15 Solid Metal Hydrides: Properties Relating to Their Application in Solar Heating and Cooling 1
Downloaded by UNIV OF LEEDS on June 18, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch015
G. G. LIBOWITZ and Z. BLANK
Materials Research Center, Allied Chemical Corp., Morristown, N . J. 07960
Concepts for using solid metal hydrides for solar heating and cooling are described. In solar heating the enthalpy of formation of the metal hydride provides a means of stor ing solar thermal energy, while in cooling the endothermic dissociation of the hydride is used. The properties of metal hydrides required for these applications are reviewed, the most important properties being large enthalpies of forma tion (but relatively low thermal stabilities) and high hydro gen-to-metal ratios. There are two approaches to develop ing new hydrides to meet these requirements: (a) modifying the properties of known hydrides—examples based on the thermodynamics of solids are discussed in some detail; and (b) synthesizing new intermetallic-compound hydrides.
T ^ h e metal hydrides under consideration form b y direct combination of a t r a n s i t i o n m e t a l o r a l l o y w i t h h y d r o g e n as f o l l o w s :
M
+
| H
2
* ± M H *
(1)
T h e f o r m a t i o n of h y d r i d e Μ Η * is u s u a l l y a spontaneous e x o t h e r m i c r e a c t i o n w h i c h c a n b e r e v e r s e d e a s i l y b y a p p l y i n g heat.
T h e hydrogen
densities i n these m e t a l h y d r i d e s a r e e x t r e m e l y h i g h (e.g., t h e n u m b e r o f h y d r o g e n atoms p e r c m is greater t h a n i n l i q u i d h y d r o g e n ) ( J ) . F o r 3
this reason, a n d also because of t h e ease o f r e v e r s i b i l i t y of E q u a t i o n 1, 1
Current address: Corporate R&D Laboratories, The Singer Co., Fairfield, N. J. 07006. 271
Goodenough and Whittingham; Solid State Chemistry of Energy Conversion and Storage Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
272
SOLID STATE
CHEMISTRY
these m a t e r i a l s a r e b e i n g w i d e l y i n v e s t i g a t e d ( 2 ) as a storage m e d i u m f o r h y d r o g e n i n its p o s s i b l e use as a f u e l ( 3 ) .
However, the applications
of m e t a l h y d r i d e s p r o p o s e d i n t h i s p a p e r use p r i m a r i l y t h e r e l a t i v e l y h i g h enthalpies o f formation of m e t a l hydrides rather t h a n their h y d r o g e n storage c a p a b i l i t y . Thermal
Storage
F i g u r e l a i l l u s t r a t e s t h e c o n c e p t p r o p o s e d f o r solar h e a t i n g (4, 5 ) , w h e r e b y m e t a l h y d r i d e s a r e u s e d f o r storage o f t h e r m a l energy.
A metal
h y d r i d e c o n t a i n e d i n a r e s e r v o i r i n t h e b a s e m e n t o f a h o u s e is h e a t e d b y Downloaded by UNIV OF LEEDS on June 18, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch015
solar e n e r g y v i a a heat t r a n s f e r m e d i u m s u c h as w a t e r o r a i r . T h e h y d r o g e n released b y the reverse of E q u a t i o n 1 is transferred t o a large storage r e s e r v o i r . B e c a u s e m a n y m e t a l h y d r i d e s h a v e h y d r o g e n d i s s o c i a t i o n pressures i n t h e r a n g e o f tens o f atmospheres ( a t t e m p e r a t u r e s o b t a i n a b l e f r o m solar h e a t ) , t h e h y d r o g e n gas c a n b e c o m p r e s s e d i n t h e storage t a n k w i t h o u t e m p l o y i n g a u x i l i a r y compressors.
H e a t is r e c o v e r e d
b y a l l o w i n g the s t o r e d h y d r o g e n t o flow b a c k t o t h e d e - h y d r i d e d m e t a l ( w h i c h is n o w u n d e r l o w pressure b e c a u s e i t is n o t b e i n g h e a t e d ) . T h e heat evolved b y E q u a t i o n 1 ( f o r w a r d reaction)
is used for hot water
a n d space h e a t i n g . A n a l t e r n a t i v e , i l l u s t r a t e d i n F i g u r e l b , w o u l d b e t o store t h e h y d r o g e n i n a s e c o n d a r y less stable h y d r i d e . T h i s c o n f i g u r a t i o n has t h e a d v a n -
To Hailing System ν Recycled to Colector
To Halting System or Recycled to Colector
Î
(a) Compressed Hydrogen Storage Figure
(b) Secondary Hydride Storage
I . Systems for storing solar energy using metal hydrides
thermal
Goodenough and Whittingham; Solid State Chemistry of Energy Conversion and Storage Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
15.
LJBowrrz AND BLANK Table I.
Hydride
367°K
t
0
Thermal Storage Capacity (J/g)
Dissociatiçn Pressure (atm)
Enthalpy (kJ/mol H)
2
0
273
Hydrides
Thermodynamic Properties of Hydrides for Solar Thermal Storage
System
VH .95**VH F e T i H o . i τ± F e T i H i .
Solid Metal
294°K
41 34
-40 -28
397 120
1.5 3.5
t a g e of r e q u i r i n g c o n s i d e r a b l y less v o l u m e t o store t h e h y d r o g e n .
Downloaded by UNIV OF LEEDS on June 18, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch015
b e c a u s e of
the endothermic
hydrogen w o u l d be evolved
n a t u r e of
Also,
the dissociation reaction,
if a leak developed,
less
thus i n c r e a s i n g t h e
safety factor. W i t h a s e c o n d a r y storage h y d r i d e t h e e q u i l i b r i u m d i s s o c i a t i o n p r e s sure of the p r i m a r y h y d r i d e at e l e v a t e d t e m p e r a t u r e s ( d u r i n g solar h e a t ing)
should be
h i g h e r t h a n t h a t of
t e m p e r a t u r e to p e r m i t spontaneous
the secondary
flow
h y d r i d e at
room
of h y d r o g e n gas f r o m t h e p r i
m a r y to t h e s e c o n d a r y h y d r i d e . C o n v e r s e l y , f o r the same r e a s o n i t w o u l d b e d e s i r a b l e f o r the e q u i l i b r i u m d i s s o c i a t i o n pressure of t h e
secondary
h y d r i d e to b e h i g h e r t h a n t h a t o f t h e p r i m a r y h y d r i d e at r o o m t e m p e r a ture. T h i s is i l l u s t r a t e d i n T a b l e I w h i c h lists t h e p r o p e r t i e s of t w o m e t a l h y d r i d e s t h a t c a n b e u s e d f o r t h e r m a l storage of solar energy.
Vanadium
d i h y d r i d e w h i c h has the h i g h e r t h e r m a l storage c a p a c i t y a n d e n t h a l p y of f o r m a t i o n c o u l d b e u s e d as t h e p r i m a r y h y d r i d e , w h i l e i r o n - t i t a n i u m h y d r i d e , w h i c h is less stable, c a n b e hydride.
u s e d as t h e s e c o n d a r y
T h e solar h e a t e d V H , w h i c h dissociates to t h e 2
V H , has a m u c h h i g h e r d i s s o c i a t i o n pressure ( 6 ) than iron-titanium hydride (7)
storage
monohydride
( 3 9 a t m at 3 6 7 ° K )
(3.5 a t m ) at r o o m t e m p e r a t u r e ( 2 9 4 ° K ) .
H o w e v e r , the d i s s o c i a t i o n pressure of V H a t m ) is less t h a n t h a t of F e T i H (3.5 a t m ) .
2
at r o o m t e m p e r a t u r e
(1.5
T h e relative pressure-tem
p e r a t u r e r e l a t i o n s h i p s w i l l b e d i s c u s s e d f u r t h e r i n t h e s e c t i o n o n solar cooling. Solar In
Cooling the
endothermic
application
of
d i s s o c i a t i o n of
metal
hydrides
the h y d r i d e
for
(reverse
solar of
cooling
E q u a t i o n 1)
the is
u s e d . T h e c o n c e p t is i l l u s t r a t e d i n F i g u r e 2. W a r m ( > 2 7 ° C ) a i r t o b e c o o l e d is passed o v e r a heat e x c h a n g e r c o n t a i n i n g a h y d r i d e ( H y d r i d e I ) w h i c h has a r e l a t i v e l y h i g h d i s s o c i a t i o n pressure ( ~ 1 0 - 2 0 a t m ) at a b o u t 27°C.
The
dissociating h y d r i d e removes heat f r o m the air, a n d
the
c o o l e d a i r is e j e c t e d i n t o the house. T h e h y d r o g e n e v o l v e d f r o m H y d r i d e I is a b s o r b e d b y a n a l l o y w h i c h f o r m s a m o r e stable h y d r i d e ( H y d r i d e
Goodenough and Whittingham; Solid State Chemistry of Energy Conversion and Storage Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
Goodenough and Whittingham; Solid State Chemistry of Energy Conversion and Storage Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
Return to solar collector
Hot water from solar collector 60-90°C
Figure 2.
TTTTTt
1·. Hydride
,1.1 I I I I
Cooling water at ambient £emp.
TTTT
Hydride
TTTTTT
Hydride.'.-
1 II IJ I
Solar cooling with metal hydrides
[XI • H2
Ij.j.l.H
Ambient air >27°C
Downloaded by UNIV OF LEEDS on June 18, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch015
Warm air to outside
into house
Cooled
15.
LiBOwiTZ
A N D
Solid Metal
B L A N K
275
Hydrides
I I ) w h i c h is c o o l e d b y w a t e r at a m b i e n t t e m p e r a t u r e . T h e r a t e of c o o l i n g is d e t e r m i n e d b y the rate of d i s s o c i a t i o n of H y d r i d e I w h i c h is c o n t r o l l e d b y the v a l v e s h o w n . T w o s u c h u n i t s operate s i m u l t a n e o u s l y . W h i l e one is i n a c o o l i n g c y c l e ( d e s c r i b e d a b o v e ) , t h e s e c o n d u n i t is i n a c h a r g i n g c y c l e , w h e r e b y H y d r i d e I I is h e a t e d b y solar e n e r g y so t h a t its d i s s o c i a t i o n p r e s s u r e b e c o m e s h i g h e r t h a n t h a t of H y d r i d e I. T h e h y d r o g e n is t h e n r e - a b s o r b e d b y the m e t a l o r a l l o y of H y d r i d e I , a n d the h e a t of this r e a c t i o n c a n b e e j e c t e d t o the outside. T h e g e n e r a l p r e s s u r e - t e m p e r a t u r e r e l a t i o n s h i p s of the t w o h y d r i d e s
Downloaded by UNIV OF LEEDS on June 18, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch015
a r e i l l u s t r a t e d i n F i g u r e 3. P o i n t A represents the t e m p e r a t u r e a n d p r e s sure (Pi)
of o p e r a t i o n of the c o o l i n g h y d r i d e ( I ) , a n d p o i n t Β shows the
c o r r e s p o n d i n g pressure ( P )
of H y d r i d e I I at t h e s a m e t e m p e r a t u r e .
n
S i n c e Ρ > P , the s e c o n d a r y a l l o y absorbs t h e h y d r o g e n e v o l v e d τ
n
from
H y d r i d e I t o f o r m H y d r i d e I I . T h e h e a t of r e a c t i o n tends to raise the t e m p e r a t u r e of H y d r i d e I I , a l t h o u g h i t is c o o l e d b y w a t e r at the a m b i e n t t e m p e r a t u r e . H o w e v e r , as seen i n F i g u r e 3, t h e t e m p e r a t u r e m a y a t t a i n a v a l u e c o r r e s p o n d i n g to p o i n t B ' before h y d r o g e n a b s o r p t i o n ceases because P
n
=
P
I t
I n t h e re-charge c y c l e H y d r i d e I I is h e a t e d t o a t e m p e r a t u r e c o r r e s p o n d i n g to p o i n t C ( 6 0 ° - 9 0 ° C ) , a n d h y d r o g e n flows f r o m H y d r i d e I I b a c k to t h e m e t a l of H y d r i d e I , p r o v i d e d H y d r i d e I does n o t r e a c h a temperature
corresponding
to p o i n t D .
A n efficient
heat
exchanger
I—
ι
~ 27°C
>60°C TEMPERATURE
Figure 3.
Pressure-temperature
rehtionships solar cooling
for metal hydrides used in
Goodenough and Whittingham; Solid State Chemistry of Energy Conversion and Storage Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
276
S O L I D
S T A T E
C H E M I S T R Y
w h i c h is sufficiently c o o l e d b y the a m b i e n t a i r w i l l p r e v e n t t h i s f r o m happening. I n m a n y m e t a l - h y d r o g e n systems there is a n hysteresis effect ( 8 ) i n t h e a b s o r p t i o n a n d d e s o r p t i o n of h y d r o g e n . I n s u c h cases t h e a b s o r p t i o n p r e s s u r e is a l w a y s h i g h e r t h a n t h e d e s o r p t i o n pressure. F i g u r e 3 is d r a w n u n d e r the a s s u m p t i o n t h a t t h e r e is n o hysteresis effect i n e i t h e r h y d r i d e . H o w e v e r , i f a p a r t i c u l a r h y d r i d e e x h i b i t s hysteresis, t w o p r e s s u r e - t e m perature curves must be d r a w n , one representing absorption a n d the o t h e r d e s o r p t i o n , f o u r curves i n a l l i f b o t h h y d r i d e s e x h i b i t hysteresis. P o i n t s Β ( Β ' ) a n d D w o u l d t h e n b e o n the a b s o r p t i o n c u r v e s , a n d p o i n t s
Downloaded by UNIV OF LEEDS on June 18, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch015
A a n d C o n the d e s o r p t i o n curves. S i n c e the slopes of t h e p r e s s u r e - t e m p e r a t u r e curves are a f u n c t i o n of the e n t h a l p y of f o r m a t i o n AH
t
of t h e h y d r i d e , the curves m u s t cross
at s o m e t e m p e r a t u r e (unless the A H
f
values of t h e t w o h y d r i d e s a r e
i d e n t i c a l ) . I n t h e case of F e T i H a n d V H i l l u s t r a t e d i n F i g u r e 4. H y d r i d e I, a n d V H
2
2
t h e y cross at a b o u t 7 9 ° C as
I n this case F e T i H is t h e p r i m a r y h y d r i d e ,
the secondary h y d r i d e , H y d r i d e I I . A t 2 7 ° C the
d i s s o c i a t i o n pressure of F e T i H is a b o u t t w i c e t h a t of V H
Figure
4.
2
(points A a n d
Pressure-temperature relationships for vanadium dihydride iron titanium hydride under conditions used in solar cooling
Goodenough and Whittingham; Solid State Chemistry of Energy Conversion and Storage Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
and
Solid Metal
277
Hydrides
15.
LIBOWITZ
B).
A s the v a n a d i u m absorbs h y d r o g e n , its t e m p e r a t u r e c a n r e a c h a
AND BLANK
v a l u e of a b o u t 41 ° C ( p o i n t Β ' ) before i t w o u l d stop a b s o r b i n g h y d r o g e n . I n t h e r e c h a r g e c y c l e , i f the V H
2
is h e a t e d to 60 ° C b y solar e n e r g y
( p o i n t C ) , the i r o n - t i t a n i u m h y d r i d e m u s t b e k e p t b e l o w 5 3 ° C D ) for r e c h a r g i n g to occur.
I f the V H
2
(point
is h e a t e d to 8 5 ° C ( p o i n t
C),
b e c a u s e of t h e cross-over of the curves, t h e i r o n - t i t a n i u m h y d r i d e c a n r e a c h a n e v e n h i g h e r t e m p e r a t u r e ( 8 8 ° C ) b e f o r e r e c h a r g i n g ceases. T h e curves i n F i g u r e 4 are d e s o r p t i o n curves. H o w e v e r , because of hysteresis i n the F e T i - H system ( 7 ) , p o i n t D s h o u l d a c t u a l l y b e o n t h e a b s o r p t i o n c u r v e ( 9 ) of this s y s t e m ; this w o u l d shift p o i n t D to the left
Downloaded by UNIV OF LEEDS on June 18, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch015
i n F i g u r e 4 t o a v a l u e of 3 1 ° C
rather than 53°C.
Consequently
the
v a n a d i u m d i h y d r i d e s h o u l d b e h e a t e d to a h i g h e r t e m p e r a t u r e , e.g., f o r point C
at 8 5 ° C a b s o r p t i o n of h y d r o g e n i n F e T i H
(point D )
would
o c c u r at 5 9 ° C . Properties of Metal
Hydrides
A l t h o u g h t w o specific h y d r i d e s w e r e m e n t i o n e d a b o v e , at the present t i m e there are n o k n o w n h y d r i d e s w h o s e properties are i d e a l l y s u i t e d for solar h e a t i n g a n d c o o l i n g . T o find n e w h y d r i d e systems i t is necessary to u n d e r s t a n d the f u n d a m e n t a l s o l i d state c h e m i s t r y of t r a n s i t i o n m e t a l h y d r i d e s , i n c l u d i n g t h e n a t u r e of t h e c h e m i c a l b o n d i n g , t h e e l e c t r o n i c a n d c r y s t a l structures, a n d t h e r m o d y n a m i c a n d t r a n s p o r t properties. Table II. 1. 2. 3. 4. 5.
Properties of Metal Hydrides for Solar Heating and Cooling
E n t h a l p y of f o r m a t i o n H i g h hydrogen-to-metal ratio Good thermal conductivity R a p i d rates of f o r m a t i o n a n d d i s s o c i a t i o n S t a b i l i t y t o w a r d s oxygen a n d moisture
T a b l e I I s u m m a r i z e s s o m e of the p r o p e r t i e s w h i c h w o u l d b e i m p o r t a n t i n u t i l i z i n g m e t a l h y d r i d e s i n the systems d i s c u s s e d a b o v e f o r solar heating a n d cooling. tion)
AH
t
S i n c e i t is t h e e n t h a l p y of f o r m a t i o n ( o r d i s s o c i a
of m e t a l h y d r i d e s w h i c h w i l l b e p r i m a r i l y u t i l i z e d i n t h i s
a p p l i c a t i o n , this p r o p e r t y m u s t b e c o n s i d e r e d the m o s t i m p o r t a n t . t h e r m a l figure of m e r i t , M h , m a y b e d e f i n e d ( 5 ) t
M
t
h
=
A
as f o l l o w s :
2 M W
w h e r e χ is t h e h y d r o g e n - t o - m e t a l r a t i o of t h e h y d r i d e as s h o w n i n E q u a t i o n 1, a n d M W is the m o l e c u l a r w e i g h t .
T h u s a h i g h v a l u e of χ is as
d e s i r a b l e as a h i g h absolute v a l u e of ΔΗ*. F o r t h e case of t h e s e c o n d a r y
Goodenough and Whittingham; Solid State Chemistry of Energy Conversion and Storage Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
278
SOLID S T A T E C H E M I S T R Y
o r storage h y d r i d e , the h y d r o g e n - t o - m e t a l r a t i o is most i m p o r t a n t , w h i l e i t is d e s i r a b l e to h a v e a l o w absolute v a l u e of Aff . f
F o r efficient heat transfer t h e t h e r m a l c o n d u c t i v i t i e s of the m e t a l hydrides should be high.
T h i s is g e n e r a l l y t r u e f o r t r a n s i t i o n m e t a l
h y d r i d e s because of t h e i r m e t a l l i c b o n d i n g ( J O ) . T h e k i n e t i c s of h y d r i d e f o r m a t i o n a n d d i s s o c i a t i o n m u s t b e
con
s i d e r e d b e c a u s e the rate of heat r e c o v e r y o r c o o l i n g w i l l d e p e n d these factors.
upon
T h e r e f o r e , the d i f f u s i o n rates of h y d r o g e n i n the m e t a l
( o r a l l o y ) , a n d i n s o m e cases i n t h e h y d r i d e phase, are i m p o r t a n t . ever, the a v a i l a b l e surface area of m e t a l or h y d r i d e m a y b e of
How greater
Downloaded by UNIV OF LEEDS on June 18, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch015
i m p o r t a n c e . B e c a u s e t h e t r a n s i t i o n metals e x p a n d o n h y d r i d e f o r m a t i o n , t h e c o r r e s p o n d i n g c r a c k i n g a n d s p a l l i n g w h i c h o c c u r increase the r a t e of h y d r i d e f o r m a t i o n . O n the other h a n d , most a l k a l i a n d a l k a l i n e e a r t h metals c o n t r a c t u p o n f o r m i n g t h e h y d r i d e , a n d this has a d e t r i m e n t a l effect o n t h e rate of r e a c t i o n
(II).
A l t h o u g h the h y d r i d e s w o u l d b e c o n t a i n e d i n a closed s y s t e m as i l l u s t r a t e d i n F i g u r e s 1 a n d 2, i t is d e s i r a b l e t h a t t h e y b e stable w i t h respect to o x y g e n a n d m o i s t u r e because of the p o s s i b i l i t y of leaks. M o s t m e t a l h y d r i d e s o x i d i z e easily, p a r t i c u l a r l y at e l e v a t e d temperatures. s o m e cases, h o w e v e r , o x i d a t i o n is n o t c o m p l e t e .
In
F o r e x a m p l e , i n t h e case
of F e T i , the surface of the a l l o y becomes c o a t e d w i t h a t h i n o x y g e n - r i c h film
( 1 2 ) w h i c h b l o c k s h y d r o g e n a b s o r p t i o n . H o w e v e r , the a l l o y c a n b e
r e - a c t i v a t e d b y h e a t i n g i n h y d r o g e n gas.
I t has also b e e n r e p o r t e d t h a t
some alloys w i l l a b s o r b h y d r o g e n i n the presence of o x y g e n or H 0
(13).
2
A n o t h e r r e q u i r e m e n t of m e t a l h y d r i d e s for these a p p l i c a t i o n s is t h a t t h e cost of t h e c o r r e s p o n d i n g m e t a l o r a l l o y be r e l a t i v e l y l o w .
T h i s is
the m a j o r d i s a d v a n t a g e of v a n a d i u m h y d r i d e . T h e d i s a d v a n t a g e of h i g h cost c a n be p a r t i a l l y o v e r c o m e b y finding a l l o y h y d r i d e s w h i c h h a v e h i g h v a l u e s of Aff
f
a n d h i g h h y d r o g e n - t o - m e t a l ratios, so t h a t M m is i n c r e a s e d
a n d less a l l o y is r e q u i r e d .
New Alloy Hydrides T h e r e are t w o approaches w h i c h c a n b e t a k e n i n the d e v e l o p m e n t of n e w h y d r i d e s : ( a ) the p r o p e r t i e s of k n o w n h y d r i d e s c a n b e m o d i f i e d b y appropriate alloying, and (b)
new intermetallic compounds w h i c h form
hydrides w i t h required properties c a n be synthesized. Property Modification by A l l o y i n g . A n example
of t h e first a p
p r o a c h is the m o d i f i c a t i o n of t h e r m o d y n a m i c p r o p e r t i e s . O n l y the p r o p erties of t h e p r i m a r y h y d r i d e s i n t h e a p p l i c a t i o n s p r o p o s e d
a b o v e are
considered
or
since t h e p r o p e r t i e s r e q u i r e d of t h e secondary
storage
h y d r i d e are the same as those n e e d e d w h e n s t o r i n g h y d r o g n as a f u e l , a n d this l a t t e r a p p l i c a t i o n has b e e n a m p l y d e s c r i b e d e l s e w h e r e ( 2 ,
Goodenough and Whittingham; Solid State Chemistry of Energy Conversion and Storage Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
14).
15.
L I B O W I T Z
As
A N D
B L A N K
Solid Metal
279
Hydrides
m e n t i o n e d a b o v e , f o r solar h e a t i n g a n d c o o l i n g t h e p r i m a r y
h y d r i d e m u s t h a v e a h i g h a b s o l u t e e n t h a l p y of f o r m a t i o n , w h i c h is a n i n d i c a t i o n of the b o n d s t r e n g t h i n a c o m p o u n d .
Consequently, if a par
t i c u l a r a l l o y h y d r i d e has satisfactory p r o p e r t i e s i n o t h e r respects, i t m a y b e p o s s i b l e to i n c r e a s e Δ ί / , b y a p p r o p r i a t e a l l o y i n g . A n e x a m p l e of this is t h e r e c e n t w o r k of V a n M a l et a l . ( 13) o n t h e i n t e r m e t a l l i c - c o m p o u n d hydride L a N i H . 5
7
T h e s e authors h a v e p r o p o s e d a " R u l e of
Reversed
S t a b i l i t y " w h i c h c a n b e s t a t e d as f o l l o w s : t h e less s t a b l e a n i n t e r m e t a l l i c c o m p o u n d , the greater t h e s t a b i l i t y of t h e c o r r e s p o n d i n g h y d r i d e . S i n c e t h e d i s s o c i a t i o n pressure of a h y d r i d e is a m e a s u r e of its s t a b i l i t y , a
Downloaded by UNIV OF LEEDS on June 18, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch015
decrease i n d i s s o c i a t i o n pressure w i l l i n d i c a t e a m o r e s t a b l e h y d r i d e a n d therefore a n increase i n t h e a b s o l u t e v a l u e of t h e e n t h a l p y of f o r m a t i o n as s h o w n b y the v a n ' t H o f f r e l a t i o n for E q u a t i o n 1:
lnP
H
= ^[(*H /RT)
-*S/R]
t
S i n c e E q u a t i o n 1 is a n e x o t h e r m i c r e a c t i o n , &H
t
increase i n a b s o l u t e v a l u e of &H
t
(2)
is n e g a t i v e , so t h a t a n
w i l l r e s u l t i n a decrease i n h y d r o g e n
d i s s o c i a t i o n pressure P , a c c o r d i n g t o E q u a t i o n 2. H
V a n M a i a n d co-workers (15)
a d d e d t h e a l l o y i n g elements c o b a l t ,
i r o n , a n d c h r o m i u m to t h e i n t e r m e t a l l i c c o m p o u n d L a N i
5
b y substituting
t h e m f o r 2 0 % of the n i c k e l present. A c c o r d i n g t o t h e e n t h a l p i e s of f o r mation Δ Η
Ι 0
of t h e i n t e r m e t a l l i c c o m p o u n d s
shown i n T a b l e III, the
s u b s t i t u t i o n of C o , F e , a n d C r f o r N i i n L a N i b i l i t y of the i n t e r m e t a l l i c c o m p o u n d L a N i s h o u l d h a v e the greatest effect since L a C r
8
5
5
s h o u l d decrease t h e sta
i n t h e o r d e r s h o w n , i.e., C r is t h e least stable ( h i g h p o s i
t i v e Δ ί / i c ) o f these c o m p o u n d s , w i t h F e a n d C o h a v i n g a lesser effect. S i n c e t h e s t a b i l i t y of t h e i n t e r m e t a l l i c c o m p o u n d is d e c r e a s e d b y a l l o y i n g , t h e s t a b i l i t i e s of t h e c o r r e s p o n d i n g h y d r i d e s s h o u l d b e i n c r e a s e d . T h i s w o u l d be i n d i c a t e d b y a decrease i n d i s s o c i a t i o n pressure P . H
The
results of the d i s s o c i a t i o n p r e s s u r e m e a s u r e m e n t s ( 1 5 ) are s h o w n b y t h e 40 ° C p r e s s u r e - c o m p o s i t i o n isotherms i n F i g u r e 5. T h e constant p r e s s u r e
Table III. Calculated Enthalpies of Formation of Some Intermetallic Compounds (17) Intermetallic Compound
&H
JC
(kcal/mol)
Journal of Loss-Common Matais
Goodenough and Whittingham; Solid State Chemistry of Energy Conversion and Storage Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
Downloaded by UNIV OF LEEDS on June 18, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch015
280
S O L I D
S T A T E
C H E M I S T R Y
Figure 5. Effect of alloying on the stability of lanthanum pentanickel hydride (adapted from Ref. 15) plateaus ( t w o p h a s e regions of t h e phase d i a g r a m ) represent the d i s s o c i a t i o n pressures of t h e h y d r i d e (16).
T h e h y d r i d e s of t h e C o , F e , a n d
C r s u b s t i t u t e d a l l o y s are m o r e stable t h a n the h y d r i d e of L a N i
5
i n the
o r d e r expected. A l t h o u g h i t is d e s i r a b l e t o increase t h e a b s o l u t e v a l u e o f Aff
f
as
m u c h as p o s s i b l e f o r t h e p r i m a r y h y d r i d e , as p o i n t e d o u t a b o v e , t h e d i s s o c i a t i o n pressure also is decreased, a n d this m a y r e s u l t i n a n e q u i U b r i u m h y d r o g e n pressure w h i c h is less t h a n t h a t of t h e
secondary
h y d r i d e u n d e r t h e c o n d i t i o n s of o p e r a t i o n . F u r t h e r m o r e , i f t h e h y d r o g e n pressure is too l o w , the r a t e of mass transfer of h y d r o g e n f r o m o n e p a r t of the c o o l i n g or h e a t i n g system to a n o t h e r becomes too l o w f o r effective operation. It c a n b e seen f r o m E q u a t i o n 2 t h a t t h e d e t r i m e n t a l effect of l a r g e values of AH
t
o n h y d r o g e n pressure m a y b e p a r t i a l l y offset b y d e c r e a s i n g
t h e e n t r o p y c h a n g e of the h y d r i d e f o r m a t i o n r e a c t i o n . T h i s c a n b e ac c o m p l i s h e d b y d e c r e a s i n g t h e v i b r a t i o n a l e n t r o p y of the h y d r i d e phase. A l o w e r v i b r a t i o n a l e n t r o p y is associated w i t h a h i g h e r v i b r a t i o n a l f r e q u e n c y a n d stronger b o n d i n g . H e n c e , a l l o y i n g elements w h i c h increase Δ ί / f b y s t r e n g t h e n i n g the c h e m i c a l b o n d s w i l l also t e n d t o h a v e a f a v o r a b l e effect o n the e n t r o p y c h a n g e . A n o t h e r p o s s i b i l i t y f o r d e c r e a s i n g AS of E q u a t i o n 1 is t o increase t h e e n t r o p y of t h e a l l o y phase b y f o r m i n g a r a n d o m a l l o y . A
possible
Goodenough and Whittingham; Solid State Chemistry of Energy Conversion and Storage Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
15.
LiBOwiTZ
A N D
Solid Metal
B L A N K
281
Hydrides
i l l u s t r a t i o n o f this effect c a n b e seen i n a n i n v e s t i g a t i o n of t h e h y d r i d e s of P d F e b y F l a n a g a n a n d c o - w o r k e r s 3
(J8)
i n w h i c h it was
observed
t h a t at 25 ° C the h y d r o g e n pressure i n e q u i h b r i u m w i t h the d i s o r d e r e d a l l o y w a s orders of m a g n i t u d e h i g h e r t h a n t h e pressure i n e q u i l i b r i u m w i t h t h e o r d e r e d a l l o y ( c u b i c C u A u s t r u c t u r e ) . T h e authors e x p l a i n e d 3
t h e greater s t a b i l i t y of the o r d e r e d h y d r i d e b y the existence of a l a r g e r n u m b e r of P d - H b o n d s t h a n i n t h e d i s o r d e r e d phase
(assuming
h y d r o g e n atoms enter t h e b o d y - c e n t e r e d site of the u n i t c e l l ) .
the
However,
a n o t h e r c o n t r i b u t i n g f a c t o r to the h i g h e r e q u i l i b r i u m pressure of the d i s o r d e r e d p h a s e h y d r i d e m a y h a v e b e e n the l a r g e r c o n f i g u r a t i o n a l e n t r o p y
Downloaded by UNIV OF LEEDS on June 18, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch015
of t h e d i s o r d e r e d a l l o y . T h e second
Synthesis of N e w Intermetallic Compounds.
approach
to d e v e l o p i n g n e w h y d r i d e s f o r solar h e a t i n g a n d c o o l i n g a p p l i c a t i o n s is to synthesize n e w i n t e r m e t a l l i c c o m p o u n d s
w h i c h w o u l d form hydrides
meeting the property requirements listed i n T a b l e II. I n general, interm e t a l l i c - c o m p o u n d h y d r i d e s a p p e a r to b e a r l i t t l e or n o r e s e m b l a n c e
to
the c o m p o n e n t m e t a l h y d r i d e s . T h i s is i l l u s t r a t e d b y t h e p r o p e r t i e s of the h y d r i d e s of the i n t e r m e t a l l i c c o m p o u n d Z i r c o n i u m forms
Z r N i listed i n Table
IV.
a d i h y d r i d e , a n d n i c k e l n o r m a l l y does n o t f o r m
a
h y d r i d e except u n d e r u n u s u a l c i r c u m s t a n c e s ( J O ) . H o w e v e r , t h e h y d r o gen-to-metal ratio i n Z r N i H
3
is h i g h e r t h a n w o u l d b e e x p e c t e d o n t h e
basis of t h e c o n s t i t u e n t metals Z r a n d N i . T h e structures (19) t w o h y d r i d e s are different.
T h e d i s s o c i a t i o n pressure (20)
of the
of Z r N i H
is
3
almost n i n e orders of m a g n i t u d e h i g h e r t h a n t h a t of Z r H , a l t h o u g h t h e 2
Z r - H distance i n Z r N i H
3
is less, w h i c h u s u a l l y i n d i c a t e s stronger b o n d i n g .
T h e R u l e of R e v e r s e d S t a b i l i t y ( J 5 ) has b e e n p r o p o s e d ( J 5 , 2 J ) as a m e t h o d of p r e d i c t i n g the h y d r i d e - f o r m i n g tendencies of i n t e r m e t a l l i c compounds.
A l t h o u g h this r u l e appears to b e of v a l u e i n p r e d i c t i n g the
effect of a l l o y i n g elements o n the p r o p e r t i e s of k n o w n h y d r i d e s as d i s c u s s e d a b o v e , f o r reasons p r e s e n t e d elsewhere (14) very limited applicability i n
finding
i t appears to h a v e
new intermetallic compound
hy
d r i d e s . A t the present t i m e t h e r e is n o o b v i o u s w a y of r e l i a b l y p r e d i c t i n g the p r o p e r t i e s of a h y d r i d e of a n i n t e r m e t a l l i c c o m p o u n d f r o m a k n o w l e d g e of t h e p r o p e r t i e s of the constituent m e t a l h y d r i d e s .
Consequently,
a n i n t e r m e t a l l i c - c o m p o u n d h y d r i d e s h o u l d b e v i e w e d as a p s e u d o - b i n a r y
Table IV.
Comparison of Properties of Z r H
D i s s o c . press, a t 2 5 0 ° C (torr) Z r - H distance ( Â )
and
ZrNiH
3
ZrH Tetragonal (distorted fluorite)
ZrNiH Orthorhombic
4 X 10 2.09
200 1.96
2
Structure
2
9
s
Goodenough and Whittingham; Solid State Chemistry of Energy Conversion and Storage Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
282
SOLID STATE
CHEMISTRY
metal h y d r i d e w i t h the intermetallic c o m p o u n d b e i n g considered a n e w metal.
T h e b e h a v i o r of the i n t e r m e t a l l i c c o m p o u n d t o w a r d s h y d r o g e n
t h e n d e p e n d s u p p n its p a r t i c u l a r c r y s t a l s t r u c t u r e a n d e l e c t r o n i c s t r u c ture ( 2 2 , 2 3 ) .
T h u s , to d e v e l o p n e w i n t e r m e t a l l i c - c o m p o u n d h y d r i d e s ,
b a s i c a l l o y t h e o r y m u s t b e u s e d , as w e l l as a f u n d a m e n t a l k n o w l e d g e of t h e n a t u r e of t h e m e t a l - h y d r o g e n b o n d s i n m e t a l h y d r i d e s .
Conclusion A r e v i e w of t h e k n o w n m e t a l a n d a l l o y h y d r i d e s reveals t h a t n o n e
Downloaded by UNIV OF LEEDS on June 18, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch015
meets a l l the r e q u i r e m e n t s l i s t e d i n T a b l e I I at a cost l o w e n o u g h m a k e t h e solar h e a t i n g a n d c c o l i n g concepts e c o n o m i c a l l y feasible.
to
d e s c r i b e d i n this p a p e r
T h e r e f o r e , f o r these concepts t o b e u t i l i z e d n e w
a l l o y h y d r i d e s m u s t be d i s c o v e r e d .
I n the d i s c u s s i o n o n m o d i f i c a t i o n of
h y d r i d e p r o p e r t i e s b y a l l o y i n g , t h e v a r i a t i o n of t h e r m o d y n a m i c p r o p e r ties is c o n s i d e r e d .
H o w e v e r , a l l o y i n g of k n o w n h y d r i d e s also m a y
be
e m p l o y e d to increase h y d r o g e n - t o - m e t a l ratios b y c h a n g i n g c r y s t a l s t r u c tures a n d i n c r e a s i n g l a t t i c e parameters (14) e l e c t r o n i c b a n d structures (22, 2 3 ) .
o r b y m o d i f i c a t i o n of t h e
Furthermore, electronic structure
m o d i f i c a t i o n s w i l l h a v e a n effect o n the t h e r m a l c o n d u c t i v i t y of a h y d r i d e . R a t e s of h y d r i d e f o r m a t i o n a n d d i s s o c i a t i o n also h a v e b e e n v a r i e d b y alloying
(24).
B e c a u s e m e t a l h y d r i d e systems p e r m i t i n d e f i n i t e h e a t storage
(5)
as o p p o s e d to other t h e r m a l storage m a t e r i a l s , t h e y offer a d i s t i n c t a d v a n tage to solar h e a t i n g a n d c o o l i n g i f a l l o y h y d r i d e s c a n b e f o u n d w h i c h w o u l d m a k e this c o n c e p t e c o n o m i c a l l y c o m p e t i t i v e . Literature
Cited
1. Libowitz, G. G., "The Solid State Chemistry of Binary Metal Hydrides," p. 47, Benjamin, New York, 1965. 2. World Hydrogen Energy Conf.Proc.,1st, Univ. of Miami, 1976, Session 8B. 3. Hagenmuller, P., ADVAN. C H E M . SER. (1977) 163, 1. 4. Libowitz, G. G., Intersoc. Energy Convers. Eng. Conf., 9th, 1974, 322-325. 5. Libowitz, G. G., Blank Z., Intersoc. Energy Convers. Eng. Conf., 11th, 1976, 673-680. 6. Reilly, J. J., Wiswall, R. H., Inorg. Chem. (1970) 9, 1678. 7. Reilly, J. J., Wiswall, R. H., Inorg. Chem. (1974) 13, 218. 8. Libowitz, G. G., "The Solid State Chemistry of Binary Metal Hydrides," pp. 83-86, Benjamin, New York, 1965. 9. Reilly, J. J., Johnson, J. R., World Hydrogen Energy Conf. Proc., 1st, 1976, 8B3-8B26. 10. Mueller, W. M., Blackledge, J. P., Libowitz, G. G., "Metal Hydrides," Academic, New York, 1968. 11. Libowitz, G. G., "The Solid State Chemistry of Binary Metal Hydrides," p. 13, Benjamin, New York, 1965. 12. Sandrock, G. D., Intersoc. Energy Convers. Eng. Conf. Proc., 11th, 1976, 967-971.
Goodenough and Whittingham; Solid State Chemistry of Energy Conversion and Storage Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
15. LIBOWITZ AND BLANK
Solid Metal Hydrides 283
13. Wiswall, R. H., Reilly, J. J., Intersoc. Energy Convers. Eng. Conf. Proc., 7th, 1972, 1342-1348.
14. Libowitz, G. G., in "Critical Materials Problems in Energy Production," C. Stein, Ed., Academic, 1976. 15. Van Mal, H. H., Buschow, K. H . J., Miedema, A. R., J. Less-Common Metals (1974) 35, 65.
16. Libowitz, G. G., "The Solid State Chemistry of Binary Metal Hydrides," pp. 5 0 - 5 5 , Benjamin, New York, 1976. 17. Miedema, A. R ., J. Less-Common Metals (1973) 32, 117. 18. Flanagan, T. B., Majchrzak, S., Baranowski, B., Philos. Mag. (1972) 25, 257. 19.
Peterson, S. W., Sadana, V. N., Korst, W. L., J. Phys. (Paris)
(1964)
25,
451. 20.
Libowitz, G. G., Hayes, H . F., Gibb, T. R. P., J. Phys. Chem. (1958) 62,
Downloaded by UNIV OF LEEDS on June 18, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch015
76.
21. Buschow, K. H . J., Van Mal, H . H., Miedema, A. R.,J.Less-Common Metals (1975) 42, 163.
Switendick, A. C., Solid State Commun. (1970) 8, 1463. Switendick, A. C., Int. J. Quant. Chem. (1971) 5, 459. 24. Douglass, D. L., Met. Trans. (1975) 6A, 2179.
22. 23.
RECEIVED July 27, 1976.
Goodenough and Whittingham; Solid State Chemistry of Energy Conversion and Storage Advances in Chemistry; American Chemical Society: Washington, DC, 1977.