Photocatalytic Formation of Hydrogen Peroxide - ACS Publications

below pH 5 seems to be the oxidation of sulfur dioxide by H 2 0 2. (2-41. Hydrometeor concentrations of hydrogen peroxide as high as. 50 μΜ have ...
3 downloads 0 Views 1MB Size
Chapter 10

Downloaded by KTH ROYAL INST OF TECHNOLOGY on September 11, 2015 | http://pubs.acs.org Publication Date: September 3, 1987 | doi: 10.1021/bk-1987-0349.ch010

Photocatalytic Formation of Hydrogen Peroxide 1

Detlef W. Hahnemann , Michael R. Hoffmann, Andrew P. Hong, and Claudius Kormann W. M. Keck Laboratories, California Institute of Technology, Pasadena, CA 91125

The two-electron reduction of molecular oxygen to hydrogen peroxide can be catalyzed by metal oxide semiconductor p a r t i c l e s i n the presence of visible and near-UV l i g h t . Even though very high quantum y i e l d s for t h i s process are observed, rather low steady-state concentrations of HO are reached. D e t a i l e d mechanisms are presented to e x p l a i n these experimental f i n d i n g s . Metal oxide p a r t i c l e s are found i n atmospheric and surface waters. The environmental significance of photocatalytic formation of H O on these p a r t i c l e s i n n a t u r a l systems i s discussed. 2

2

2

2

Hydrogen p e r o x i d e , H 0 , i s one o f t h e most p o w e r f u l o x i d a n t s i n haze a e r o s o l s , c l o u d s , a n d hydrometeors a t low pH ( I ) . A major pathway f o r t h e f o r m a t i o n o f s u l f u r i c a c i d i n humid atmospheres below pH 5 seems t o be t h e o x i d a t i o n o f s u l f u r d i o x i d e b y H 0 (2-41. Hydrometeor c o n c e n t r a t i o n s o f hydrogen p e r o x i d e a s h i g h a s 50 μΜ have r e c e n t l y been r e p o r t e d b y Kok a n d co-workers ( 5 - 7 ) , w h i l e t y p i c a l atmospheric H 0 l e v e l s up t o 5 ppb have been p r e d i c t e d from Henry's law c a l c u l a t i o n s ( 8 , 9 ) . Various sources f o r t h e p r o d u c t i o n o f H 0 i n t h e atmosphere have been proposed: i t c a n be g e n e r a t e d i n t h e g a s phase b y t h e c o m b i n a t i o n o f h y d r o p e r o x y l r a d i c a l s , Η 0 · ( 1 0 ) , a t t h e a i r - w a t e r i n t e r f a c e due t o p h o t o i n d u c e d redox p r o c e s s e s (XX), and i n t h e aqueous phase v i a photo-catalyzed r e a c t i o n s w i t h h u m i c / f u l v i c a c i d and green algae as m e d i a t o r s (Zepp, R. G. , EPA E n v i r o n m e n t a l R e s e a r c h L a b o r a t o r y a t A t h e n s , p e r s o n a l communication ). F u r t h e r m o r e , Η 0 · r a d i c a l s 2

2

2

2

2

2

2

2

2

'Permanent address: Hahn-Meitner Institut, Bereich Strahlenchemie, Glienicker StraBe 100, D 1000 Berlin 39, Federal Republic of Germany

0097-6156/87/0349-0120$06.00/0 © 1987 American Chemical Society

In The Chemistry of Acid Rain; Johnson, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.

2

10.

BAHNEMANN ET

AL.

Photocatalytic Formation of Hydrogen Peroxide

w h i c h a r e produced i n the gas phase can be scavenged by the water d r o p l e t s where they then form H 0 . This i n s i t u generated h y d r o g e n p e r o x i d e t o g e t h e r w i t h the H 0 scavenged from the gas phase i s thought t o be the main source f o r the H 0 a c c u m u l a t e d i n c l o u d w a t e r d r o p l e t s (10.12.13). Another v e r y l i k e l y p o s s i b i l i t y f o r H 0 p r o d u c t i o n , however, has so f a r been n e g l e c t e d i n the d e s i g n of models f o r a e r o s o l - , f o g - , and c l o u d w a t e r c h e m i s t r y . V a r i o u s m e t a l o x i d e s , some of w h i c h a r e v e r y abundant i n n a t u r a l environments, have been shown t o a c t as p h o t o c a t a l y s t s f o r a l a r g e v a r i e t y o f r e a c t i o n s ( 1 4 ) , e.g., the p h o t o l y s i s o f d e s e r t sands r e s u l t e d i n the p r o d u c t i o n of ammonia from d i n i t r o g e n ( 1 5 ) . Atmospheric p a r t i c u l a t e m a t t e r o r i g i n a t e s m a i n l y from n a t u r a l s o u r c e s (721-1850 Tg y r " i n 1979 g l o b a l l y ) b u t a l s o from man-made emissions (125-385 Tg y r " i n 1982 i n the USA) with iron, t i t a n i u m , and z i n c b e i n g some of the most abundant t r a n s i t i o n m e t a l s d e t e c t e d i n ambient samples ( 1 6 ) . These m e t a l s a r e p r e s e n t as h y d r o x i d e s b u t a l s o f r e q u e n t l y as the r e s p e c t i v e o x i d e s , depending upon the e n v i r o n m e n t a l c o n d i t i o n s ( 1 7 ) . Hence the p r e s e n t work a d d r e s s e s the q u e s t i o n of hydrogen p e r o x i d e f o r m a t i o n i n aqueous s o l u t i o n s as c a t a l y z e d by m e t a l o x i d e s upon i r r a d i a t i o n w i t h v i s i b l e and near-UV l i g h t . 2

2

2

2

2

2

Downloaded by KTH ROYAL INST OF TECHNOLOGY on September 11, 2015 | http://pubs.acs.org Publication Date: September 3, 1987 | doi: 10.1021/bk-1987-0349.ch010

121

2

2

1

1

P h o t o c a t a l v s i s w i t h Semiconductors Many m e t a l c h a l c o g e n i d e s and o x i d e s a r e known t o be semiconduc­ tors. These m a t e r i a l s can a c t as s e n s i t i z e r s f o r l i g h t - i n d u c e d r e d o x p r o c e s s e s due to t h e i r e l e c t r o n i c s t r u c t u r e c o n s i s t i n g of a valence band w i t h f i l l e d molecular orbitals (MO's) and a c o n d u c t i o n band w i t h empty MO's. A b s o r p t i o n of a p h o t o n w i t h an energy above the bandgap energy Eg g e n e r a l l y l e a d s t o the forma­ t i o n of an e l e c t r o n / h o l e p a i r i n the semiconductor p a r t i c l e ( 1 8 ) : semiconductor

^

e~(cb)

+

+

h (vb)

(1)

I n the absence of s u i t a b l e scavengers, r e c o m b i n a t i o n o c c u r s w i t h i n a few nanoseconds ( 1 9 ) . V a l e n c e band h o l e s ( h ( v b ) ) have been shown t o be p o w e r f u l o x i d a n t s (20-23) whereas c o n d u c t i o n band e l e c t r o n s ( e " ( c b ) ) can a c t as r e d u c t a n t s (24,25). The redox p o t e n t i a l s of b o t h , e~ and h , a r e d e t e r m i n e d by the r e l a t i v e p o s i t i o n of the c o n d u c t i o n and v a l e n c e band, respectively. Bandgap p o s i t i o n s a r e material constants which have been determined f o r a wide v a r i e t y of s e m i c o n d u c t o r s (26). Most m a t e r i a l s show " N e r n s t i a n " b e h a v i o r w h i c h r e s u l t s i n a s h i f t of the s u r f a c e p o t e n t i a l by 59 mV i n the n e g a t i v e d i r e c t i o n w i t h a pH i n c r e a s e of ΔρΗ = 1. C o n s e q u e n t l y e l e c t r o n s a r e b e t t e r r e d u c t a n t s in alkaline s o l u t i o n s w h i l e h o l e s have a h i g h e r o x i d a t i o n p o t e n t i a l i n the a c i d pH-range ( 2 6 ) . Thus, w i t h the r i g h t c h o i c e of semiconductor and pH, the redox p o t e n t i a l of the e ~ ( c b ) can be v a r i e d from +0.5 t o -1.5 V ( v s . NHE) and t h a t of the h ( v b ) from +1.0 to more than +3.5 V. T h i s s u f f i c i e n t l y c o v e r s the f u l l range of r e d o x c h e m i s t r y o f the H 0 / 0 system ( 2 7 ) . +

+

+

2

2

In The Chemistry of Acid Rain; Johnson, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.

122

THE CHEMISTRY OF ACID RAIN

H 0 c a n t h e r e f o r e be formed v i a two d i f f e r e n t pathways i n a n a e r a t e d aqueous s o l u t i o n p r o v i d e d e ~ ( c b ) a n d h ( v b ) a r e g e n e r a t e d *· 2

2

+

0

+

+ 2e"(cb) + 2H aq

2

2H 0

Downloaded by KTH ROYAL INST OF TECHNOLOGY on September 11, 2015 | http://pubs.acs.org Publication Date: September 3, 1987 | doi: 10.1021/bk-1987-0349.ch010

+

+

2

->

2h (vb)

H 0 2



H 0 2

(2)

2

+

2

+ 2H aq

(3)

R e a c t i o n 2 has been s t u d i e d i n g r e a t d e t a i l (28-44) s i n c e Baur and N e u w e i l e r ( 2 8 ) i n 1927 observed t h e f o r m a t i o n o f H 0 when they i l l u m i n a t e d aqueous z i n c o x i d e s u s p e n s i o n s i n the presence of g l y c e r i n a n d g l u c o s e w h i c h i n t u r n were o x i d i z e d . Appreciable y i e l d s o f hydrogen p e r o x i d e a r e d e t e c t e d o n l y when a p p r o p r i a t e e l e c t r o n d o n o r s , D, a r e added p r i o r t o i l l u m i n a t i o n . This s t r o n g l y i n d i c a t e s t h a t i t i s t h e e l e c t r o n donor, D, w h i c h i s a d s o r b e d on t h e c a t a l y s t ' s s u r f a c e and hence s a c r i f i c e d v i a R e a c t i o n 4. 2

D

+

+

h (vb)



2

+

ϋ ·

(4) +

The presence of s u r f i c i a l D interferes with the e~/h r e c o m b i n a t i o n l e a v i n g e " ( c b ) ( c o n d u c t i o n band e l e c t r o n s ) b e h i n d w h i c h then r e a c t w i t h d i o x y g e n v i a R e a c t i o n 2. S m a l l q u a n t i t i e s of H 0 d e t e c t e d i n t h e absence o f added donors c o n t a i n e d o n l y oxygen atoms from 0 a s shown b y l a b e l l i n g s t u d i e s ( 3 4 ) w h i c h i n d i c a t e s the presence o f contaminants i n the semiconductor that are able to f i l l the h ( v b ) . Cadmium s u l f i d e , CdSe, and ZnO showed t h e h i g h e s t c a t a l y t i c a c t i v i t y f o r d i o x y g e n reduction (35,38). T i t a n i u m d i o x i d e , on t h e o t h e r hand, w h i c h seems t o be the m a t e r i a l w i t h t h e g r e a t e s t p o t e n t i a l f o r w a t e r s p l i t t i n g i s r e p o r t e d t o have n e g l i g a b l e a c t i v i t y (35,41-43). The o x i d a t i o n o f w a t e r v i a R e a c t i o n 3, however, h a s n o t y e t been demonstrated unambiguously. W h i l e Rao e t αϊ. ( 4 5 ) r e p o r t e d t h e f o r m a t i o n o f H 0 i n w a t e r s p l i t t i n g e x p e r i m e n t s on ZnO and T i 0 , S a l v a d o r and Decker ( 4 6 ) c o u l d n o t v e r i f y t h i s o b s e r v a t i o n . The i n t e r m e d i a t e production of H 0 as the f i r s t molecular step of the four-hole o x i d a t i o n o f water t o d i o x y g e n has been p r e d i c t e d (46,47) a n d a v a r i e t y o f f r e e r a d i c a l i n t e r m e d i a t e s have a l r e a d y been d e t e c t e d (48-50). Whenever t h e o x i d a t i o n o f H 0 i s found t o p r o c e e d w i t h h i g h y i e l d s t h e r e i s no i n d i c a t i o n o f hydrogen p e r o x i d e f o r m a t i o n (51-54), but the dioxygen production seems t o p r o c e e d v i a d i f f e r e n t i n t e r m e d i a t e p e r o x i d e s a s shown by Baur and P e r r e t (51.52): they s t u d i e d t h e p h o t o c a t a l y t i c f o r m a t i o n o f 0 on ZnO i n the p r e s e n c e o f s i l v e r n i t r a t e and observed the intermediate production of s i l v e r peroxides. I n t h e c a s e o f T i 0 , t h e absence of detectable amounts of H 0 and 0 during water photoelectrolysis experiments has been explained w i t h the we11-documented a d s o r p t i o n and p h o t o - u p t a k e o f these o x o - s p e c i e s by t h e m a t e r i a l (55-71) and t h e i r i n c o r p o r a t i o n i n t o t h e m o l e c u l a r s t r u c t u r e a s p e r o x y t i t a n a t e s (68.72.73). The above d i s c u s s i o n i n d i c a t e s t h a t a d e t a i l e d s t u d y o f t h e mechanism o f t h e l i g h t - i n d u c e d hydrogen p e r o x i d e p r o d u c t i o n on 2

2

2

+

2

2

2

2

2

2

2

2

2

2

2

In The Chemistry of Acid Rain; Johnson, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.

10.

Photocatalytic Formation of Hydrogen Peroxide

BAHNEMANN ET AL.

123

various oxide surfaces i s warranted i n order t o judge i t s p o t e n t i a l environmental implications. U s i n g a newly d e v e l o p e d p o l a r o g r a p h i c technique f o r t h e k i n e t i c a n a l y s i s o f hydrogen p e r o x i d e c o n c e n t r a t i o n s w i t h a s e n s i t i v i t y o f 1 0 ~ M, we p r e s e n t f u r t h e r i n s i g h t i n t o t h e p h o t o c a t a l y t i c f o r m a t i o n and d e s t r u c t i o n of H 0 . 7

2

2

Downloaded by KTH ROYAL INST OF TECHNOLOGY on September 11, 2015 | http://pubs.acs.org Publication Date: September 3, 1987 | doi: 10.1021/bk-1987-0349.ch010

Experimental

Details

Several c a t a l y s t s were p r e p a r e d from c h e m i c a l s of highest a v a i l a b l e grade. Mechanistic s t u d i e s were p e r f o r m e d using colloidal dispersions of z i n c oxide, ZnO, w h i c h contained p a r t i c l e s w i t h a mean d i a m e t e r o f 5 nm (Bahnemann, D. W. ; Kormann, C; Hoffmann, M. R. .1. Phvs. Chem. submitted 11/3/86). S u s p e n s i o n s o f such s m a l l a g g r e g a t e s e x h i b i t n e g l i g i b l e light s c a t t e r i n g p r o p e r t i e s and c o n v e n t i o n a l s p e c t r o s c o p i c techniques can be u s e d t o study o n g o i n g r e a c t i o n s ( 7 4 ) . The p r e p a r a t i o n o f t i t a n i u m d i o x i d e p a r t i c l e s , T i 0 , coated w i t h c o b a l t ( I I ) t e t r a s u l f o p h t h a l o c y a n i n e , C o ( I I ) T S P , has r e c e n t l y been r e p o r t e d (Hong, A. P.; Bahnemann, D. W. ; Hoffmann, M. R. J . Phvs. Chem. a c c e p t e d f o r p u b l i c a t i o n 12/12/86). These p a r t i c l e s have a mean d i a m e t e r of 30 nm w i t h 3 0 % o f t h e s u r f a c e a r e a c o v e r e d w i t h C o ( I I ) T S P . D e s e r t sand o b t a i n e d from D e a t h V a l l e y h a s been t r e a t e d w i t h s e v e r a l a c i d washing c y c l e s and s e l e c t e d by s i z e and w e i g h t (Kormann, C. ; Bahnemann, D. W. ; Hoffmann, M. R. u n p u b l i s h e d d a t a ) . The H 0 c o n c e n t r a t i o n was measured c o n t i n u o u s l y w i t h a Y S I - C l a r k 2510 O x i d a s e Probe c o n n e c t e d t o a Y S I model 25 o x i d a s e meter. The s u r f a c e o f t h e e l e c t r o d e was c o v e r e d w i t h a d i a l y s i s membrane (molecular w e i g h t c u t o f f 12,000 - 14,000) t o p r e v e n t any i n t e r f e r e n c e caused by t h e c a t a l y s t p a r t i c l e s . Equilibration times between 30 and 60 minutes were a l l o w e d t o e n s u r e a s t a b l e s i g n a l once t h e e l e c t r o d e was immersed i n t o t h e r e a c t i o n s o l u t i o n . F o l l o w i n g e q u i l i b r a t i o n , changes i n H 0 c o n t e n t were m o n i t o r e d a t a s e n s i t i v i t y o f 1 0 " M and a time c o n s t a n t o f 1 s. The e l e c t r o d e was c a l i b r a t e d f o l l o w i n g each k i n e t i c e x p e r i m e n t u s i n g a s t a n d a r d a d d i t i o n method; l i n e a r response was o b t a i n e d between 1 0 ~ and 2·10~ M H 0 . S i n c e t h i s p o l a r o g r a p h i c method i s s e n s i t i v e t o any s p e c i e s w i t h a redox p o t e n t i a l o f 700 mV, d i f f e r e n t methods were used t o v e r i f y t h e f o r m a t i o n o f hydrogen p e r o x i d e . Following the i l l u m i n a t i o n a n a l i q u o t o f t h e s o l u t i o n was t a k e n a n d t i t r a t e d w i t h i o d i d e i n t h e p r e s e n c e o f a c a t a l y s t (75,76) t o form t h e I ~ a n i o n w h i c h was q u a n t i t a t i v e l y measured by s p e c t r o p h o t o m e t r y (fe(352nm) = 26400 M" cm" ) ( 7 7 ) . As a second check and when v e r y s m a l l c o n c e n t r a t i o n s o f H 0 were d e t e c t e d w i t h t h e p o l a r o g r a p h i c method a v e r y s e n s i t i v e f l u o r o m e t r i c d e t e r m i n a t i o n ( d e t e c t i o n l i m i t : 1.2·10" M H 0 ) was employed. This l a t t e r procedure i n v o l v e s t h e r e a c t i o n o f H 0 w i t h p-hydroxypheny l a c e t i c a c i d i n the p r e s e n c e o f h o r s e r a d i s h p e r o x i d a s e t o y i e l d a p r o d u c t w h i c h f l u o r e s c e s a t 400 nm ( X ( e x ) = 320 nm) (78.79). Even though t h e p o l a r o g r a p h i c method c a n n o t d i f f e r e n t i a t e between H 0 and o t h e r species w i t h a s i m i l a r e l e c t r o c h e m i c a l half-wave p o t e n t i a l , the use o f two a l t e r n a t i v e c h e m i c a l a n a l y s i s t e c h n i q u e s e l i m i n a t e s such a r t i f a c t s . I n t e r f e r e n c e s by o t h e r c h e m i c a l s s u c h a s ozone 2

2

2

2

2

7

7

5

2

2

3

1

1

2

2

8

2

2

2

2

2

2

In The Chemistry of Acid Rain; Johnson, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.

THE CHEMISTRY OF ACID RAIN

Downloaded by KTH ROYAL INST OF TECHNOLOGY on September 11, 2015 | http://pubs.acs.org Publication Date: September 3, 1987 | doi: 10.1021/bk-1987-0349.ch010

124

c a n a l s o be e x c l u d e d i n t h i s s t u d y s i n c e i t i s e x t r e m e l y u n l i k e l y t h a t they s h o u l d o c c u r w i t h a l l t h r e e methods t o the same e x t e n d . F i g u r e 1 shows the expermental s e t - u p f o r the p h o t o l y s i s studies. White l i g h t of a 450 W Xe lamp (Osram XBO) passes through a water f i l t e r , a monochromator (PRA B102) and an a p p r o p r i a t e U V - f i l t e r b e f o r e the c o n t i n u o u s l y s t i r r e d sample i s irradiated. The a n a l o g s i g n a l of the o x i d a s e meter i s a m p l i f i e d to g i v e the r i g h t a m p l i t u d e f o r the i n p u t o f the A/D converter (MBC Dash 8) w h i c h d i g i t i z e s the d a t a and feeds them i n t o an IBM PC/AT f o r k i n e t i c a n a l y s i s . Aberchrome 540 i s used f o r the d e t e r m i n a t i o n of the l i g h t f l u x t o e n a b l e an a b s o l u t e measurement of the quantum y i e l d s ( 8 0 ) . R e s u l t s and D i s c u s s i o n The f o r m a t i o n of hydrogen p e r o x i d e upon the i l l u m i n a t i o n of an a i r - s a t u r a t e d aqueous c o l l o i d a l s u s p e n s i o n o f z i n c o x i d e p a r t i c l e s i s shown i n F i g u r e 2. No H 0 i s p r o d u c e d when l i g h t e n e r g i e s below the bandgap energy of ZnO where employed (Eg(ZnO)= 3.4 eV or X ( e x ) = 365 nm), e.g., X ( e x ) = 400 nm. As the i r r a d i a t i o n was p e r f o r m e d a t lower w a v e l e n g t h s , e.g., X ( e x ) = 366 and 320 nm, the sudden i n c r e a s e of the s i g n a l from the p o l a r o g r a p h i c a n a l y z e r indicated H 0 f o r m a t i o n w i t h a w a v e l e n g t h - i n d e p e n d e n t quantum y i e l d of 6%. No hydrogen p e r o x i d e i s formed o r d e p l e t e d i n the absence of l i g h t . P r o l o n g e d i l l u m i n a t i o n l e a d s t o the f o r m a t i o n of a s t e a d y - s t a t e i n [ H 0 ] of 1.2·10~ M i n i r r a d i a t e d samples. The q u a n t u m - y i e l d s φ d e t e r m i n e d from the i n i t i a l s l o p e of the [ H 0 ] v s . time p l o t s depended s t r o n g l y on the oxygen-content of the s o l u t i o n : φ i n c r e a s e d t o 10% i n 0 - s a t u r a t e d samples and d e c r e a s e d s h a r p l y below 2·10~ M 0 . No H 0 i s p r o d u c e d when anoxic s o l u t i o n s were i r r a d i a t e d . The f o l l o w i n g mechanism e x p l a i n s these o b s e r v a t i o n s . E l e c t r o n s and h o l e s a r e formed i n the z i n c o x i d e p a r t i c l e s under bandgap i r r a d i a t i o n ( R e a c t i o n 1 ) . T h e i r r e c o m b i n a t i o n i s p r e v e n t e d by the p r e s e n c e of 2 mM a c e t a t e i o n s w h i c h a r e s t r o n g l y a d s o r b e d onto the ZnO s u r f a c e and a r e oxidized v i a : 2

2

2

2

4

2

2

2

2

2

5

2

CH C00~ 3

+

+

(CH C00)*

h (vb)



3

#

->

CH C00"/H* 2

2

(CH C00)

2

#

(5)

3

q

and/or

#

CH /C0 3

2

(6)

The f a t e of the r a d i c a l s produced v i a R e a c t i o n 6 i s c u r r e n t l y being investigated. I n i t i a l r e s u l t s i n d i c a t e the f o r m a t i o n of o r g a n i c p e r o x i d e s and suggest the i n t e r m e d i a t e f o r m a t i o n of p e r o x y - r a d i c a l s (Kormann, C. ; Bahnemann, D. W. ; Hoffmann, M. R. u n p u b l i s h e d r e s u l t s ) . W i t h the i n h i b i t i o n of charge r e c o m b i n a t i o n c o n d u c t i o n band e l e c t r o n s a r e now a v a i l a b l e t o reduce m o l e c u l a r oxygen y i e l d i n g H 0 (Reaction 2). The observed steady-state c o n c e n t r a t i o n o f hydrogen p e r o x i d e can be u n d e r s t o o d as a c o m p e t i t i o n between R e a c t i o n s 2 and 7. 2

2

In The Chemistry of Acid Rain; Johnson, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.

10.

Photocatalytic Formation of Hydrogen Peroxide

BAHNKMANN ET AL.

125

H 0 ELECTRODE 2

2

1cm

Downloaded by KTH ROYAL INST OF TECHNOLOGY on September 11, 2015 | http://pubs.acs.org Publication Date: September 3, 1987 | doi: 10.1021/bk-1987-0349.ch010

CELL LIGHT IR-FILTER M0N0CHR0- UV- Γ FILTER MATOR SOURCE (HoO) MAGNETIC (450 W) STIRRER

IBM PC/AT

A/DCONVERTER (MBC)

OXIDASE METER (YSI)

F i g u r e 1. E x p e r i m e n t a l c o n f i g u r a t i o n u s e d f o r i r r a d i a t i o n s and hydrogen p e r o x i d e d e t e c t i o n .

T I M E / MIN.

Figure 2. H 0 f o r m a t i o n upon i l l u m i n a t i o n o f a n aqueous c o l l o i d a l s u s p e n s i o n o f z i n c o x i d e i n t h e p r e s e n c e o f 2 mM a c e t a t e ( o t h e r exp. cond. a r e g i v e n i n t h e f i g u r e ) . 2

2

In The Chemistry of Acid Rain; Johnson, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.

THE CHEMISTRY OF ACID RAIN

126

H 0 2

2e"(cb)

2

+

+

2H aq

-*

2H 0

(7)

2

4

The value [ H 0 ] ( s s ) = 1.2·10" M measured i n air-saturated s o l u t i o n s ( [ 0 ] ( s s ) = 2.4·10" M) s u g g e s t s t h a t R e a c t i o n 7 i s about t w i c e a s e f f i c i e n t a s t h e i n i t i a l d i o x y g e n r e d u c t i o n . H 0 i s a l s o produced i n t h e absence o f h o l e scavengers p r o v i d e d t h e r i g h t c a t a l y s t i s used. F i g u r e 3 shows t h e f o r m a t i o n of hydrogen p e r o x i d e upon bandgap i l l u m i n a t i o n o f a n oxygenated aqueous s u s p e n s i o n o f T i 0 c o a t e d w i t h C o ( I I ) T S P w h i c h a c t s a s a n e l e c t r o n r e l a y t o t r a n s f e r e " ( c b ) o n t o 0 (Hong, A. P.; Bahnemann, D. W. ; Hoffmann, M. R. J . Phvs. Chem. a c c e p t e d f o r p u b l i c a t i o n 12/12/86). I t i s c l e a r l y o b v i o u s from F i g u r e 3 t h a t t h e same s t e a d y - s t a t e c o n c e n t r a t i o n o f H 0 i s reached once t h e system i s p e r t u r b e d by t h e a d d i t i o n o f H 0 d u r i n g p r o l o n g e d i r r a d i a t i o n . As i n t h e case o f ZnO no f o r m a t i o n o r d e p l e t i o n o f hydrogen p e r o x i d e i s o b s e r v e d i n t h e absence o f l i g h t . An o c t a h e d r a l l y c o o r d i n a t e d s u r f a c e complex, e.g., T i - 0 ~ - C o ( I I I ) T S P - 0 ~ * , has been identified as the c a t a l y t i c a l l y active species i n the T i 0 - C o ( I I ) T S P system. W i t h d i o x y g e n b e i n g bound i n t h e form o f s u p e r o x i d e , 0 ~ · , t h i s complex p r o v e d t o be e x t r e m e l y s t a b l e b u t a c t s a s a n e f f e c t i v e a c c e p t o r f o r c o n d u c t i o n band e l e c t r o n s p r o d u c e d upon i r r a d i a t i o n o f t h e b u l k T i 0 : 2

2

4

2

Downloaded by KTH ROYAL INST OF TECHNOLOGY on September 11, 2015 | http://pubs.acs.org Publication Date: September 3, 1987 | doi: 10.1021/bk-1987-0349.ch010

2

2

2

2

2

2

2

2

2

2

2

2

T i - 0 " - C o ( I I I ) T S P - 0 " - + e " ( c b ) -» T i - 0 " - C o ( I I I ) T S P - H 0 2

+ H 0

2

The aquo complex formed e " ( c b ) t o form a reduced with 0

2

2

(8)

i n R e a c t i o n 8 r e a d i l y accepts another m e t a l c e n t e r w h i c h then q u i c k l y r e a c t s

2

Ti-0"-Co(II)TSP-H 0

+

2

0



2

Ti-0~-Co(III)TSP-0 "*

(9)

2

y i e l d i n g a g a i n t h e s t a b l e 0 ~· complex. H 0 i s formed i n quantum y i e l d s c l o s e t o 5 0 % b y t h i s r e a c t i o n sequence. The observed n e t f o r m a t i o n o f H 0 i n d i c a t e s t h a t t h e v a l e n c e band h o l e s , h ( v b ) , a r e a b l e t o o x i d i z e water v i a R e a c t i o n 3. The low s t e a d y - s t a t e c o n c e n t r a t i o n s [ H 0 ] ( s s ) w h i c h a r e reached d u r i n g these experiments ( 5 - 25 μΜ depending on t h e n a t u r e o f t h e c a t a l y s t ) suggest t h a t o x i d a t i o n o f H 0 v i a 2

2

2

2

2

+

2

2

H 0 2

2

+

+

2h (vb)

-*

0

2

+

2

2

+

2H aq

(10)

e f f i c i e n t l y competes w i t h R e a c t i o n 3. When p r e s e n t a t h i g h c o n c e n t r a t i o n s , hydrogen p e r o x i d e c a n a l s o compete w i t h m o l e c u l a r oxygen ( R e a c t i o n 9) f o r t h e open c o o r d i n a t i o n s i t e on C o ( I I ) T S P : Ti-0"-Co(II)TSP-H 0 2

+ H 0 2

2

-» T i - 0 " - C o ( I I I ) T S P - 0 H

+ OH"

(11)

R e a c t i o n 11 i s a n a l o g o u s t o R e a c t i o n 8 i n t h a t i t l e a d s t o t h e o v e r a l l r e d u c t i o n o f H 0 b y two e " ( c b ) . The major d i f f e r e n c e 2

2

In The Chemistry of Acid Rain; Johnson, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.

10.

Photocatalytic Formation of Hydrogen Peroxide

BAHNEMANN ET AL.

Yll

between t h e z i n c o x i d e and t h e T i 0 - C o ( I I ) T S P systems i s t h a t t h e s u r f a c e complex ( C o ( I I ) T S P ) a c t s a s a n e l e c t r o n r e l a y i n one c a s e while sacrificial e l e c t r o n donors such a s a c e t a t e are a p r e r e q u i s i t e f o r i n t e r r u p t i o n of the e"/h recombination i n the other case. F o l l o w i n g t h e s t u d i e s o f t h e s e r a t h e r w e l l - d e f i n e d model systems a e r a t e d aqueous s u s p e n s i o n s o f d e s e r t sand p a r t i c l e s were i r r a d i a t e d ( X ( e x ) = 350 nm) i n t h e p r e s e n c e o f sodium a c e t a t e . The v e r y r a p i d f o r m a t i o n o f a s t e a d y - s t a t e c o n c e n t r a t i o n o f 0.2 uM H 0 upon i l l u m i n a t i o n i s shown i n F i g u r e 4. T h i s , however, decays v e r y q u i c k l y when t h e l i g h t i s t u r n e d o f f . A similar d e p l e t i o n i s a p p a r e n t when H 0 i s added i n t h e d a r k . I f the l i g h t i s t u r n e d on d u r i n g t h i s decay p e r i o d a s t e a d y - s t a t e o f 0.2 uM i s a g a i n e s t a b l i s h e d . These c y c l e s c a n be r e p e a t e d many t i m e s w i t h o u t any a p p a r e n t l o s s i n a c t i v i t y . I t has a l r e a d y been demonstrated ( 1 5 ) t h a t d e s e r t sand c o n t a i n s m i n e r a l s such a s hematite, a-Fe 0 , and a n a t a s e , Ti0 , and c a n thus be photocatalytically active. We e n v i s i o n a mechanism s i m i l a r t o t h a t p r o p o s e d f o r t h e model systems above t o a c c o u n t f o r t h e observed formation of H 0 on d e s e r t sands. I n t h i s case the e"/h p a i r ( R e a c t i o n 1) i s i n t e r c e p t e d b y t h e donor a c e t a t e ( R e a c t i o n s 5 a n d 6 ) l e a v i n g e ~ ( c b ) b e h i n d t o reduce 0 v i a R e a c t i o n 2. The e f f i c i e n t d e s t r u c t i o n o f H 0 , on t h e o t h e r hand, might be caused b y m e t a l i o n c o n t a m i n a n t s (M ) a d s o r b e d on t h e sand p a r t i c l e s (81-85). Hydrogen p e r o x i d e c a n thus r e a c t w i t h M i n a F e n t o n type r e a c t i o n ( 8 6 ) , 2

Downloaded by KTH ROYAL INST OF TECHNOLOGY on September 11, 2015 | http://pubs.acs.org Publication Date: September 3, 1987 | doi: 10.1021/bk-1987-0349.ch010

+

2

2

2

2

2

3

2

2

2

+

2

2

2

x+

x +

M

x +

+

H 0 2

2



i x + 1 ) +

M

+ OH"

f o l l o w e d by t h e f r e e r a d i c a l R e a c t i o n s H 0 2

+

2

13 t o 17

(12)

(87.88). (13)

->

Η 0

Η0 ·

τ-

ο ~·

+

Η aq

(14)



Η 0

+

ο

(15)



Η 0

+

Η 0 · + 0 "· + Η aq 2

0Η·

0Η· 2

2

2

+

+

2

2

2

2

Η0 · 2

+

2

2

Η0 ·

+

0Η·

0Η·

+

0Η·

2

+

2

Η 0 2

ο

2

2

(16) (17)

overal1 the in results This reaction sequence disproportionation of H 0 and thus explains i t s rapid disappearance i n the dark. F i n a l l y , a word o f c a u t i o n s h o u l d be added r e g a r d i n g o t h e r p o s s i b i l i t i e s t o p h o t o g e n e r a t e hydrogen p e r o x i d e i n s u c h a n i l l - d e f i n e d n a t u r a l system. I n s p i t e of the r i g o r o u s p r e - t r e a t m e n t i t i s p o s s i b l e t h a t t r a c e amounts o f o r g a n i c a d s o r b a t e s a r e s t i l l p r e s e n t on t h e d e s e r t sand samples employed i n t h i s study. On t h e o t h e r hand, i t i s w e l l documented t h a t n a t u r a l l y o c c u r r i n g humic type m a t e r i a l s c a n a l s o be photochemical l y a c t i v e (89). Thus we cannot exclude the p o s s i b i l i t y t h a t p a r t o f t h e o b s e r v e d r a t h e r low s t e a d y - s t a t e 2

2

In The Chemistry of Acid Rain; Johnson, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.

Downloaded by KTH ROYAL INST OF TECHNOLOGY on September 11, 2015 | http://pubs.acs.org Publication Date: September 3, 1987 | doi: 10.1021/bk-1987-0349.ch010

128

THE CHEMISTRY OF ACID RAIN

hi> on

' -5 mM H 02 o ô b e d 2

0 0

30

60

75 165

180

210

240

255

Time (min)

F i g u r e 3. F o r m a t i o n and d e p l e t i o n o f H 0 upon i r r a d i a t i o n ( X ( e x ) = 366 nm) o f a n oxygenated aqueous s u s p e n s i o n o f 0.3 g T i 0 - C o ( I I ) T S P / l a t pH 12. 2

2

2

time/min F i g u r e 4. F o r m a t i o n and d e p l e t i o n o f H 0 upon i l l u m i n a t i o n a n d i n t h e d a r k o b s e r v e d i n a n a e r a t e d aqueous s u s p e n s i o n o f Death V a l l e y d e s e r t sand ( o t h e r exp. cond. a r e g i v e n i n t h e f i g u r e ) . 2

2

In The Chemistry of Acid Rain; Johnson, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.

10.

129

Photocatalytic Formation of Hydrogen Peroxide

BAHNEMANN ET AL.

c o n c e n t r a t i o n o f H 0 i s formed v i a t h e d i r e c t e x c i t a t i o n o f such molecules. Further experiments a r e c u r r e n t l y being performed to d i f f e r e n t i a t e between these pathways. 2

2

Downloaded by KTH ROYAL INST OF TECHNOLOGY on September 11, 2015 | http://pubs.acs.org Publication Date: September 3, 1987 | doi: 10.1021/bk-1987-0349.ch010

C o n c l u d i n g Remarks We have shown that hydrogen peroxide c a n be produced photocatalytically i n the presence of semiconductor p a r t i c l e s . Quantum y i e l d s up t o 5 0 % and s t e a d y - s t a t e c o n c e n t r a t i o n s between 0.2 and 120 μΜ H 0 have been observed. While the reduction of m o l e c u l a r oxygen by e ~ ( c b ) seems t o be t h e most l i k e l y p r o c e s s f o r H 0 - f o r m a t i o n , o x i d a t i o n o f water by h ( v b ) s h o u l d i n p r i n c i p l e y i e l d t h e same p r o d u c t s . I t i s t h e o b s e r v a t i o n o f hydrogen p e r o x i d e p r o d u c t i o n upon t h e i l l u m i n a t i o n o f a n a e r a t e d aqueous s u s p e n s i o n o f d e s e r t sand p a r t i c l e s t h a t p r e s e n t s t h e most i n t r i g u i n g r e s u l t o f t h i s s t u d y . Submicron sand p a r t i c l e s a r e v e r y abundant i n t h e atmosphere where they a c t a s c o n d e n s a t i o n n u c l e i ( 9 0 ) . T h e i r involvement a s catalysts and/or photocatalysts i n chemical transformations o c c u r r i n g i n n a t u r a l environments h a s so f a r been n e g l e c t e d even though they a r e r a t h e r p e r s i s t e n t i n t h e atmosphere with h a l f - l i v e s o f s e v e r a l days b e f o r e p r e c i p i t a t i o n t a k e s p l a c e . We p r o p o s e t h e s u r f a c e r e a c t i o n o f p h o t o c a t a l y t i c a l l y formed H 0 with sulfur d i o x i d e ( S 0 ) and n i t r o u s o x i d e s (N0 ) as an a d d i t i o n a l pathway f o r t h e f o r m a t i o n o f a c i d r a i n . Even though due to i t s metal-catalyzed dismutation the steady-state c o n c e n t r a t i o n o f H 0 observed i n t h e d e s e r t sand e x p e r i m e n t was r a t h e r low, i t may n e v e r t h e l e s s be h i g h enough t o y i e l d r e a s o n a b l e q u a n t i t i e s o f o x i d a t i o n p r o d u c t s l i k e H S 0 o r HN0 . Further experiments a r e i n progress t o study the p h o t o c a t a l y t i c a c t i v i t y of n a t u r a l systems. 2

2

+

2

2

2

2

2

2

X

2

2

4

3

Acknowledgment We g r a t e f u l l y acknowledge t h e f i n a n c i a l s u p p o r t o f t h e U.S. EPA (CR812356-01-0 a n d R811612-01-0) a n d i n p a r t i c u l a r we want t o thank D r s . D o n a l d C a r e y and M a r c i a Dodge f o r t h e i r s u p p o r t .

Literature Cited 1. Hoffmann, M. R.; Kerr, J. Α.; Calvert, J. G. Chemical Transformation Modules for Eulerian Acid Deposition Models. Vol.11: The Aqueous-Phase Chemistry; NCAR, Boulder, 00, 1984. 2. Hoffmann, M. R.; Boyce, S. D. Advances in Environmental Science and Technology; Schwartz, S. Ε., Ed.; Wiley, New York, 1983, 12, 147. 3. Hoffmann, M. R.; Jacob, D. J. SO NO, and NO Oxidation Mechanisms: Atmospheric Considerations; Calvert, J. G., Ed.; Acid Precipitation Series - Vol. 3; Teasley, J. I., Series Ed.; Butterworth, Boston, MA, 1984, 101. 4. Jacob, D. J.; Hoffmann, M. R. J. Geophys Res. 1983, 88, 6611. 2,

2

In The Chemistry of Acid Rain; Johnson, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.

Downloaded by KTH ROYAL INST OF TECHNOLOGY on September 11, 2015 | http://pubs.acs.org Publication Date: September 3, 1987 | doi: 10.1021/bk-1987-0349.ch010

130

THE CHEMISTRY OF ACID RAIN

5. Kok, G. L . ; Darnall, K. R.; Winer, Α. Μ., Pitts, J. Ν., Jr.; Gay, B. W. Environ. Sci. Tech. 1978, 12, 1077. 6. Kok, G. L. Atmos. Environ. 1980, 14, 653. 7. Richards, L. W.; Anderson, J. Α.; Blumenthal, D. L . ; McDonald, J. Α.; Kok, G. L. Atmos. Environ. 1983, 17, 911. 8. Schwartz, S. E. Annals of the New York Academy of Sciences, Section of Environmental Sciences 1985, xx, xxx. 9. Seinfeld, J. H. Atmospheric Chemistry and Physics of Air Pollution; John Wiley & Sons, New York, NY, 1986, 236. 10. Chameides, W. L . ; Davis, D. D. J. Geophvs Res. 1982, 87, 4863. 11. Zika, R. G.; Saltzman, E.; Chameides, W. L . ; Davis, D. D. J. Geophvs. Res. 1982, 87, 5015. 12. Graedel, T. E.; Goldberg, Κ. I. J. Geophys. Res. 1983, 88, 865. 13. Chameides, W. L. J. Geophys. Res. 1984, 88, 4739. 14. Fendler, J. H. J. Phys. Chem. 1985, 89, 2730. 15. Schrauzer, G. N.; Strampach, N.; Hui, L. N.; Palmer, M. R.; Saleshi, J. Proc. Natl. Acad. Sci. USA 1983, 80, 3873. 16. Seinfeld, J. H. Atmospheric Chemistry and Physics of Air Pollution; John Wiley & Sons, New York, NY, 1986, 26. 17. Stumm, W.; Morgan, J. J. Aquatic Chemistry; John Wiley & Sons, New York, NY, 1981, 238. 18. Bard, A. J. Science 1980, 207, 139. 19. Rothenburger, G.; Moser, J.; Gratzel, M.; Serpone, N.; Sharma, D. K. J. Am. Chem. Soc. 1985, 107, 8054. 20. Izumi. I.; Dunn, W. W.; Wilbourn, K. O.; Fan, F. F.; Bard, A. J. J. Phys. Chem. 1980, 84, 3027. 21. Harvey, P. R.; Rudham, R.; Ward, S. J. Chem. Soc. Faraday Trans. 1 1983, 79, 2975. 22. Herrmann, M.-M.; Mozzanega, M.-N.; Pichat, P. J. Photochem. 1983, 22, 333. 23. Fox, Μ. Α.; Chen, C.-C.; Park, H.-H.; Younathan, J. N. ACS Symp. Ser. 1985, 278, 69. 24. Brown, G. T.; Darwent, J. R. J. Chem. Soc. Faraday Trans. 1 1984, 80, 1631. 25. Bahnemann, D.; Henglein, Α.; Spanhel, L. Faraday Discuss. Chem. Soc. 1984, 78, 151. 26. Gerischer, H. Topics in Applied Physics 1979, 31, 115. 27. Latimer, W. M. Oxidation Potentials. 2nd Edition; Prentice-Hall, New York, NY, 1952, 38-50. 28. Baur, E.; Neuweiler, C. Helv. Chim. Acta 1927, 10, 901. 29. Böhi, J. Helv. Chim. Acta 1929, 12, 121. 30. Chari, C. N.; Qureshi, M. J. Indian Chem. Soc. 1944, 21, 97. 31. Chari, C. N.; Qureshi, M. J. Indian Chem. Soc. 1944, 21, 297. 32. Markham, M. C.; Laidler, K. J. J. Phys. Chem. 1953, 57, 363. 33. Rubin, T. R.; Calvert, J. G.; Rankin, G. T.; MacNevin, W. M. J. Am. Chem. Soc. 1953, 75, 2850. 34. Calvert, J. G.; Theurer, K.; MacNevin, W. M. J. Am. Chem. Soc. 1954, 76, 2575. 35. Stephens, R. E.; Ke, B.; Trivich. D. J. Phys. Chem. 1955, 59, 966.

In The Chemistry of Acid Rain; Johnson, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.

10.

BAHNEMANN ET AL.

36. 37. 38. 39. 40. 41.

Downloaded by KTH ROYAL INST OF TECHNOLOGY on September 11, 2015 | http://pubs.acs.org Publication Date: September 3, 1987 | doi: 10.1021/bk-1987-0349.ch010

42. 43. 44. 45. 46. 47. 48. 49. 50. 51. 52. 53. 54. 55. 56. 57. 58. 59. 60. 61. 62. 63. 64. 65.

66.

Photocatalytic Formation of Hydrogen Peroxide

131

Kuriacose, J. C.; Markham, M. C. J. Catalysis 1962, 1, 498. Morrison, S. R.; Freund, T. J. Chem. Phys. 1967, 47, 1543. Harbour. J. R.; Hair. M. L. J. Phys. Chem. 1977, 81, 1791. Harbour. J. R.; Hair. M. L. J. Phys. Chem. 1979, 83, 652. Hair. M. L.; Harbour. J. R. Adv. Chem. Ser. 1980, 184, 173. Pappas. S. P.; Fischer. R. M. J. Paint Technology 1974, 46, 65. Cundall. R. B.; Rudham. R.; Salim. M. S., T. Chem. Soc. Faraday Trans. 1 1976, 72, 1642. Harbour, J. R.; Hair, M. L. "Magnetic Resonance in Colloid and Interface Science". Fraissard, J. P.; Resing, Η. Α., Eds.; Riedel Publ. Co. 1980, 431. Harbour, J. R.; Tromp, J . ; Hair. M. L. Can. J. Chem. 1985. 63. 204. Rao. M. V.; Rajeshwar. K.; Pal Verneker. V. R.; DuBow. J. J. Phys. Chem. 1980, 84, 1987. Salvador. P.; Decker. F. J. Phys. Chem. 1984, 88, 6116. Rives-Arnau, V. J. Electroanal. Chem. 1985, 190, 279. Jaeger. C. D.; Bard. A. J. J. Phys. Chem. 1979, 83, 3146. Anpo. M.; Shima. T.; Kubokawa. Y. Chem. Lett. 1985, 1799. Serwicka, E. Colloids and Surfaces 1985, 13, 287. Baur, E.; Perret, A. Helv. Chim. Acta 1924, 7, 910. Perret, A. J. Chim. Phys. 1926, 23, 97. Hada, H.; Yonezawa, Y.; Saikawa, M. Bull. Chem. Soc. Jpn. 1982, 55, 2010. Nishimoto, S.-I.; Ohtani, B.; Kajiwara, H.; Kagiya, T. JL Chem. Soc. Faraday Trans. 1 1983, 79, 2685. Kennedy, D. R.; Ritchie, M.; MacKenzie, J. Trans. Faraday Soc. 1958, 54, 119. McLintock, I. S.; Ritchie, M. Trans. Faraday Soc. 1965, 61, 1007. Stone, F. S. Anal. Real. Soc. Espan. Fis. Quim. 1965. 61, 109. Boonstra, A. H.; Mutsaers, C. Α. Η. A. J. Phys. Chem. 1975, 79, 1694. Boonstra, A. H.; Mutsaers, C. A. H. A. J. Phys. Chem. 1975, 79, 1940. Boonstra, A. H.; Mutsaers, C. Α. Η. A. J. Phys. Chem. 1975, 79, 2025. Munuera, G.; Rives-Arnau, V.; Saucedo, A. J. Chem. Soc. Faraday Trans. 1 1979, 75, 736. Gonzalez-Elipe. A. R.; Munuera. G.; Soria. J. J. Chem. Soc. Faraday Trans. 1 1979, 75, 748. Munuera. G.; González-Elipe, A. R.; Soria, J . ; Sanz, J. J. Chem. Soc. Faraday Trans. 1 1980, 76, 1535. Munuera, G.; Navio, A. Stud. Surf. Sci. Catal. Pt. B. New Horiz. Catal. 1981, 7, 1185. Munuera. G.; González-Elipe. A. R.; Rives-Arnau. V.; Navio, Α.; Malet. P.; Soria. J.; Conesa. J. C.; Sanz. J. "Adsorption and Catalysis on Oxide Surfaces", Che M.; Bond. G. C., Eds.; Elsevier Sci. Publ. 1985, 113. Tanaka. K.; White. J. M. J. Phys. Chem. 1982, 86, 4708.

In The Chemistry of Acid Rain; Johnson, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.

THE CHEMISTRY OF ACID RAIN

Downloaded by KTH ROYAL INST OF TECHNOLOGY on September 11, 2015 | http://pubs.acs.org Publication Date: September 3, 1987 | doi: 10.1021/bk-1987-0349.ch010

132

67. Tatsumi, K.; Shiotani, M.; Freed, J. H. J. Phys. Chem. 1983, 87, 3425. 68. Yesodharan, E.; Grätzel, M. Helv. Chim. Acta 1983, 66, 2145. 69. Duonghong, D.; Grätzel, M. J. Chem. Soc. Chem. Comm. 1984, 1597. 70. Oosawa, Y.; Grätzel, M. J. Chem. Soc. Chem. Comm. 1984, 1629. 71. Che, M.; Gianello, E.; Tench, A. J. Colloids and Surfaces 1985, 13, 231. 72. Mühlebach, J . ; Müller, K.; Schwarzenbach, G. Inorg. Chem. 1970, 9, 2381. 73. Schwarzenbach, D. Inorg. Chem. 1970, 9, 2391. 74. Bahnemann, D.; Henglein, Α.; L i l i e , J . ; Spanhel, L. J. Phys. Chem. 1984, 81, 709. 75. Patrick, W. Α.; Wagner, Η. B. Anal. Chem. 1949, 21, 1279. 76. Savage, D. J. Analyst (London) 1951, 76, 224. 77. Mönig, J. Diploma thesis, Technical University of Berlin, Germany, 1980, pp. 38-40. 78. Guilbault, G. G.; Brignac, P. J . ; Juneau, M. Anal. Chem. 1968, 40, 1256. 79. Lazrus, A. L . ; Kok, G. L . ; Gitlin, S. N.; Lind, J. Α.; McLaren, S. E. Anal. Chem. 1985, 57, 917. 80. Heller, H. G.; Langan, J. R. J. Chem. Soc. Perkin Trans. 2. 1981, 341. 81. James, R. O.; Healy, T. W. J. Coll. Interface Sci. 1972, 40, 42. 82. James, R. O.; Healy, T. W. J. Coll. Interface Sci. 1972, 40, 53. 83. Huang, C.-P.; Stumm, W. J. Coll. Interface Sci. 1973, 43, 409. 84. Davis, J. Α.; Leckie, J. O. J. Coll. Interface Sci. 1978, 67, 90. 85. Elliott, Η. Α.; Huang, C. P. J. Coll. Interface Sci. 1979, 70, 29. 86. Fenton, H. J. H. J. Chem. Soc. 1894, 65, 899. 87. Haber, F.; Weiss, J. Proc. R. Soc. London Ser. A 1934, 147, 332. 88. Weinstein, J . ; Bielski, Β. H. J. J. Am. Chem. Soc. 1979, 101, 38. 89. Zafiriou, O. C.; Joussot-Dubien, J . ; Zepp, R. G.; Zika, R. G. Environ. Sci. Technol. 1984, 18, 359A. 90. Pruppacher, H. R.; Klett, J. D. Microphvsics of Clouds and Precipitation; D. Riedel Publ. Co., Dordrecht, Holland, 1978. RECEIVED March 16, 1987

In The Chemistry of Acid Rain; Johnson, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.