, 90.9, 74.7, 73.6, 72.7, 72.5, 70.2, 69.7, 66.9, 66.5, 24.8, 22.02, 22.00, 21.5, 20.7. IR (film): 2927, 2856, 1679, 1430, 1189, 875, 819 cm−1. HRMS (ESI): calcd for C20H2156FeO [M + H]+ 333.0936, found 333.0934. The enantiomeric excess was determined by Daicel Chiralpak IC (0.46 cm × 25 cm), hexanes/IPA = 90/10, 1.0 mL/ min, λ = 254 nm, t(major) = 15.936 min, t(minor) = 18.602 min. Compound (Rp)-2i: deep red solid (102.5 mg, 97% yield, 98% ee). Analytical data for (Rp)-2i: mp = 96.2−98.0 °C. [α]20D = +1648.0 (c = 0.0125 chloroform, 98% ee). 1H NMR (400 MHz, CDCl3): δ 4.79 (t, J = 0.8 Hz, 1H), 4.73 (t, J = 1.2 Hz, 1H), 4.67 (t, J = 2.4 Hz, 1H), 4.64 (d, J = 2.0 Hz, 1H), 4.30−4.29 (m, 3H), 3.72 (s, 3H), 2.31−1.88 (m, 4H), 1.76−1.49 (m, 4H). 13C NMR (100 MHz, CDCl3): δ 196.6, 169.9, 153.1, 137.7, 92.2, 76.1, 75.0, 74.5, 74.4, 74.2, 73.7, 73.4, 66.7, 66.6, 51.7, 24.4, 21.9, 21.7, 20.7. IR (film): 3091, 2946, 2934, 1704, 1679, 1471, 1430, 1280, 1143 cm−1. HRMS (ESI): calcd for C19H1956FeO3 [M + H]+ 351.0678, found 351.0679. Anal. Calcd for C19H18FeO3: C, 65.17; H, 5.18. Found: C, 65.21; H, 5.19. The enantiomeric excess was determined by Daicel Chiralcel OJ-H (0.46 cm × 25 cm), hexanes/IPA = 90/10, 1.0 mL/min, λ = 254 nm, t(minor) = 31.217 min, t(major) = 36.571 min. Compound (Rp)-2j: deep red liquid (86.9 mg, 80% yield, 96% ee). Analytical data for (Rp)-2j: [α]20D = +1464.7 (c = 0.0125 chloroform, 96% ee). 1H NMR (400 MHz, CDCl3): δ 4.78 (s, 1H), 4.68 (s, 2H), 4.57 (s, 1H), 4.43 (d, J = 1.2 Hz, 1H), 4.36 (s, 1H), 4.29 (s, 1H), 3.07 (s, 3H), 2.98 (s, 3H), 2.44−2.40 (m, 1H), 2.21−2.16 (m, 1H), 2.08− 1.92 (m, 2H), 1.72−1.56 (m, 4H). 13C NMR (100 MHz, CDCl3): δ 197.3, 168.7, 154.1, 137.1, 91.9, 82.4, 75.7, 74.6, 74.5, 74.2, 73.5, 73.4, 68.2, 67.1, 24.6, 22.0, 21.9, 20.9. IR (film): 2925, 2861, 1667, 1610, 1493, 1059, 1021, 807, 760, 674 cm−1. HRMS (ESI): calcd for C 20 H22 56 FeNO 2 [M + H] + 364.0994, found 364.0994. The enantiomeric excess was determined by Daicel Chiralcel OD-H (0.46 cm × 25 cm), hexanes/IPA = 90/10, 1.0 mL/min, λ = 254 nm, t(major) = 14.177 min, t(minor) = 23.189 min. Compound (Rp)-2k: deep red liquid (118.6 mg, 98% yield, 99% ee). Analytical data for (Rp)-2k: [α]20D = +1872.5 (c = 0.025 chloroform, 99% ee). 1H NMR (400 MHz, CDCl3): δ 4.80 (t, J = 2.0 Hz, 1H), 4.68 (d, J = 2.0 Hz, 1H), 4.60 (t, J = 1.2 Hz, 1H), 4.44 (d, J = 2.4 Hz, 1H), 4.41−4.40 (m, 1H), 4.37−4.36 (m, 1H), 4.28−4.27 (m, 1H), 3.53−3.50 (m, 4H), 2.48−2.40 (m, 1H), 2.23−1.91 (m, 3H), 1.74− 1.51 (m, 10H). 13C NMR (100 MHz, CDCl3): δ 197.4, 167.5, 154.2, 136.9, 91.9, 83.5, 75.7, 74.9, 74.4, 74.1, 73.2, 72.7, 68.9, 67.2, 24.63, 24.58, 22.1, 21.9, 20.9. IR (film): 2929, 2853, 1682, 1607, 1418, 1270, 1189, 817, 749, 666 cm−1. HRMS (ESI): calcd for C23H2656FeNO2 [M + H]+ 404.1307, found 404.1309. The enantiomeric excess was determined by Daicel Chiralpak AS-H (0.46 cm × 25 cm), hexanes/ IPA = 90/10, 1.0 mL/min, λ = 254 nm, t(major) = 22.172 min, t(minor) = 32.983 min. Compound (Rp)-2l: deep red liquid (123.3 mg, 98% yield, 99% ee). Analytical data for (Rp)-2l: [α]20D = +1621.5 (c = 0.0125 chloroform, 99% ee). 1H NMR (400 MHz, CDCl3): δ 4.81 (t, J = 1.6 Hz, 1H), 4.70 (d, J = 2.8 Hz, 1H), 4.59−4.58 (m, 1H), 4.46 (d, J = 2.0 Hz, 1H), 4.37 (t, J = 2.4 Hz, 2H), 4.31−4.29 (m, 2H), 3.37 (s, 1H), 2.44−2.36 (m, 1H), 2.23−2.15 (m, 1H), 2.10−1.91 (m, 2H), 1.70−1.52 (m, 4H), 1.41 (s, 6H), 1.12 (s, 6H). 13C NMR (100 MHz, CDCl3): δ 197.4, 167.6, 154.1, 136.8, 91.5, 85.5, 75.3, 75.0, 74.8, 73.9, 73.8, 72.1, 69.0, 67.7, 49.9, 46.2, 24.5, 22.1, 21.9, 21.2, 20.9, 20.8. IR (film): 2930, 1680, 1602, 1461, 1425, 1370, 1318, 732 cm−1. HRMS (ESI): calcd for C 24 H30 56 FeNO 2 [M + H] + 420.1620, found 420.1622. The enantiomeric excess was determined by Daicel Chiralpak AS-H (0.46

136.0, 90.4, 74.2, 72.8, 72.6, 66.4, 65.8, 35.0, 34.6, 29.2, 28.4, 27.7, 22.4. IR (film) 2953, 2921, 1672, 1427, 1010, 818, 750 cm−1. HRMS (ESI): calcd for C19H2156FeO [M + H]+ 321.0936, found 321.0935. Anal. Calcd for C19H20FeO: C, 71.27; H, 6.30. Found: C, 71.02; H, 6.30. The enantiomeric excess was determined by Daicel Chiralcel OD-H (0.46 cm × 25 cm), hexanes/IPA = 90/10, 1.0 mL/min, λ = 254 nm, t(minor) = 4.922 min, t(major) = 5.557 min. Compound (Rp)-2c: deep red solid (89.8 mg, 93% yield, 98% ee). Analytical data for (Rp)-2c: mp = 81.0−83.6 °C. [α]20D = +1997.8 (c = 0.0125 chloroform, 98% ee). 1H NMR (400 MHz, CDCl3): δ 4.74 (s, 2H), 4.39 (s, 1H), 4.23 (s, 5H), 2.06 (s, 4H), 1.42−1.24 (m, 2H), 1.06 (s, 3H), 0.96 (s, 3H). 13C NMR (100 MHz, CDCl3): δ 197.7, 153.6, 135.2, 90.7, 74.1, 72.7, 72.6, 66.5, 65.7, 38.5, 35.0, 29.8, 28.9, 27.6, 18.6. IR (film): 2923, 2850, 1669, 1425, 1195, 1003, 820, 744 cm−1. HRMS (ESI): calcd for C19H2156FeO [M + H]+ 321.0936, found 321.0935. Anal. Calcd for C19H20FeO: C, 71.27; H, 6.30. Found: C, 71.21; H, 6.31. The enantiomeric excess was determined by Daicel Chiralcel OD-H (0.46 cm × 25 cm), hexanes/IPA = 90/10, 1.0 mL/ min, λ = 254 nm, t(minor) = 5.210 min, t(major) = 5.675 min. Compound (Rp)-2d: deep red liquid (68.2 mg, 67% yield, 99% ee). Analytical data for (Rp)-2d: [α]20D = +2298.1 (c = 0.0125, chloroform, 99% ee). 1H NMR (400 MHz, CDCl3): δ 8.13 (d, J = 7.6 Hz, 1H), 7.25−7.20 (s, 1H), 7.15−7.14 (m, 2H), 4.94 (t, J = 0.4 Hz, 1H), 4.89 (t, J = 2.4 Hz, 1H), 4.58 (d, J = 2.4 Hz, 1H), 4.29 (s, 5H), 3.02−2.84 (m, 2H), 2.66−2.48 (m, 2H). 13C NMR (100 MHz, CDCl3): δ 195.6, 155.6, 133.7, 132.3, 130.9, 127.6, 126.8, 126.5, 123.6, 88.4, 75.1, 73.9, 73.3, 67.5, 66.7, 27.9, 23.2. IR (film): 2928, 1668, 1431, 819, 788, 748 cm−1. HRMS (ESI): calcd for C21H1756FeO [M + H]+ 341.0623, found 341.0619. The enantiomeric excess was determined by Daicel Chiralpak AD-H (0.46 cm × 25 cm), hexanes/IPA = 90/10, 1.0 mL/min, λ = 254 nm, t(major) = 7.340 min, t(minor) = 8.280 min. Compound (Rp)-2e: deep red liquid (64.0 mg, 63% yield, 98% ee). Analytical data for (Rp)-2e: [α]20D = −1379.2 (c = 0.00625, chloroform, 98% ee). 1H NMR (400 MHz, CDCl3): δ 7.39−7.37 (m, 1H), 7.35−7.28 (m, 2H), 7.26−7.24 (m, 1H), 4.95 (t, J = 2.4 Hz, 1H), 4.91 (d, J = 2.4 Hz, 1H), 4.84 (d, J = 2.4 Hz, 1H), 4.25 (s, 5H), 2.93−2.76 (m, 2H), 2.46−2.27 (m, 2H). 13C NMR (100 MHz, CDCl3): δ 196.7, 150.0, 138.1, 135.5, 130.5, 129.6, 128.5, 126.9, 124.3, 86.7, 75.7, 73.9, 73.3, 67.9, 67.1, 28.3, 19.1. IR (film) 2933, 2830, 1665, 1426, 1233, 821, 738, 665 cm−1. HRMS (ESI): calcd for C21H1756FeO [M + H]+ 341.0623, found 341.0622. The enantiomeric excess was determined by Daicel Chiralpak AD-H (0.46 cm × 25 cm), hexanes/ IPA = 90/10, 1.0 mL/min, λ = 254 nm, t(major) = 37.826 min, t(minor) = 41.650 min. Compound (Rp)-2f: deep red liquid (67.3 mg, 81% yield, > 99% ee). Analytical data for (Rp)-2f: [α]20D = +1963.3 (c = 0.0125, chloroform, >99% ee). 1H NMR (400 MHz, CDCl3): δ 4.79−4.77 (m, 2H), 4.39 (d, J = 2.0 Hz, 1H), 4.27 (s, 5H), 2.54−2.38 (m, 2H), 2.35−2.16 (m, 4H). 13C NMR (100 MHz, CDCl3): δ 194.5, 166.1, 146.0, 84.6, 79.0, 72.9, 72.8, 67.4, 66.6, 29.0, 27.3, 25.8. IR (film): 2926, 2851, 1668, 1423, 1010, 811, 754 cm−1. HRMS (ESI): calcd for C16H1556FeO [M + H]+ 279.0467, found 279.0467. Anal. Calcd for C16H14FeO: C, 69.10; H, 5.07. Found: C, 68.44; H, 5.24 (although these results are outside the range viewed as establishing analytical purity, they are provided to illustrate the best values obtained to date). The enantiomeric excess was determined by Daicel Chiralpak AD-H (0.46 cm × 25 cm), hexanes/IPA = 90/10, 1.0 mL/min, λ = 254 nm, t(major) = 5.684 min, t(minor) = 6.230 min. Compound (Rp)-2g: deep red liquid (98.2 mg, 98% yield, 99% ee). Analytical data for (Rp)-2g: [α]20D = +2608.5 (c = 0.0125 chloroform, 99% ee). 1H NMR (400 MHz, CDCl3): δ 4.76 (t, J = 1.6 Hz, 2H), 4.67 (t, J = 2.0 Hz, 1H), 4.63 (d, J = 2.0 Hz, 1H), 4.39−4.36 (m, 2H), 4.33 (d, J = 2.0 Hz, 1H), 2.32−2.23 (m, 1H), 2.22 (s, 3H), 2.17−2.05 (m, 2H), 1.95−1.88 (m, 1H), 1.77−1.50 (m, 4H). 13C NMR (100 MHz, CDCl3): δ 200.6, 196.6, 153.5, 137.8, 92.3, 83.4, 75.6, 75.3, 74.7, 73.72, 73.66, 72.8, 67.0, 66.6, 27.9, 24.6, 21.8, 21.7, 20.7. IR (film): 2931, 2859, 1667, 1454, 1356, 1274, 820, 752 cm−1. HRMS (ESI): calcd for C19H1956FeO2 [M + H]+ 335.0729, found 335.0729. Anal. Calcd for C19H18FeO2: C, 68.29; H, 5.43. Found: C, 67.82; H, 5.38 (although these results are outside the range viewed as establishing D

DOI: 10.1021/acs.organomet.6b00569 Organometallics XXXX, XXX, XXX−XXX

Article

Organometallics cm × 25 cm), hexanes/IPA = 90/10, 1.0 mL/min, λ = 254 nm, t(major) = 5.562 min, t(minor) = 7.071 min. Compound (Rp)-2m: deep red liquid (123.0 mg, 96% yield, 99% ee). Analytical data for (Rp)-2m: [α]20D = +1489.5 (c = 0.0125 chloroform, 99% ee). 1H NMR (400 MHz, CDCl3): δ 7.35 (t, J = 7.6 Hz, 2H), 7.27 (t, J = 7.2 Hz, 1H), 7.12 (t, J = 7.6 Hz, 2H), 4.67 (t, J = 2.0 Hz, 1H), 4.53 (d, J = 2.0 Hz, 1H), 4.32 (d, J = 2.0 Hz, 1H), 4.05 (s, 3H), 3.91 (d, J = 1.2 Hz, 1H), 3.31 (s, 3H), 2.44−2.37 (m, 1H), 2.23− 2.06 (m, 2H), 1.98−1.92 (m, 1H), 1.78−1.67 (m, 3H), 1.58−1.53 (m, 1H). 13C NMR (100 MHz, CDCl3): δ 197.1, 168.0, 153.6, 144.5, 137.2, 129.6, 127.8, 127.6, 92.1, 80.8, 75.6, 74.9, 74.2, 74.14, 74.09, 73.1, 67.4, 67.1, 38.8, 24.6, 22.0, 21.9, 20.9. IR (film): 2924, 2854, 1682, 1629, 1592, 1455, 1114, 1028, 819, 755, 700 cm−1. HRMS (ESI): calcd for C25H2456FeNO2 [M + H]+ 426.1151, found 426.1151. Anal. Calcd for C25H23FeNO2: C, 70.60; H, 5.45; N, 3.29. Found: C, 70.30; H, 5.43; N, 3.03. The enantiomeric excess was determined by Daicel Chiralcel OD-H (0.46 cm × 25 cm), hexanes/IPA = 40:1, 0.41 mL/min, λ = 254 nm, t(minor) = 46.633 min, t(major) = 51.831 min. Compound (Rp)-2n: deep red liquid (107.3 mg, 96% yield, 94% ee). Analytical data for (Rp)-2n: [α]20D = +2707.3 (c = 0.0125 chloroform, 94% ee). 1H NMR (400 MHz, CDCl3): δ 8.48 (d, J = 4.0 Hz, 1H), 7.60−7.56 (m, 1H), 7.27 (d, J = 6.8 Hz, 1H), 7.12−7.09 (m, 1H), 5.02 (s, 1H), 4.96 (d, J = 1.2 Hz, 1H), 4.67 (t, J = 2.0 Hz, 1H), 4.60 (d, J = 2.0 Hz, 1H), 4.34 (d, J = 1.2 Hz, 1H), 4.30 (d, J = 1.2 Hz, 1H), 4.26 (d, J = 1.6 Hz, 1H), 2.20−1.71 (m, 4H), 1.46−1.43 (m, 4H). 13C NMR (100 MHz, CDCl3): δ 197.0, 156.2, 153.3, 149.5, 136.8, 136.2, 121.1, 120.4, 92.0, 88.9, 74.7, 73.7, 73.4, 72.9, 71.6, 70.7, 66.8, 66.7, 24.3, 21.7, 21.5, 20.5. IR (film): 2928, 1677, 1586, 1498, 1426, 1189, 786, 733 cm−1. HRMS (ESI): calcd for C22H2056FeNO [M + H]+ 370.0889, found 370.0890. Anal. Calcd for C22H19FeNO: C, 71.56; H, 5.19; N, 3.79. Found: C, 71.34; H, 5.20; N, 3.75. The enantiomeric excess was determined by Daicel Chiralpak AS-H (0.46 cm × 25 cm), hexanes/IPA = 90/10, 1.0 mL/min, λ = 254 nm, t(major) = 16.256 min, t(minor) = 21.851 min. Compound (Rp)-2o: deep red liquid (106.4 mg, 98% yield, 99% ee). Analytical data for (Rp)-2o: [α]20D = +1578.2 (c = 0.0125 chloroform, 99% ee). 1H NMR (400 MHz, CDCl3): δ 4.72−4.66 (m, 4H), 4.33− 4.22 (m, 5H), 3.90−3.78 (m, 2H), 2.34−2.27 (m, 1H), 2.17−2.12 (m, 1H), 2.04−1.89 (m, 2H), 1.76−1.50 (m, 4H). 13C NMR (100 MHz, CDCl3): δ 196.8, 164.8, 153.2, 137.3, 92.1, 75.5, 74.3, 73.74, 73.70, 73.4, 72.9, 72.8, 67.3, 66.7, 66.5, 54.9, 24.4, 22.0, 21.8, 20.8. IR (film) 2926, 2852, 1651, 1260, 1110, 946, 819, 749 cm−1. HRMS (ESI): calcd for C20H2056FeNO2 [M + H]+ 362.0838, found 362.0838. Anal. Calcd for C20H19FeNO2: C, 66.50; H, 5.30; N, 3.88. Found: C, 66.18; H, 5.27; N, 3.78. The enantiomeric excess was determined by Daicel Chiralcel OD-H (0.46 cm × 25 cm), hexanes/IPA = 90/10, 1.0 mL/ min, λ = 254 nm, t(minor) = 18.417 min, t(major) = 23.842 min. Compound (Rp)-2p: deep red liquid (110.9 mg, 95% yield, 98% ee). Analytical data for (Rp)-2p: [α]20D = +2326.0 (c = 0.0125 chloroform, 98% ee). 1H NMR (400 MHz, CDCl3): δ 4.73 (s, 1H), 4.69 (t, J = 2.4 Hz, 1H), 4.66 (d, J = 2.4 Hz, 1H), 4.60 (s, 1H), 4.35 (s, 1H), 4.33 (s, 1H), 4.25 (d, J = 2.0 Hz, 1H), 3.96 (AB, JAB = 8.0 Hz, 1H), 3.92 (BA, JBA = 8.0 Hz, 1H), 2.40−2.34 (m, 1H), 2.20−2.12 (m, 1H), 2.09−2.02 (m, 1H), 1.95−1.90 (m, 1H), 1.75−1.64 (m, 3H), 1.59−1.54 (m, 1H), 1.30 (s, 3H), 1.28 (s, 3H). 13C NMR (100 MHz, CDCl3): δ 196.8, 162.6, 153.6, 137.1, 91.9, 78.8, 75.0, 74.7, 74.4, 74.15, 74.05, 73.4, 72.4, 67.5, 67.2, 67.0, 28.6, 28.4, 24.4, 22.0, 21.9, 20.9. IR (film): 2929, 1683, 1652, 1430, 1104, 967, 820, 751 cm−1. HRMS (ESI): calcd for C 22 H 24 56 FeNO2 [M + H] + 390.1151, found 390.1149. The enantiomeric excess was determined by Daicel Chiralpak AD-H (0.46 cm × 25 cm), hexanes/IPA = 90/10, 1.0 mL/min, λ = 254 nm, t(major) = 5.226 min, t(minor) = 5.995 min. Compound (Rp)-2q: deep red solid (106.2 mg, 97% yield, 98% ee). Analytical data for (Rp)-2q: mp = 128.0−130.3 °C. [α]20D = +1251.7 (c = 0.00625 chloroform, 98% ee). 1H NMR (400 MHz, CDCl3): δ 4.38 (t, J = 2.0 Hz, 1H), 4.18 (d, J = 2.4 Hz, 1H), 3.91 (d, J = 2.0 Hz, 1H), 2.10−2.06 (m, 4H), 1.68 (s, 4H) 1.68 (s, 15H). 13C NMR (100 MHz, CDCl3): δ 196.4, 151.6, 136.2, 90.6, 84.3, 78.4, 75.4, 69.4, 69.2, 24.9, 22.04, 22.03, 20.7, 10.2. IR (film): 2918, 2855, 1660, 1423, 1379, 1187, 1027, 809, 730 cm−1. HRMS (ESI): calcd for C22H2756FeO [M +

H]+ 363.1406, found 363.1401. Anal. Calcd for C22H26FeO: C, 72.94; H, 7.23. Found: C, 72.89; H, 7.20. The enantiomeric excess was determined by Daicel Chiralpak AD-H (0.46 cm × 25 cm), hexanes/ IPA = 90/10, 1.0 mL/min, λ = 254 nm, t(minor) = 4.253 min, t(major) = 4.638 min. Compound (Rp)-2r: red liquid (97.9 mg, 96% yield, 99% ee). Analytical data for (Rp)-2r: [α]20D = +613.4 (c = 0.0125 chloroform, 99% ee). 1H NMR (400 MHz, CDCl3): δ 4.96 (d, J = 2.0 Hz, 1H), 4.77 (t, J = 2.0 Hz, 1H), 4.70 (d, J = 2.0 Hz, 1H), 4.60 (s, 5H), 2.17− 2.14 (m, 2H), 1.20−1.96 (m, 2H), 1.69−1.61 (m, 2H), 1.59−1.53 (m, 2H). 13C NMR (100 MHz, CDCl3): δ 197.1, 154.2, 134.8, 94.2, 79.0, 73.9, 73.6, 66.11, 66.07, 24.2, 22.0, 21.9, 20.6. IR (film): 2923, 2853, 1688, 1457, 1423, 809 cm−1. Anal. Calcd for C17H16ORu: C, 60.52; H, 4.78. Found: C, 60.37; H, 4.75. The enantiomeric excess was determined by Daicel Chiralpak AS-H (0.46 cm × 25 cm), hexanes/ IPA = 90/10, 1.0 mL/min, λ = 254 nm, t(major) = 7.839 min, t(minor) = 9.145 min. Compound (Rp)-2s: deep red solid (89.7 mg, 76% yield, 99% ee, 11:1 dr). Analytical data for (Rp)-2s: mp >200 °C. [α]20D = +5122.5 (c = 0.0125 chloroform, 99% ee). 1H NMR (400 MHz, CDCl3): δ 7.43− 7.36 (m, 2H), 7.16 (t, J = 7.6 Hz, 1H), 7.06 (d, J = 7.2 Hz, 1H), 4.72 (s, 1H), 4.66 (s, 2H), 4.62 (s, 1H), 4.46 (s, 1H), 4.29 (s, 1H), 2.00− 1.95 (m, 1H), 1.82−1.77 (m, 1H), 1.71−1.60 (m, 2H), 1.50−1.43 (m, 4H). 13C NMR (100 MHz, CDCl3): δ 194.8, 194.6, 152.1, 140.0, 139.7, 138.3, 134.0, 127.0, 123.5, 122.0, 95.7, 95.4, 82.0, 77.8, 76.8, 74.8, 67.5, 67.2, 66.7, 66.5, 24.6, 21.40, 21.37, 20.2. IR (film): 2922, 2853, 1682, 1604, 1463, 1013, 814, 763, 717 cm−1. HRMS (ESI): calcd for C24H1956FeO2 [M + H]+ 395.0729, found 395.0729. The enantiomeric excess was determined by Daicel Chiralcel OD-H (0.46 cm × 25 cm), hexanes/IPA = 90/10, 1.0 mL/min, λ = 254 nm, t(minor) = 9.367 min, t(major) = 13.151 min. Compound (Rp)-2t: deep red solid (81.5 mg, 66% yield, 99% ee, 10.2:1 dr). Analytical data for (Rp)-2t: mp = 155.5−156.3 °C. [α]20D = +3280.4 (c = 0.0125 chloroform, 99% ee). 1H NMR (400 MHz, CDCl3): δ 7.33 (d, J = 7.6 Hz, 1H), 6.97 (d, J = 8.0 Hz, 1H), 6.90 (s, 1H), 4.70 (d, J = 0.8 Hz, 1H), 4.65−4.64 (m, 3H), 4.46 (d, J = 2.0 Hz, 1H), 4.31 (d, J = 2.0 Hz, 1H), 2.35 (s, 3H), 2.02−1.95 (m, 1H), 1.82− 1.70 (m, 2H), 1.65−1.59 (m, 1H), 1.53−1.41 (m, 4H). 13C NMR (100 MHz, CDCl3): δ 195.0, 194.3, 152.2, 145.0, 140.0, 138.2, 137.6, 127.6, 123.4, 123.0, 95.6, 95.3, 82.4, 77.7, 76.9, 74.7, 67.4, 67.3, 66.6, 66.4, 24.7, 22.1, 21.4, 20.3. IR (film): 2924, 1680, 1609, 1431, 1064, 813, 722 cm−1. HRMS (ESI): calcd for C25H2456FeNO2 [M + NH4]+ 426.1151, found 426.1150. Anal. Calcd for C25H26FeO2: C, 73.55; H, 4.94. Found: C, 73.37; H, 4.95. The enantiomeric excess was determined by Daicel Chiralcel OD-H (0.46 cm × 25 cm), hexanes/ IPA = 90/10, 1.0 mL/min, λ = 254 nm, t(minor) = 8.652 min, t(major) = 9.656 min. Compound (Rp)-2u: deep red solid (51.9 mg, 58% yield, 98% ee, 3.3:1 dr). Analytical data for (Rp)-2u: mp >200 °C. [α]20D = +4769.7 (c = 0.00625 chloroform, 98% ee). 1H NMR (400 MHz, CDCl3): δ 7.82−7.79 (m, 1H), 7.78−7.75 (m, 1H), 7.65 (d, J = 8.0 Hz, 1H), 7.56−7.51 (m, 3H), 5.09 (d, J = 2.4 Hz, 1H), 4.88 (t, J = 2.4 Hz, 1H), 4.81 (d, J = 2.4 Hz, 1H), 4.70 (t, J = 2.4 Hz, 1H), 4.43 (d, J = 2.0 Hz, 1H), 4.35 (d, J = 2.0 Hz, 1H), 1.78−1.72 (m, 1H), 1.64−1.60 (m, 1H), 1.24−1.06 (m, 4H), 0.93−0.79 (m, 2H). 13C NMR (100 MHz, CDCl3): δ 195.7, 194.7, 152.5, 140.8, 138.2, 136.9, 136.6, 129.0, 128.6, 128.5, 127.24, 127.21, 125.2, 119.9, 96.6, 94.0, 80.9, 77.6, 77.2, 75.0, 71.1, 69.0, 67.5, 66.6, 24.2, 20.82, 20.80, 20.2. IR (film): 2988, 2902, 1678, 1429, 1066, 816, 762 cm−1. HRMS (ESI): calcd for C28H2156FeO2 [M + H]+ 445.0885, found 445.0884. Anal. Calcd for C28H20FeO2: C, 75.69; H, 4.54. Found: C, 75.59; H, 4.30. The enantiomeric excess was determined by Daicel Chiralpak AD-H (0.46 cm × 25 cm), hexanes/IPA = 90/10, 1.0 mL/min, λ = 254 nm, t(minor) = 14.608 min, t(major) = 19.115 min. Synthesis of Planar Chiral Ligands and Their Applications in Asymmetric Catalysis. To a solution of compound 2o or 2p (1 equiv) in tetrahydrofuran (0.03 mol/L) at 0 °C was added PhMgBr (2.0 equiv, 1.0 M in THF). The reaction mixture was stirred at room temperature for 5 h. Then the reaction mixture was quenched with icecold water and extracted with ethyl acetate. The combined organic E

DOI: 10.1021/acs.organomet.6b00569 Organometallics XXXX, XXX, XXX−XXX

Organometallics



layers were washed with brine, dried over anhydrous Na2SO4, and filtrated. After the solvent was removed under reduced pressure, the residue was purified by silica gel column chromatography (ethyl acetate/petroleum, 1:5, v/v) to give 3o or 3p. To a solution of phenylacetylene (122.6 mg, 1.2 mmol, 2.4 equiv) in CH2Cl2 (2 mL) was added Et2Zn (1.0 M in hexane, 1.2 mL, 2.4 equiv) at room temperature. The resulting mixture was stirred for 2 h, after which ligand 3o (22.0 mg, 0.05 mmol, 0.1 equiv) was added and the reaction mixture stirred for an additional 30 min. Then 1naphthaldehyde (78.1 mg, 0.5 mmol, 1.0 equiv) was added under an argon atmosphere. After complete consumption of the substrate (monitored by TLC), the reaction was quenched with saturated aqueous NH4Cl and extracted with dichloromethane. The combined organic layers were washed with brine, dried over anhydrous Na2SO4, and filtrated. After the solvent was removed under reduced pressure, the residue was purified by silica gel column chromatography (ethyl acetate/petroleum, 1:5, v/v) to give alcohol 4. Compound (Rp,S)-3o: red solid (107.1 mg, 84% yield, >95:5 dr). Analytical data for 3o: mp = 153.5−155.6 °C. [α]20D = +1754.8 (c = 0.0125 chloroform). 1H NMR (400 MHz, CDCl3): δ 6.90−6.83 (m, 4H), 6.80−6.77 (m, 1H), 5.16 (s, 1H), 4.66 (s, 1H), 4.34 (s, 1H), 4.00−3.95 (m, 4H), 3.81 (d, J = 1.6 Hz, 1H), 3.73 (d, J = 1.6 Hz, 1H), 3.68 (d, J = 1.6 Hz, 1H), 3.56 (t, J = 9.6 Hz, 2H), 1.88 (s, 2H), 1.73− 1.68 (m, 1H), 1.38−1.22 (m, 5H). 13C NMR (100 MHz, CDCl3): δ 166.3, 149.3, 142.8, 129.3, 127.5, 126.1, 124.9, 101.2, 97.5, 80.5, 71.4, 70.7, 70.6, 70.1, 69.0, 68.2, 67.2, 62.7, 59.1, 53.8, 22.8, 22.1, 21.3. IR (film): 2927, 1637, 1483, 1446, 1262, 1115, 1023, 946, 821, 722, 706 cm−1. HRMS (ESI): calcd for C26H2656FeNO2 [M + H]+ 440.1307, found 440.1310. Anal. Calcd for C26H25FeNO2: C, 71.08; H, 5.74; N, 3.19. Found: C, 71.04; H, 5.55; N, 3.15. Compound (Rp,S)-3p: red liquid (96.7 mg, 90% yield, >95:5 dr). Analytical data for 3p: [α]20D = +1168.1 (c = 0.0125 chloroform). 1H NMR (400 MHz, CDCl3): δ 7.26 (d, J = 7.2 Hz, 2H), 7.21 (t, J = 7.2 Hz, 2H), 7.15 (t, J = 7.2 Hz, 1H), 4.92 (d, J = 0.8 Hz, 1H), 4.89 (s, 1H), 4.65 (d, J = 0.8 Hz, 1H), 4.38−4.36 (m, 2H), 4.21 (s, 1H), 4.03 (s, 3H), 3.89 (d, J = 1.2 Hz, 1H), 2.44−2.38 (m, 1H), 2.90−2.18 (m, 2H), 1.80−1.73 (m, 1H), 1.69−1.64 (m, 4H), 1.39 (s, 3H), 1.36 (s, 3H). 13C NMR (100 MHz, CDCl3): δ 165.2, 151.0, 143.7, 131.5, 127.9, 126.5, 125.2, 101.2, 97.0, 80.9, 79.1, 71.9, 71.3, 71.2, 71.1, 70.1, 68.8, 67.3, 64.5, 59.0, 28.5, 28.2, 23.3, 22.62, 22.57, 21.8. IR (film): 2927, 1646, 1301, 1107, 963, 720, 702 cm−1. HRMS (ESI): calcd for C28H3056FeNO2 [M + H]+ 468.1620, found 468.1622. (S)-1-(Naphthalen-1-yl)-3-phenylprop-2-yn-1-ol (4): 11 colorless oil (128.2 mg, 99% yield, 69% ee). Analytical data for 4: [α]20D = +21.5 (c = 1.0 chloroform). 1H NMR (400 MHz, CDCl3): δ 8.37 (d, J = 8.0 Hz, 1H), 7.93−7.85 (m, 3H), 7.58 (t, J = 7.2 Hz, 1H), 7.54−7.47 (m, 4H), 7.32−7.30 (m, 3H), 6.34 (d, J = 5.6 Hz, 1H), 2.45 (d, J = 5.6 Hz, 1H). The enantiomeric excess was determined by Daicel Chiralcel OD-H (25 cm), hexanes/IPA = 90/10, 1.0 mL/min, λ = 254 nm, t(minor) = 15.918 min, t(major) = 33.570 min.



ACKNOWLEDGMENTS We thank the National Basic Research Program of China from MOST (2015CB856600, 2016YFA0202900) and National Natural Science Foundation of China (21332009, 21421091, 21572250) for generous financial support.



REFERENCES

(1) For reviews: (a) Giri, R.; Shi, B.-F.; Engle, K. M.; Maugel, N.; Yu, J.-Q. Chem. Soc. Rev. 2009, 38, 3242−3272. (b) Peng, H. M.; Dai, L.X.; You, S.-L. Angew. Chem., Int. Ed. 2010, 49, 5826−5828. (c) Wencel-Delord, J.; Colobert, F. Chem. - Eur. J. 2013, 19, 14010−14017. (d) Engle, K. M.; Yu, J.-Q. J. Org. Chem. 2013, 78, 8927−8955. (e) Zheng, C.; You, S.-L. RSC Adv. 2014, 4, 6173−6214. (f) Ye, B.; Cramer, N. Acc. Chem. Res. 2015, 48, 1308−1318. For a book, see: (g) You, S.-L., Ed. Asymmetric Functionalization of C−H Bonds; RSC: Cambridge, UK, 2015. Selected examples:. (h) Hyster, T. K.; Knörr, L.; Ward, T. R.; Rovis, T. Science 2012, 338, 500−503. (i) Ye, B.; Cramer, N. Science 2012, 338, 504−506. (j) Ye, B.; Cramer, N. J. Am. Chem. Soc. 2013, 135, 636−639. (k) Renaudat, A.; JeanGérard, L.; Jazzar, R.; Kefalidis, C. E.; Clot, E.; Baudoin, O. Angew. Chem., Int. Ed. 2010, 49, 7261−7265. (l) Nakanishi, M.; Katayev, D.; Besnard, C.; Kündig, E. P. Angew. Chem., Int. Ed. 2011, 50, 7438− 7441. (m) Anas, S.; Cordi, A.; Kagan, H. B. Chem. Commun. 2011, 47, 11483−11485. (n) Katayev, D.; Nakanishi, M.; Bürgi, T.; Kündig, E. P. Chem. Sci. 2012, 3, 1422−1425. (o) Saget, T.; Lemouzy, S. J.; Cramer, N. Angew. Chem., Int. Ed. 2012, 51, 2238−2242. (p) Martin, N.; Pierre, C.; Davi, M.; Jazzar, R.; Baudoin, O. Chem. - Eur. J. 2012, 18, 4480− 4484. (q) Shintani, R.; Otomo, H.; Ota, K.; Hayashi, T. J. Am. Chem. Soc. 2012, 134, 7305−7308. (r) Saget, T.; Cramer, N. Angew. Chem., Int. Ed. 2012, 51, 12842−12845. (s) Saget, T.; Cramer, N. Angew. Chem., Int. Ed. 2013, 52, 7865−7868. (t) Katayev, D.; Jia, Y.-X.; Sharma, A. K.; Banerjee, D.; Besnard, C.; Sunoj, R. B.; Kündig, E. P. Chem. - Eur. J. 2013, 19, 11916−11927. (u) Larionov, E.; Nakanishi, M.; Katayev, D.; Besnard, C.; Kündig, E. P. Chem. Sci. 2013, 4, 1995− 2005. (v) Pedroni, J.; Boghi, M.; Saget, T.; Cramer, N. Angew. Chem., Int. Ed. 2014, 53, 9064−9067. (w) Liu, L.; Zhang, A.-A.; Wang, Y.; Zhang, F.; Zuo, Z.; Zhao, W.-X.; Feng, C.-L.; Ma, W. Org. Lett. 2015, 17, 2046−2049. (x) Lin, Z.-Q.; Wang, W.-Z.; Yan, S.-B.; Duan, W.-L. Angew. Chem., Int. Ed. 2015, 54, 6265−6269. (y) Pedroni, J.; Cramer, N. Angew. Chem., Int. Ed. 2015, 54, 11826−11829. (2) (a) Gutekunst, W. R.; Baran, P. S. Chem. Soc. Rev. 2011, 40, 1976−1991. (b) Yamaguchi, J.; Yamaguchi, A. D.; Itami, K. Angew. Chem., Int. Ed. 2012, 51, 8960−9009. (3) (a) Shi, B.-F.; Zhang, Y.-H.; Lam, J. K.; Wang, D.-H.; Yu, J.-Q. J. J. Am. Chem. Soc. 2010, 132, 460−461. (b) Pi, C.; Li, Y.; Cui, X.; Zhang, H.; Han, Y.; Wu, Y. Chem. Sci. 2013, 4, 2675−2679. (c) Musaev, D. G.; Kaledin, A.; Shi, B.-F.; Yu, J.-Q. J. Am. Chem. Soc. 2012, 134, 1690−1698. (d) Cheng, G.-J.; Chen, P.; Sun, T.-Y.; Zhang, X.; Yu, J.-Q.; Wu, Y.-D. Chem. - Eur. J. 2015, 21, 11180−11188. (e) Xiao, K.-J.; Chu, L.; Yu, J.-Q. Angew. Chem., Int. Ed. 2016, 55, 2856−2860. (4) Albicker, M. R.; Cramer, N. Angew. Chem., Int. Ed. 2009, 48, 9139−9142. (5) For books see: (a) Hayashi, T., Togni, A., Eds. Ferrocenes; VCH: Weinheim, Germany, 1995. (b) Togni, A., Haltermann, R. L., Eds. Metallocenes; VCH: Weinheim, Germany, 1998. (c) Štěpnička, P., Ed. Ferrocenes; Wiley: Chichester, 2008. (d) Dai, L.-X.; Hou, X.-L., Eds. Chiral Ferrocenes in Asymmetric Catalysis; Wiley-VCH: Weinheim, Germany, 2010. (6) For a review: (a) Schaarschmidt, D.; Lang, H. Organometallics 2013, 32, 5668−5704. Selected examples: (b) Siegel, S.; Schmalz, H.G. Angew. Chem., Int. Ed. Engl. 1997, 36, 2456−2458. (c) Battelle, L. F.; Bau, R.; Gokel, G. W.; Oyakawa, R. T.; Ugi, I. K. J. Am. Chem. Soc. 1973, 95, 482−486. (d) Rebière, F.; Riant, O.; Ricard, L.; Kagan, H. B. Angew. Chem., Int. Ed. Engl. 1993, 32, 568−570. (e) Tsukazaki, M.; Tinkl, M.; Roglans, A.; Chapell, B. J.; Taylor, N. J.; Snieckus, V. J. Am. Chem. Soc. 1996, 118, 685−686. (f) Enders, D.; Peters, R.; Lochtman, R.; Raabe, G. Angew. Chem., Int. Ed. 1999, 38, 2421−2423. (g) Laufer,

ASSOCIATED CONTENT

S Supporting Information *

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.organomet.6b00569. Synthesis of substrates, copies of 1H and 13C NMR spectra, and HPLC chromatographs of all compounds described in the Experimental Section (PDF) X-ray crystallographic data of (Rp,S)-3o (CIF)



Article

AUTHOR INFORMATION

Corresponding Authors

*E-mail: [email protected]. *E-mail: [email protected]. Notes

The authors declare no competing financial interest. F

DOI: 10.1021/acs.organomet.6b00569 Organometallics XXXX, XXX, XXX−XXX

Article

Organometallics R. S.; Veith, U.; Taylor, N. J.; Snieckus, V. Org. Lett. 2000, 2, 629−631. (h) Bolm, C.; Kesselgruber, M.; Muñiz, K.; Raabe, G. Organometallics 2000, 19, 1648−1651. (i) Kamikawa, K.; Harada, K.; Uemura, M. Tetrahedron: Asymmetry 2005, 16, 1419−1423. (j) Gotov, B.; Schmalz, H.-G. Org. Lett. 2001, 3, 1753−1756. (k) Kündig, E. P.; Chaudhuri, P. D.; House, D.; Bernardinelli, G. Angew. Chem., Int. Ed. 2006, 45, 1092−1095. (l) Bergin, E.; Hughes, D. L.; Richards, C. J. Tetrahedron: Asymmetry 2010, 21, 1619−1623. (m) Ogasawara, M.; Watanabe, S.; Nakajima, K.; Takahashi, T. J. Am. Chem. Soc. 2010, 132, 2136−2137. (n) Ogasawara, M.; Wu, W.-Y.; Arae, S.; Watanabe, S.; Morita, T.; Takahashi, T.; Kamikawa, K. Angew. Chem., Int. Ed. 2012, 51, 2951− 2955. (7) (a) Sokolov, V. I.; Troitskaya, L. L. Chimia 1978, 32, 122−123. (b) Sokolov, V. I.; Troitskaya, L. L.; Reutov, O. A. J. Organomet. Chem. 1979, 182, 537−546. (c) Günay, M. E.; Richards, C. J. Organometallics 2009, 28, 5833−5836. (d) Dendele, N.; Bisaro, F.; Gaumont, A.-C.; Perrio, S.; Richards, C. J. Chem. Commun. 2012, 48, 1991−1993. (e) Gao, D.-W.; Shi, Y.-C.; Gu, Q.; Zhao, Z.-L.; You, S.-L. J. Am. Chem. Soc. 2013, 135, 86−89. (f) Shi, Y.-C.; Yang, R.-F.; Gao, D.- W.; You, S.-L. Beilstein J. Org. Chem. 2013, 9, 1891−1896. (g) Gao, D.-W.; Gu, Q.; You, S.-L. J. Am. Chem. Soc. 2016, 138, 2544−2547. (8) Pi, C.; Cui, X.; Liu, X.; Guo, M.; Zhang, H.; Wu, Y. Org. Lett. 2014, 16, 5164−5167. (9) (a) Deng, R.; Huang, Y.; Ma, X.; Li, G.; Zhu, R.; Wang, B.; Kang, Y.-B.; Gu, Z. J. Am. Chem. Soc. 2014, 136, 4472−4475. (b) Gao, D.-W.; Yin, Q.; Gu, Q.; You, S.-L. J. Am. Chem. Soc. 2014, 136, 4841−4844. (c) Ma, X.; Gu, Z. RSC Adv. 2014, 4, 36241−36244. (d) Liu, L.; Zhang, A.-A.; Zhao, R.-J.; Li, F.; Meng, T.-J.; Ishida, N.; Murakami, M.; Zhao, W.-X. Org. Lett. 2014, 16, 5336−5338. (e) Gao, D.-W.; Zheng, C.; Gu, Q.; You, S.-L. Organometallics 2015, 34, 4618−4625. (f) Shibata, T.; Shizuno, T. Angew. Chem., Int. Ed. 2014, 53, 5410− 5413. (g) Zhang, Q.-W.; An, K.; Liu, L.-C.; Yue, Y.; He, W. Angew. Chem., Int. Ed. 2015, 54, 6918−6921. (h) Murai, M.; Matsumoto, K.; Takeuchi, Y.; Takai, K. Org. Lett. 2015, 17, 3102−3105. (i) Shibata, T.; Shizuno, T.; Sasaki, T. Chem. Commun. 2015, 51, 7802−7804. (j) Urbano, A.; Hernández-Torres, G.; del Hoyo, A. M.; MartínezCarrión, A.; Carreño, M. C. Chem. Commun. 2016, 52, 6419−6422. For reviews, see: (k) López, L. A.; López, E. Dalton Trans. 2015, 44, 10128−10135. (l) Wang, Y.; Zhang, A.; Liu, L.; Kang, J.; Zhang, F.; Ma, W. Youji Huaxue 2015, 35, 1399−1406. (m) Zhu, D.-Y.; Chen, P.; Xia, J.-B. ChemCatChem 2016, 8, 68−73. (10) For reviews, see: (a) Soai, K.; Niwa, S. Chem. Rev. 1992, 92, 833−856. (b) Pu, L.; Yu, H.-B. Chem. Rev. 2001, 101, 757−824. (c) Deng, W.-P.; Hou, X.-L.; Dai, L.-X. Tetrahedron: Asymmetry 1999, 10, 4689−4693. (d) Li, M.; Zhu, X.-Z.; Yuan, K.; Cao, B.-X.; Hou, X.L. Tetrahedron: Asymmetry 2004, 15, 219−222. (e) Rudolph, J.; Hermanns, N.; Bolm, C. J. Org. Chem. 2004, 69, 3997−4000. (f) Rudolph, J.; Lormann, M.; Bolm, C.; Dahmen, S. Adv. Synth. Catal. 2005, 347, 1361−1368. (g) Rudolph, J.; Bolm, C.; Norrby, P.-O. J. Am. Chem. Soc. 2005, 127, 1548−1552. (11) Barozzino-Consiglio, G.; Yuan, Y.; Fressigné, C.; HarrisonMarchand, A.; Oulyadi, H.; Maddaluno, J. Organometallics 2015, 34, 4441−4450.

G

DOI: 10.1021/acs.organomet.6b00569 Organometallics XXXX, XXX, XXX−XXX