Chapter 16
Downloaded via TUFTS UNIV on June 24, 2018 at 05:55:31 (UTC). See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles.
Polymeric Coatings Containing Chlorendic Anhydride Decomposition Products of Chlorendic Anhydride John C. Graham and David J. Gloskey Coatings Research Institute, Eastern Michigan University, Ypsilanti, MI 48197
Chlorendic anhydride (4,5,6,7,8,8-hexachloro-3a,4,7,7a-tetrahydro-4,7-methanisobenzofuran1,3-dione, I, CAS registry number 115-27-5) has been used since 1964 in polyester coatings that can be cured under ultraviolet (UV) light. The presence of the chlorendic moiety in the polymeric backbone is observed to increase the curing rate of the polymer under these conditions, presumably because of the generation of CI radicals. In our studies, we have photolyzed chlorendic anhydride with and without photoinitiators in acetone and dioxane and examined the products generated by GC/MS procedure. The participation of these products in the rate of UV initiated curing of chlorendic containing polymeric coatings is discussed.
C h l o r e n d i c a n h y d r i d e (CAS R e g i s t r y No. 115-27-5) h a s been u s e d s i n c e 1964 i n t h e s y n t h e s i s o f UV c u r a b l e c o a t i n g s (1-12)• In previous s t u d i e s d e s i g n e d to evaluate the e f f e c t o f c h l o r e n d i c b a s e d d i l u e n t s on t h e r a t e o f c u r e and p h y s i c a l p r o p e r t i e s o f u l t r a v i o l e t (UV) c u r a b l e c o a t i n g s , two c h l o r e n d i c b a s e d r e a c t i v e d i l u e n t s ( I a n d I I ) were s y n t h e s i z e d a n d s u b s t i t u t e d i n p l a c e o f c o n v e n t i o n a l r e a c t i v e d i l u e n t s i n a c r y l a t e b a s e d UV c u r a b l e formulat i o n s (1_3) . The r e s u l t s , w h i c h a r e r e p r o d u c e d e l s e w h e r e (13.), show t h a t t h e a d d i t i o n o f t h e c h l o r e n d i c d i l u e n t s (I a n d I I ) i n c r e a s e d t h e r a t e o f c u r e , mar r e s i s t a n c e a n d p h y s i c a l p r o p e r t i e s o f UV c u r e d c o a t i n g s . Although the e n h a n c e d r a t e o f UV c u r e o b s e r v e d w i t h c h l o r e n d a t e based c o a t i n g s has been a s c r i b e d t o t h e c l e a v a g e o f c a r b o n c h l o r i n e bonds l e a d i n g t o a n i n c r e a s e i n t h e c o n c e n t r a tion o f f r e e r a d i c a l s ( 1 2 , 1 3 ) , no e x p e r i m e n t a l results 0097-6156/90/0417-0210$06.00/0 ©1990 American Chemical Society Hoyle and Kinstle; Radiation Curing of Polymeric Materials ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
16.
Coatings Containing Chlorendic Anhydride
GRAHAM & GLOSKEY
CI
211
OH -C0 CH CHCH 0 CC(CH3)CH 2
2
2
2
2
CClr •C0 CH ÇHCH 0 CC(CH3)CH 2
CÏ
J H Cl
2
2
2
2
OH
OH
I C0 CH CHCH 0 CCHCH 2
2
2
2
C0 CH CH 0 CCHCH 2
2
2
2
2
2
II
COCH(OC H ) 2
III
5
2
IV
a d d r e s s i n g t h i s i s s u e have been p u b l i s h e d , t o d a t e . In t h e s e s t u d i e s , we e x a m i n e d t h e p h o t o l y s i s o f c h l o r e n d i c a n h y d r i d e ( I I I ) i n a c e t o n e and d i o x a n e a s s o l v e n t s u s i n g d i e t h o x y a c e t o p h e n o n e ( I V ) a s t h e p h o t o i n i t i a t o r and GC/MS techniques to i d e n t i f y the p h o t o l y s i s products. Experimental Raw M a t e r i a l s . Chlorendic anhydride (III), acetone, and d i e t h o x y a c e t o p h e n o n e ( I V ) , were from c o m m e r c i a l s o u r c e s a n d u s e d , e x c e p t when i n d i c a t e d , without f u r t h e r p u r i f i c a t i o n .
dioxane, obtained otherwise
Photolysis Conditions. M o l e c u l a r s i e v e s were a d d e d t o the s o l v e n t s acetone and 1,4-dioxane, then d r y n i t r o g e n was b u b b l e d t h r o u g h t h e s o l v e n t s t o remove a n y d i s s o l v e d oxygen. F i n a l l y t h e s o l v e n t s were f i l t e r e d t o remove t h e molecular sieves. Chlorendic anhydride ( I I I ) ( l i t m.p. 2 3 5 - 2 3 9 ° C ) was r e c r y s t a l l i z e d f r o m h o t c h l o r o b e n z e n e , r i n s e d w i t h h e p t a n e a n d d r i e d a t 105°C. Diethoxyacetophenone ( I V ) was u s e d a s r e c e i v e d from t h e m a n u f a c t u r e r . The p h o t o l y s i s r e a c t i o n s were c a r r i e d o u t u s i n g an Ace G l a s s p h o t o c h e m i c a l r e a c t i o n v e s s e l (model #7841-03), q u a r t z immersion w e l l (model # 7 8 5 - 2 5 ) , Conrad-Hanovia power s u p p l y (model #7830-54), a n d C o n r a d - H a n o v i a immers i o n lamp (model #7825-32) r a t e d a t 200 w a t t s , 115-130 v o l t s , a n d 1.9 amps. The r e a c t i o n s o l u t i o n was p l a c e d i n t h e p h o t o c h e m i c a l r e a c t i o n v e s s e l and p u r g e d w i t h d r y n i t r o g e n . The p u r g e
Hoyle and Kinstle; Radiation Curing of Polymeric Materials ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
212
RADIATION CURING OF POLYMERIC MATERIALS
c o n t i n u e d t h r o u g h o u t t h e d u r a t i o n o f t h e e x p e r i m e n t (6 h o u r s o r 24 h o u r s ) . V o l a t i l e s were c o l l e c t e d b y p a s s i n g t h e p u r g e f l o w t h r o u g h a t r a p immersed i n a Dewar f l a s k f i l l e d with l i q u i d n i t r o g e n . T h e s o l u t i o n was g e n t l y s t i r r e d w i t h a m a g n e t i c s t i r r i n g b a r a n d t a p w a t e r was u s e d t o c o o l t h e medium p r e s s u r e m e r c u r y lamp. The tempe r a t u r e o f t h e s o l u t i o n was m a i n t a i n e d a t a p p r o x i m a t e l y room t e m p e r a t u r e d u r i n g t h e c o u r s e o f t h e r e a c t i o n . A f t e r t h e r e a c t i o n , s a m p l e s were t a k e n f r o m b o t h t h e r e a c t i o n v e s s e l a n d t h e t r a p a n d combined f o r GC/MS a n a lysis . I n s t r u m e n t a t i o n and Equipment. GC/MS a n a l y s i s was p e r formed u s i n g a F i n n i g a n 9610 g a s c h r o m a t o g r a p h e q u i p p e d w i t h a c a p i l l a r y column, a t a h e a d p r e s s u r e o f 10 p s i , w i t h a t e m p e r a t u r e ramp s e t a t 50°C f o r two m i n u t e s , t h e n a 20°C/min i n c r e a s e t o 275°C a n d h e l d a t 275°C u n t i l a l l t h e compounds h a d e l u t e d f r o m t h e c o l u m n . No d e t e c t o r ( i . e . F I D n o r TCD) was c o u p l e d t o t h e F i n n i g a n 4500 Mass Spectrometer ( t h e mass s p e c t r o m e t e r a c t e d a s t h e d e t e c tor). An e l e c t r o n i m p a c t i o n i z a t i o n s o u r c e w i t h an e l e c t r o n e n e r g y o f 70 eV a n d i o n i z a t i o n t e m p e r a t u r e o f 150°C was u s e d t o f r a g m e n t t h e compounds a s t h e y e l u t e d f r o m the column. R e s u l t s and D i s c u s s i o n The 24 h o u r p h o t o l y s i s o f c h l o r e n d i c a n h y d r i d e ( I I I ) i n a c e t o n e i n t h e p r e s e n c e o f d i e t h o x y a c e t o p h e n e (IV) y i e l d ed a t l e a s t t w e l v e m e a s u r a b l e p r o d u c t s a s o b s e r v e d by t h e GC/MS p r o c e d u r e ( T a b l e I ) . Some o f t h e p r o d u c t s o b s e r v e d , i . e . 4 - m e t h y l - 4 - h y d r o x y - 2 - p e n t a n o n e , b i a c e t a l , 4methyl-3-pentene-2-one, ethyl acetate, 3-methyl-3-hydroxy-2-butanone, 4-methyl-2-pentanone, and 2,4-pentaned i o n e , a r e c l e a r l y d e r i v e d from t h e p h o t o c h e m i c a l l y i n duced d e c o m p o s i t i o n o f acetone and/or diethoxyacetophenone . A l t h o u g h t h e compounds a n d p r e f e r r e d modes o f decomposition/recombination vary with the o v e r a l l systems, diethoxyacetophenone i n acetone e x h i b i t s p r i m a r i l y Norr i s h Type I c l e a v a g e a s e v i d e n c e d b y t h e f o r m a t i o n o f benzaldehyde, e t h y l benzoate, acetophenone and b e n z i l . A l t h o u g h a c e t a l y d e h y d e may i n d i c a t e N o r r i s h Type I I c l e a vage i s o b s e r v e d , i t i s l i k e l y t h a t t h i s compound i s d e r i v e d from t h e s o l v e n t and n o t t h e p h o t o i n i t i a t o r (Scheme 1)· However, i n t h e p r e s e n c e o f c h l o r e n d i c a n h y d r i d e , t h e decomposition of diethoxyacetophenone o c c u r s o n l y by N o r r i s h I type cleavage, y i e l d i n g benzoyl c h l o r i d e , acet o p h e n o n e a n d b e n z i l . No N o r r i s h Type I I c l e a v a g e p r o d u c t s were o b s e r v e d . The 24 h o u r p h o t o l y s i s o f c h l o r e n d i c anhydride i n acetone u s i n g diethoxyacetophenone as t h e p h o t o i n i t i a t o r shows c a r b o n - c h l o r i n e h o m o l y t i c bond cleavage and the g e n e r a t i o n o f c h l o r e n d i c r a d i c a l s as e v i d e n c e d by t h e a p p e a r a n c e o f b e n z o y l c h l o r i d e , c h l o r o -
Hoyle and Kinstle; Radiation Curing of Polymeric Materials ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
16.
GRAHAM & GLOSKEY
Coatings Containing Chlorendic Anhydride
Table I Summary and Comparison of Products Found A f t e r P h o t o l y s i s Using Acetone as the Solvent Acetone
Diethoxyacetophenone/ acetone
CA/acetone
4-methyl4-hydroxy2-pentanone
benzaldehyde ethylbenzoate
4-methyl4-hydroxy2-pentanone
2-pentanone
acetophenone
acetic
biacetal
benzil
acetaldehyde
acetic
3-methyl3-hydroxy2-butanone
carbon dioxide propane
acid
acid
acetaldehyde
2-butanone
2-butanone
biacetal
2,4-pentanedione
ethyl acetate
4-methyl4-hydroxy2-pentanone
2,4-pentanedione
ethyl acetate
4-methyl2-pentanone
3-methyl-3hydroxy-2butanone
4-methyl3-pentene2-one
diethoxyacetophenone
unknown chlorendic compound
Diethoxyacetophenone/ CA/acetone 4-methyl-3penten-2-one benzoyl chloride 4-methyl-2pentanone 3-methyl-3hydroxy2-butanone 4-methyl-4hydroxy2-pentanone chloroacetone 2,4-pentanedione biacetal
chlorendic anhydride
ethyl acetate unknown c h l o r endic compound unknown c h l o r endic compound chlorendic anhydride
Hoyle and Kinstle; Radiation Curing of Polymeric Materials ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
213
RADIATION CURING OF POLYMERIC MATERIALS
214
N o r r i s h Type I
Ο
II
C
H
2 5*
+
H C 0
C
H
2 2 5
N o r r i s h Type I I
Scheme 1.
P h o t o l y t i c d e c o m p o s i t i o n pathways o f diethoxyacetophenone.
Hoyle and Kinstle; Radiation Curing of Polymeric Materials ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
16.
GRAHAM & GLOSKEY
Coatings Containing Chlorendic Anhydride
a c e t o n e and two unknown c h l o r e n d i c compounds where c h l o r i n e atoms have been r e p l a c e d by h y d r o g e n atoms. Since o n l y one c h l o r e n d i c compound was o b s e r v e d i n t h e p r o d u c t m i x t u r e o b t a i n e d from t h e 24 h o u r p h o t o l y s i s o f c h l o r e n d i c anhydride i n acetone, i t i s proposed that the presence o f d i e t h o x y a c e t o p h o n e i n acetone as the s o l v e n t , e n h a n c e s c a r b o n - c h l o r i n e bond c l e a v a g e . The UV spectra o f c h l o r e n d i c a n h y d r i d e shows a b s o r p t i o n maxima a t 272 and 286 NM w h i c h c l o s e l y c o r r e s p o n d s t o t h e UV s p e c t r a l e m i s s i o n o f t h e lamp i n d i c a t i n g t h a t c h l o r e n d i c a n h y d r i d e i s c a p a b l e o f h o m o l y t i c c h a i n c l e a v a g e i n the absence o f photoinitiators. U s i n g d i o x a n e as t h e s o l v e n t ( T a b l e I I ) , a s i m i l a r s i t u a t i o n i s observed with the decomposition o f d i e t h o x y a c e t o p h e n o n e o c c u r i n g by N o r r i s h Type I c l e a v a g e as e v i d e n c e d by t h e f o r m a t i o n o f e t h y l f o r m a t e , b e n z o y l c h l o r i d e and a c e t o p h e n o n e w i t h no e v i d e n c e f o r N o r r i s h Type II cleavage. E v i d e n c e f o r h y d r o g e n a b s t r a c t i o n from t h e dioxane molecule i s observed i n the g e n e r a t i o n of dioxane d i m e r s and c h l o r o d i o x a n e . A l t h o u g h t h e f o r m a t i o n o f c h l o r o d i o x a n e and b e n z o y l c h l o r i d e c a n be j u s t i f i e d on t h e b a s i s o f a h o m o l y t i c d i s p l a c e m e n t mechanism, t h e p r e s e n c e o f a t l e a s t t h r e e c h l o r e n d i c b a s e d m o l e c u l e s where one o r two c h l o r i n e s have b e e n l o s t f r o m c h l o r e n d i c a n h y d r i d e and r e p l a c e d by h y d r o g e n atoms c l e a r l y i n d i c a t e s homol y t i c c l e a v a g e and t h e g e n e r a t i o n o f c h l o r i n e r a d i c a l s . S i m i l a r l y , c h l o r e n d i c compounds were o b s e r v e d i n t h e p h o t o l y s i s o f c h l o r e n d i c a n h y d r i d e i n d i o x a n e and i t a p p e a r s t h a t d i e t h o x y a c e t o p h e n o n e may have l e s s i n f l u e n c e i n the g e n e r a t i o n of products i n dioxane than i n acetone. U n l i k e c h l o r e n d i c a n h y d r i d e w h e r e t h e MS s h o w s a f r a g m e n t a t i o n p a t t e r n i n v o l v i n g t h e s e q u e n t i a l l o s s o f CI (m/e = 3 5 ) , CO (m/e = 2 8 ) , C 0 (m/e = 4 4 ) , and C « H (m/e = 26) as w e l l as t h e r e v e r s e D i e l - A l d e r f r o m t h e m o l e c u l a r i o n p e a k (m/e = 368) a c c o u n t i n g f o r t h e h i g h e r m o l e c u l a r w e i g h t f r a g m e n t s (Scheme 2 ) , t h e unknown c h l o r e n d i c compounds show f r a g m e n t a t i o n p a t t e r n s c o n s i s t e n t w i t h t h e l o s s o f c h l o r i n e f r o m t h e s t a r t i n g m a t e r i a l and r e p l a c e m e n t by h y d r o g e n atoms i n b o t h s o l v e n t s u s e d . A t y p i c a l compound o b s e r v e d i n t h e c a s e where d i o x a n e i s u s e d as t h e s o l v e n t shows t h e MS f r a g m e n t a t i o n p a t t e r n o u t l i n e d i n Scheme 3. 2
2
Conclusions Our f i n d i n g s c l e a r l y show t h a t c h l o r e n d i c a n h y d r i d e and presumably polymers c o n t a i n i n g the c h l o r e n d a t e group a r e c a p a b l e , u n d e r UV l i g h t , o f u n d e r g o i n g m u l t i p l e c a r b o n c h l o r i n e bond c l e a v a g e g e n e r a t i n g c h l o r i n e and c a r b o n radicals. The p r e s e n c e o f t h e s e r a d i c a l s , by i n c r e a s i n g the c o n c e n t r a t i o n of f r e e r a d i c a l s i n the system, a r e c a p a b l e o f i n c r e a s i n g t h e r a t e o f r e a c t i o n and c r o s s l i n k ing of UV c u r a b l e c o a t i n g s c o n t a i n i n g the chlorendic
Hoyle and Kinstle; Radiation Curing of Polymeric Materials ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
216
RADIATION CURING OF POLYMERIC MATERIALS
Table I I Summmary and Comparison of Products Found A f t e r P h o t o l y s i s Using Dioxane as the Solvent
Diethoxyacetophenone/ Dioxane
CA/Dioxane
Diethoxyacetophenone/ CA/Dioxane
e t h y l formate
hydroxydioxane
ethyl
e t h y l dioxane
chlorodioxane
hydroxydioxane
diethoxymethane
d i o x a n y l dioxane
chlorodioxane
(2 isomers)
benzoyl
formate
chloride
benzoic a c i d CA - 3 C l + 2H
d i o x a n y l dioxane
l-phenyl-2ethoxyethanone
CA - 2 C l + H
(2 isomers)
benzaldehyde
CA - C l + H
acetophenone
chlorendic anhydride
CA - C l + H CA - C l + H CA - 2 C l + H chlorendic anhydride
Hoyle and Kinstle; Radiation Curing of Polymeric Materials ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
16.
GRAHAM & GLOSKEY
m/e = 270
Coatings Containing Chlorendic Anhydride
m/e = 235
217
m/e = 261 (BP)
Scheme 2. MS Fragmentation Pattern for Chlorendic Anhydride
Hoyle and Kinstle; Radiation Curing of Polymeric Materials ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
RADIATION CURING OF POLYMERIC MATERIALS
218
m/e = 334
(m/e 98)
m/e = 299
-C H 0 4
2
3
(m/e 98)
m/e = 255
-CO
(m/e 28)
Scheme 3. MS A n a l y s i s o f One o f t h e C h l o r e n d i c B a s e d P h o t o p r o d u c t s When D i o x a n e i s U s e d a s t h e S o l v e n t
Hoyle and Kinstle; Radiation Curing of Polymeric Materials ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
16.
Coatings Containing Chlorendic Anhydride
GRAHAM & GLOSKEY
moiety. T h i s w i l l r e s u l t i n much f a s t e r rate of cure ( c r o s s - l i n k i n g ) s e l v e s and o t h e r s .
h a r d e r c o a t i n g s and as o b s e r v e d by o u r
Acknowledgment The a u t h o r s a r e g r a t e f u l t o V e l s i c o l f o r t h e i r s u p p o r t o f t h i s work.
Chemical C o r p o r a t i o n
References 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15.
Gloskey, D.J., M.S. Thesis, submitted to Eastern Michigan University, 1989. Hoch, Bellet U.S. Patent 3 157 709, 1964. Robitschek U.S. Patent 3 249 565, 1966. Nass, G. I.; et. al. U.S. Patent 3 551 311, 1970. Sun Chemical Br. Patent 1 241 824, 1971. Schupan, I., et al.; Ζ. Naturforsch 1972, 27 b, 147-156. Shiraishi, M., et al. Jpn. Kokai 73 62 711, 1973. Nishikubo, T. et al. Jpn. Kokai 74 02 601, 1974. Przezdziecki, W. M., et al. Br. Patent 1 356 390, 1974. O'Brien Corp. Br. Patent 1 375 177, 1974. Parker, G. M., et al. U.S. Patent 3 785 849, 1974. Wagner, H. M., et al. Res. Discl. 1975, 134, 19-21. Graham, J.C. and Gloskey, D.J., Polym. Paint Colour J., 1987, 177, 4188. Laws, A; J. Oil Colour Chem. Assoc., 1976, 59(6), 206-9. Kang, U.
G.
et
al.
U.S.
Patent
4 591
522,
1986.
RECEIVED September 13, 1989
Hoyle and Kinstle; Radiation Curing of Polymeric Materials ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
219