7 Solid State Precursors: A Low-Temperature Route to Complex Oxides
Downloaded by MONASH UNIV on June 7, 2013 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1970-0186.ch007
J.
M.
LONGO,
H.
S. H O R O W I T Z , and L. R.
CLAVENNA
Corporate Research Laboratories, E x x o n Research and Engineering Company, L i n d e n , N J 07036
The
atomic
cursors
scale
having
synthesize
mixing
fully
reacted
lower temperatures for
structure
solid
temperatures
in solid
mixed-metal state
oxides at
pre-
have
required
techniques. yielded
These
oxides
with same
surface
areas that are 10 to 100 times higher
than the
oxides
prepared
This
technique
by
portion
tures below 1000°C subsolidus
perature Mn O , 3
8
methods.
synthesis
also has been used to study phase relations
manganese-rich new
conventional
6
Ca-Mn-O
and has resulted
phase diagram
phases CaMn O , 3
of the
having the CaMn O , 4
8
system at
in the tempera-
in the assemblage
containing
several
of a
low-tem-
following compositions: and CaMn O . 7
to
significantly
times than are
synthesis
of reaction
solution
results in the ability
and in shorter
conventional
lower
of cations
the calcite
Ca2-
12
l i y l T e t a l oxides c o n t a i n i n g m o r e t h a n one t y p e of c a t i o n are of interest f r o m b o t h a p r a c t i c a l a n d f u n d a m e n t a l p o i n t of v i e w . oxides
Complex
are able to s t a b i l i z e u n u s u a l o x i d a t i o n states, h a v e significant
nonstoichiometry, a n d contain u n i q u e structural arrangements.
However,
t h e y are l i m i t e d i n several a p p l i c a t i o n s , e s p e c i a l l y c a t a l y t i c a p p l i c a t i o n s , because of the l o w surface area that results f r o m the h i g h t e m p e r a t u r e s u s u a l l y n e e d e d to o b t a i n c o m p l e t e r e a c t i o n . T h e t r a d i t i o n a l c e r a m i c approaches to these c o m p l e x m e t a l oxides i n v o l v e r e p e a t e d h i g h - t e m p e r a t u r e firing of t h e c o m p o n e n t oxides w i t h f r e q u e n t r e g r i n d i n g s . T h e s e h a r s h c o n d i t i o n s are r e q u i r e d to o v e r c o m e the s l o w
reaction kinetics that occur
when
two
solids are
brought
together, as is i l l u s t r a t e d i n F i g u r e 1. T h e r e a c t a n t p a r t i c l e s are s c h e m a t i c 0-8412-0472-l/80/33-186-139$05.00/l ©
1980
American Chemical
Society
In Solid State Chemistry: A Contemporary Overview; Holt, S., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
140
SOLID S T A T E
CHEMISTRY: A
CONTEMPORARY OVERVIEW
100,000 8 TO 2008
Figure 1. Conventional solid state reaction techniques give slow reaction kinetics.
Downloaded by MONASH UNIV on June 7, 2013 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1970-0186.ch007
a l l y i l l u s t r a t e d to e m p h a s i z e t h e f a c t t h a t n o m a t t e r w h a t the p a r t i c l e size, e a c h r e a c t a n t p a r t i c l e contains o n l y one t y p e of c a t i o n .
Severe
r e a c t i o n c o n d i t i o n s are necessary to o b t a i n a single-phase p r o d u c t b e c a u s e of t h e d i f f u s i o n a l l i m i t a t i o n s of s o l i d state reactions.
I n i t i a l r e a c t i o n is
r a p i d , b u t f u r t h e r r e a c t i o n goes s l o w e r a n d s l o w e r as the p r o d u c t l a y e r b u i l d s u p a n d diffusion paths b e c o m e longer. A fine p o w d e r of a p p r o x i m a t e l y 10-jum p a r t i c l e size (100,000 A ) s t i l l represents d i f f u s i o n distances o n t h e o r d e r of 10,000 u n i t c e l l d i m e n s i o n s . T h e use of t e c h n i q u e s s u c h as f r e e z e - d r y i n g the c o m p o n e n t
(1,2)
o r c o p r e c i p i t a t i o n (3,4)
i m p r o v e s r e a c t i v i t y of
oxides o r salts because these m e t h o d s
can give
initial
crystallites o n t h e o r d e r of o n l y s e v e r a l h u n d r e d angstroms i n d i a m e t e r . B u t this s t i l l means d i f f u s i o n m u s t o c c u r across 10 to 50 u n i t cells. The
severity of r e a c t i o n c o n d i t i o n s
necessary
diffusional
l i m i t a t i o n s n a t u r a l l y leads
to
materials.
A d d i t i o n a l l y , the h i g h temperatures
to o v e r c o m e
crystalline,
these
low-surface-area
that must be
utilized
l i m i t t h e a b i l i t y to s t a b i l i z e the h i g h e r v a l e n c e states of t r a n s i t i o n m e t a l elements. I d e a l l y , i n o r d e r to a c h i e v e c o m p l e t e r e a c t i o n i n t h e shortest a m o u n t of t i m e a n d at t h e l o w e s t p o s s i b l e t e m p e r a t u r e , one w o u l d l i k e to m i x i n g of the c o m p o n e n t cursors (5,6)
cations o n a n a t o m i c scale.
Compound
see pre
w i l l a c h i e v e this g o a l , b u t t h e s t o i c h i o m e t r y of the p r e
cursor, u n f o r t u n a t e l y , o f t e n does not c o i n c i d e w i t h the s t o i c h i o m e t r y of the desired product.
T h e use of s o l i d s o l u t i o n p r e c u r s o r s ( 7 )
provides
a l l the advantages of c o m p o u n d precursors b u t a v o i d s the s t o i c h i o m e t r y limitations. A extent)
s o l i d s o l u t i o n m a y b e o b t a i n e d b y s u b s t i t u t i o n (to
a variable
of one e l e m e n t i n a host l a t t i c e b y another element, s u c h t h a t
the c r y s t a l l o g r a p h i c s y m m e t r y of the host l a t t i c e is n o t a l t e r e d . F o r t h e purposes of this d i s c u s s i o n , a s o l i d s o l u t i o n m a y be c o n s i d e r e d to b e the interpenetration on
an atomic
scale of
two
c h e m i c a l l y different
but
s t r u c t u r a l l y s i m i l a r lattices. C o n c e p t u a l l y , t h e n , i f one w a n t s to p r e p a r e a c o m p l e x o x i d e at l o w t e m p e r a t u r e s , one c a n f o r m a s o l i d s o l u t i o n b e t w e e n
In Solid State Chemistry: A Contemporary Overview; Holt, S., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
7.
Solid State
LONGO E T A L .
141
Precursors
t w o ( o r m o r e ) cations i n the p r o p e r r a t i o , h a v i n g a n a n i o n l a t t i c e t h a t c a n b e m o d i f i e d . T h u s i f a s o l i d s o l u t i o n c a r b o n a t e is s y n t h e s i z e d , i t c a n r a p i d l y b e d e c o m p o s e d to a n o x i d e ; l i k e w i s e , i f a s o l i d s o l u t i o n o x i d e p r e c u r s o r is p r e p a r e d , it c a n either b e r e d u c e d o r o x i d i z e d to t h e d e s i r e d p h a s e d e p e n d i n g o n the v a l e n c e states of t h e cations.
I n e a c h of these
cases the cations are a l r e a d y m i x e d o n a n a t o m i c scale i n the single-phase p r e c u r s o r so t h a t d e c o m p o s i t i o n ,
o x i d a t i o n , or r e d u c t i o n is r a p i d a n d
c o m p l e t e at s i g n i f i c a n t l y l o w e r temperatures a n d shorter t i m e s . F i g u r e 2 s c h e m a t i c a l l y illustrates the s o l i d s o l u t i o n p r e c u r s o r c o n c e p t .
Whereas
the r e a c t a n t cations m a y be 100,000 A a p a r t i n c o n v e n t i o n a l s o l i d state reactions ( F i g u r e 1 ) , i n s o l i d s o l u t i o n precursors t h e y are o n t h e o r d e r
Downloaded by MONASH UNIV on June 7, 2013 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1970-0186.ch007
of 10 A apart, regardless of p a r t i c l e size. F u r t h e r m o r e , the n a t u r e of t h e s o l i d s o l u t i o n is s u c h t h a t it is p o s s i b l e to c o n t i n u o u s l y v a r y the c a t i o n c o m p o s i t i o n i n the s t r u c t u r e , a n d one is not l i m i t e d to discrete
com
p o u n d precursors. T h e s o l i d s o l u t i o n p r e c u r s o r t e c h n i q u e has, to date, b e e n e x p l o i t e d i n this l a b o r a t o r y p r i m a r i l y for the p r e p a r a t i o n of m i x e d - m e t a l oxides b y d e c o m p o s i t i o n
high-surface-area,
of s o l i d solutions of
carbonates
h a v i n g the c a l c i t e structure. T h i s t e c h n i q u e has w i d e a p p l i c a b i l i t y since the carbonates of C a , M g , Z n , M n , F e , C o , N i , a n d C d a l l f o r m the c a l c i t e structure a n d w i l l , i n g e n e r a l , f o r m s o l i d solutions w i t h e a c h other.
In
this p a p e r w e w i l l d e s c r i b e o u r experience w i t h the s o l i d s o l u t i o n p r e c u r s o r m e t h o d w h e n a p p l i e d to several of these m i x e d - m e t a l systems. T h e most o b v i o u s benefit of this synthesis t e c h n i q u e is that i t gives a r o u t e to h i g h e r - s u r f a c e - a r e a c o m p l e x oxides.
Just as i m p o r t a n t , h o w
ever, is the a p p r o a c h p r o v i d e d b y the s o l i d s o l u t i o n p r e c u r s o r t e c h n i q u e to the d i s c o v e r y of t o t a l l y n e w m a t e r i a l s that are not stable at the h i g h e r temperatures u s u a l l y necessary f o r c o n v e n t i o n a l s o l i d state r e a c t i o n b e tween s m a l l particles. T h e C a - M n - O system w a s chosen as a s t a r t i n g p o i n t i n o r d e r to explore the p o t e n t i a l of the s o l i d s o l u t i o n p r e c u r s o r m e t h o d f o r s y n t h e -
Figure 2. Solid solution precursor techniques give fast reaction kinetics
In Solid State Chemistry: A Contemporary Overview; Holt, S., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
142
SOLID S T A T E
CHEMISTRY: A
CONTEMPORARY OVERVIEW
s i z i n g n e w c o m p l e x oxides. T h i s system fulfills the p r i m a r y r e q u i r e m e n t f o r s u c h a s t u d y i n that C a C 0
3
and M n C 0
3
are i s o s t r u c t u r a l , e a c h
d i s p l a y i n g the c a l c i t e c r y s t a l structure. T h u s i t is p o s s i b l e to p r e p a r e C a - M n carbonate C a - M n oxides.
s o l i d s o l u t i o n precursors for s u b s e q u e n t
r e a c t i o n to
T h e r e are a d d i t i o n a l characteristics t h a t m a k e the C a -
M n - O system a p a r t i c u l a r l y versatile one for e x p l o r i n g the p r o p e r t i e s of new
m i x e d - m e t a l oxides.
F i r s t of a l l , t h e M n i o n is a v e r y flexible
t r a n s i t i o n m e t a l o c c u r r i n g i n the s o l i d state as the 2 + cations.
through the
W h e n i n c o r p o r a t e d a l o n g w i t h the electropositive
c r y s t a l s t r u c t u r e , the h i g h e r v a l e n c e
states of
7+
C a into a
M n can be stabilized,
e s p e c i a l l y at l o w t e m p e r a t u r e .
Downloaded by MONASH UNIV on June 7, 2013 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1970-0186.ch007
I n this p a p e r w e d e s c r i b e p r e v i o u s l y u n a t t a i n a b l e l o w - t e m p e r a t u r e phase relations i n the m a n g a n e s e - r i c h p o r t i o n of the C a - M n - O system. T h i s n e w low-temperature phase d i a g r a m ( F i g u r e 3)
shows t h e
com
p l e x i t y p o s s i b l e w h e n a c a t i o n c a n h a v e m u l t i p l e valences a n d w h e n t h e r e is sufficient r e a c t i v i t y to o b t a i n e q u i l i b r i u m at l o w t e m p e r a t u r e s .
The
use of the e x t r e m e l y r e a c t i v e s o l i d s o l u t i o n p r e c u r s o r s , C a i ^ M n ^ C O s , also has a l l o w e d us to m o n i t o r synthesis p a r a m e t e r s t h a t are u s u a l l y o b s c u r e d b y conventional high-temperature reaction conditions.
A c c o r d i n g l y , the
influence of h e a t i n g rate, o x y g e n p a r t i a l pressure, p a r t i c l e m o r p h o l o g y , t e m p e r a t u r e , a n d r e s i d u a l surface species o n the final p r o d u c t w i l l
be
discussed. Experimental M o s t m a t e r i a l s syntheses r e f e r r e d to i n this r e p o r t w e r e c a r r i e d out b y u s i n g the s o l i d s o l u t i o n p r e c u r s o r m e t h o d ( 7 ) . P r e c u r s o r s w e r e p r e p a r e d b y p r e c i p i t a t i n g the carbonates f r o m a w e a k l y a c i d i c s o l u t i o n of the a p p r o p r i a t e cations i n the d e s i r e d s t o i c h i o m e t r y . A m m o n i u m c a r b o n a t e w a s t h e p r e c i p i t a t i n g agent. T h e s o l i d s o l u t i o n p r e c u r s o r s w e r e r e a c t e d at t e m p e r a t u r e s r a n g i n g f r o m 800° to 1 0 0 0 ° C for t i m e s r a n g i n g f r o m 0.5 to 150 h r . T h e r e a c t i o n atmosphere w a s p u r e flowing 0 , unless o t h e r w i s e specified. T h e c o n v e n t i o n a l s o l i d state r e a c t i o n syntheses t h a t w e r e c a r r i e d o u t w e r e a c c o m p l i s h e d b y h a n d - g r i n d i n g , w i t h a n agate m o r t a r a n d pestle, the c a l c i u m a n d m a n g a n e s e reagentg r a d e carbonates a n d t h e n firing i n o x y g e n at the specified t e m p e r a t u r e s . T h e s e firings w e r e u s u a l l y i n t e r r u p t e d at f r e q u e n t i n t e r v a l s for a d d i t i o n a l g r i n d i n g i n o r d e r to f a c i l i t a t e the r e a c t i o n . A l l r e a c t i o n p r o d u c t s a n d s o l i d s o l u t i o n precursors w e r e e x a m i n e d o n a P h i l l i p s X - r a y diffractometer to d e t e r m i n e w h i c h phases w e r e present. O x y g e n content of a l l C a - M n o x i d e phases w a s e s t a b l i s h e d b y u s i n g a Fisher Thermogravimetric A n a l y z e r containing a C a h n electrobalance. S a m p l e s w e r e r e d u c e d i n H a n d w e i g h t loss w a s a t t r i b u t e d to m a n g a n e s e w i t h o x i d a t i o n states h i g h e r t h a n 2 + . T h e average m a n g a n e s e v a l e n c e w a s also d e t e r m i n e d b y w e t c h e m i c a l means ( 8 ) . T h e m e t h o d f o r e x p e r i m e n t a l l y m e a s u r i n g the c a t i o n s t o i c h i o m e t r y , as w e l l as t h e p r o c e d u r e f o r d e t e r m i n i n g t h e d e c o m p o s i t i o n t e m p e r a t u r e of t h e l o w - t e m p e r a t u r e C a - M n o x i d e phases, is d e t a i l e d i n H o r o w i t z et a l . ( 9 ) . 2
2
In Solid State Chemistry: A Contemporary Overview; Holt, S., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
7.
Solid State
LONGO E T A L .
1
1
i
143
Precursors
1
I
1
1
T(°C) 1000
-
CaMn 04 + Tet. Mn 0 2
CaMn0 + CaMnoOd
3
4
3
Downloaded by MONASH UNIV on June 7, 2013 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1970-0186.ch007
950
-
CaMn 0 + Mn 03 2
4
2
-
CaMn 04 +CaMn 0 2
7
12
CaMr^Og CaMn 0 7
12
-
900
CaMn03
850
S
Ca2Mri30g CaMn 0 + + CaMn 04 CaMn 0g 2
Ca2Mn303
00 o
2
4
OP
.oc
3
Z u
CaMn 0g + CaMn 0 4
+
7
12
CaMn 0 + Mn 0 7
2
12
3
CO
i
1
CaMn0 3.
1
Mol. % Mn0
3
Figure
•
Mn0
x
x
Isobaric (P = 1.0 atm) subsolidus phase relations manganese-rich portion of the Ca-Mn-O system 02
in the
Specific surface areas w e r e d e t e r m i n e d b y the B r u n a u e r - E m m e t t Teller ( B E T ) method, using nitrogen adsorption. Single-point determina tions w e r e u s e d ; these w e r e f o u n d to agree w i t h i n 5 % of t r i p l e - p o i n t determinations. Results F o l l o w i n g the experimental procedures carbonate
precipitates was prepared.
the p r e c i p i t a t e s
were
single-phase
o u t l i n e d a b o v e , a series of
X - r a y diffraction confirmed
solid
solutions
h a v i n g the
that
calcite
c r y s t a l structure. T h u s the h o m o g e n e o u s m i x i n g of m e t a l cations o n a n a t o m i c scale ( a b o u t 10 A ) w a s a c h i e v e d .
T a b l e I lists t h e i n t e r p l a n a r
spacings of the m a j o r X - r a y d i f f r a c t i o n peaks for some of t h e m i x e d - m e t a l
In Solid State Chemistry: A Contemporary Overview; Holt, S., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
144
SOLID S T A T E
CHEMISTRY: A
CONTEMPORARY OVERVIEW
Table I. fhkU Compound CaC0 [Cao67Mno33]C0 [Cao.6oMn .4o]C0 [Cao.5oMn .5o]C0 [Ca 29Mn 7i]CO [ C a 25Mn 75]CO [Cao.2oMn . o]C0 [Ca .i 5Mn .875]CO [Ca .o8Mn .92]C0 MnC0 [Cd .iiMn 9]CO [Cd .i25Mn .875]CO [Cd . Mno. 7]C0 [Cd . oMn .5o]C0 CdC0 CoC0 [Co .67Mn . ]CO [Co .4oMn .6o]C0 MnC0
(104)
(012)
3.03 2.99 2.97 2.94 2.91 2.90 2.90 2.88 2.87 2.85 2.86 2.87 2.88 2.91 2.94 2.74 2.80 2.83 2.85
3.85 3.80 3.77 3.75 3.74 3.71 3.71 3.70 3.70 3.67 3.67 3.70 3.71 3.74 3.80 3.55 3.61 3.65 3.67
3
3
0
3
0
3
0
0
0
3
0
3
0
0
2
8
3
0
0
0
3
3
Downloaded by MONASH UNIV on June 7, 2013 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1970-0186.ch007
3
0
0
0
8
3
0
0
3 3
0
5
6
0
3
3
3
3
3
0
0
0
3 3
0
3
3
3
carbonate
precursors p r e p a r e d .
T h e corresponding
data for the
end-
m e m b e r carbonates are also i n c l u d e d f o r c o m p a r i s o n . A s T a b l e I shows, t h e systems d e s c r i b e d h e r e ( C a - M n , C d - M n , C o M n ) a d h e r e f a i r l y closely t o V e g a r d ' s l a w . T h e r e f o r e , the m o n i t o r i n g of l a t t i c e p a r a m e t e r s , o r of a specific i n t e r p l a n a r s p a c i n g , p r o v i d e s a c o n v e n i e n t m e t h o d f o r c h e c k i n g , to a first a p p r o x i m a t i o n , t h e
composition
of a single-phase p r e c i p i t a t e . F o r c o m p o s i t i o n a l i n c r e m e n t s of t h e sizes that are seen i n T a b l e I , the changes i n i n t e r p l a n a r s p a c i n g are g e n e r a l l y r e s o l v a b l e , a n d the p r e c i p i t a t e s of d i f f e r i n g c o m p o s i t i o n s c a n b e r o u g h l y identified
and
estimates
of
distinguished from
composition
one
another.
When
are d e s i r e d , t h i s a p p r o a c h
is
more
precise
unacceptable
because the h i g h - s u r f a c e - a r e a p r e c i p i t a t e s h a v e X - r a y d i f f r a c t i o n patterns w h o s e p e a k s are too b r o a d to m a k e p r e c i s e l a t t i c e p a r a m e t e r d e t e r m i n a t i o n possible. precursor
B e c a u s e of this u n c e r t a i n t y i n t h e c o m p o s i t i o n
(the
metal cation stoichiometry
of
of
the
the p r e c u r s o r w a s
not
a l w a y s i n exact agreement w i t h the s t o i c h i o m e t r y of the i n i t i a l a q u e o u s solution
of
metal cations),
compositional
analysis for
metal
cation
s t o i c h i o m e t r y w a s p e r f o r m e d o n the r e a c t e d m i x e d - m e t a l oxides. T h e i m p o r t a n c e of p r e c u r s o r p a r t i c l e size w a s m i n i m i z e d i n o u r i n t r o d u c t i o n to the s o l i d s o l u t i o n p r e c u r s o r c o n c e p t ; h o w e v e r ,
it can
s t i l l h a v e a n i m p o r t a n t effect o n r e a c t i o n k i n e t i c s . A l t h o u g h cations are m i x e d o n a n a t o m i c scale w i t h i n e a c h reactant p a r t i c l e , the size of t h e
In Solid State Chemistry: A Contemporary Overview; Holt, S., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
7.
LONGO E T A L .
Interplanar
145
Solid State Precursors
Spacings fhkU
Downloaded by MONASH UNIV on June 7, 2013 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1970-0186.ch007
(IIS) 2.27 2.25 2.24 2.23 2.21 2.21 2.20 2.19 2.19 2.17 2.19 2.19 2.19 2.21 2.25 2.11 2.15 2.16 2.17
(202)
(HO)
(116)
(024)
2.09 2.07 2.05 2.05 2.03 2.03 2.02 2.01 2.01 2.00 2.01 2.01 2.02 2.04 2.07 1.95 1.99 1.99 2.00
2.49 2.46 2.45 2.44 2.43 2.42 2.42 2.41 2.40 2.40 2.40 2.40 2.42 2.43 2.46 2.33 2.37 2.38 2.40
1.87 1.84 1.84 1.83 1.81 1.80 1.79 1.78 1.78 1.77 1.77 1.78 1.79 1.81 1.84 1.70 1.75 1.75 1.77
1.90 1.89 1.86 1.86 1.86 1.86 1.86 1.85 1.84 1.83 1.84 1.84 1.85 1.87 1.89 1.78 1.81 1.82 1.83
reactant p a r t i c l e c a n s t i l l l i m i t t h e extent of g a s - s o l i d c o n t a c t a n d heat transfer t h r o u g h the p a r t i c l e . T a b l e I I shows h o w precursor
c a n be m o d i f i e d
procedure.
the B E T surface
a r e a of t h e s o l i d s o l u t i o n
b y m i n o r adjustments
to t h e
precipitation
R e f e r r i n g to T a b l e I I , one c a n see that a 1:1 C a : M n r a t i o
solid solution precursor powder, w h i c h was recovered and dried i m m e d i a t e l y after p r e c i p i t a t i o n , has a surface
a r e a of 9 m
2
• g" . 1
With
the
t h o u g h t t h a t the p r e s e n c e of r e s i d u a l electrolyte, i n the f o r m of a m m o n i u m carbonate,
might
be
causing
agglomeration
of
particles
and
thereby
l o w e r i n g the a p p a r e n t surface area, another b a t c h w a s p r e p a r e d i n w h i c h the n o r m a l p r e c i p i t a t i o n w a s f o l l o w e d cedure.
b y a thorough water rinse p r o
A f t e r i t w a s d r i e d , t h e p o w d e r was m u c h finer i n
appearance
a n d m o r e free f l o w i n g t h a n the u n t r e a t e d p o w d e r , a n d its s u r f a c e
Table II.
Surface A r e a of Precursors C a n Be Modified Surface Area No Treatment
MnC0 CaMn(C0 ) CaC0 3
3
3
area
2
66 9 1
l w Rinse
(m
2
• g' ) 1
H0
+
2
IP A
Rinse
110 32 11
In Solid State Chemistry: A Contemporary Overview; Holt, S., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
150 74 10
146
SOLID S T A T E
s h o w e d a n increase to 32 m
2
CHEMISTRY: A
CONTEMPORARY OVERVIEW
• g" . I n order to f u r t h e r decrease a g g l o m 1
e r a t i o n , w e m a d e a n a t t e m p t to d i s p l a c e r e s i d u a l w a t e r w i t h the l o w e r surface-tension i s o p r o p y l a l c o h o l ( I P A ) b y f o l l o w i n g p r e c i p i t a t i o n w i t h c o n s e c u t i v e w a t e r a n d I P A rinses. T h e p o w d e r , w h i c h w a s a g a i n i n appearance
finer
a n d m o r e free f l o w i n g t h a n t h e u n t r e a t e d p r e c i p i t a t e ,
s h o w e d a n o t h e r increase i n surface area to 74 m
2
• g" . 1
T a b l e I I also i n d i c a t e s t h a t a d d i t i o n a l batches of p r e c i p i t a t e s w e r e p r e p a r e d as controls.
The M n C 0
3
p r e c i p i t a t e shows the same t r e n d of
i n c r e a s i n g surface area w i t h the w a t e r rinse a n d a n o t h e r increase w i t h the w a t e r p l u s I P A r i n s e . T h e C a C 0
3
shows a l a r g e increase i n surface
a r e a for t h e w a t e r rinse a n d the w a t e r p l u s I P A rinse w h e n c o m p a r e d t o
Downloaded by MONASH UNIV on June 7, 2013 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1970-0186.ch007
t h e u n t r e a t e d p r e c i p i t a t e , b u t does n o t s h o w a significant
difference
between the water a n d water plus I P A - r i n s e d powders. T h e s e results are of p r e l i m i n a r y n a t u r e a n d t h e i r i m p l i c a t i o n s are not f u l l y u n d e r s t o o d . improvements
H o w e v e r , it does a p p e a r that r e a l a n d significant
i n surface
area
can
be
effected
by
relatively
minor
m o d i f i c a t i o n s i n the p r e c i p i t a t i o n p r o c e d u r e . A s m e n t i o n e d before, m a g n e s i u m , c a l c i u m , a n d most of the
first-row
d i v a l e n t t r a n s i t i o n elements f o r m the c a l c i t e structure. T h e o r e t i c a l c r y s t a l c h e m i s t r y considerations w o u l d l e a d one to e x p e c t t h a t i t is p o s s i b l e t o p r e p a r e , b y the process d e s c r i b e d ,
single-phase
solid solution
calcite
p r e c i p i t a t e s of almost a l l c o m b i n a t i o n s of these elements. E x p e r i m e n t a l results w i t h one s u c h c o m b i n a t i o n
(nickel and manganese),
however,
r e v e a l e d that the p r e c i p i t a t e p r e p a r e d i n this case w a s not a single-phase c a l c i t e s t r u c t u r e m a t e r i a l b u t a p r e c i p i t a t e c o n s i s t i n g of M n C 0 c a l c i t e s t r u c t u r e a n d a n a m o r p h o u s N i - c o n t a i n i n g phase. f r o m t h e results of
with a
3
I t is e v i d e n t
this e x p e r i m e n t t h a t t h e s o l i d s o l u t i o n
precursor
c o n c e p t is not as u n i v e r s a l as it first a p p e a r e d , a n d that t h e a p p l i c a b i l i t y of this m e t h o d for a n y c o n t e m p l a t e d c o m b i n a t i o n of elements m u s t b e experimentally determined. A f t e r h a v i n g p r e p a r e d a n d c h a r a c t e r i z e d the s o l i d s o l u t i o n c a l c i t e p r e c u r s o r , o n e m a y fire i t at a p r e s e l e c t e d t e m p e r a t u r e
(generally
less
t h a n 1 0 0 0 ° C ) a n d f o r a t i m e sufficient to y i e l d the d e s i r e d h i g h - s u r f a c e a r e a m i x e d - m e t a l oxide.
S i n c e the cations are a l r e a d y h o m o g e n e o u s l y
m i x e d o n a n a t o m i c scale i n the p r e c u r s o r , the d e c o m p o s i t i o n of the c a l c i t e to the f u l l y r e a c t e d , m i x e d - m e t a l o x i d e takes p l a c e at s i g n i f i c a n t l y l o w e r t e m p e r a t u r e s a n d i n shorter times r e l a t i v e to synthesis b y
conventional
s o l i d state t e c h n i q u e s . In
the
C a - M n - O system,
for
example,
the
preparation
of
the
p e r o v s k i t e , C a M n 0 , b y s t a n d a r d s o l i d state r e a c t i o n r e q u i r e s h e a t i n g of 3
the c o m p o n e n t oxides or carbonates at 1 3 0 0 ° C i n a n o x y g e n - c o n t a i n i n g atmosphere
f o r several days w i t h f r e q u e n t r e g r i n d i n g .
The resulting
p r o d u c t is v e r y c r y s t a l l i n e a n d has a surface area of o n l y 0.2 m
In Solid State Chemistry: A Contemporary Overview; Holt, S., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
2
• g" . 1
7.
Solid State
LONGO E T A L .
T h e same p u r e c o m p o u n d
147
Precursors
c a n be prepared b y decomposing,
o x i d i z i n g c o n d i t i o n s , a 1:1 C a : M n
under
solid solution calcite precursor at
9 0 0 ° C f o r 3 0 m i n . T h e surface area o f this f u l l y r e a c t e d p e r o v s k i t e , C a M n 0 , is 11 m 3
2
• g" . 1
T h e fully reacted perovskite-related oxide C a M n 0 2
p a r e d w i t h a surface area of 17 m
2
has b e e n p r e
4
• g" b y reacting a 2:1 C a : M n solid 1
s o l u t i o n c a l c i t e p r e c u r s o r at 8 0 0 ° C i n a i r for 15 m i n . S t a n d a r d s o l i d state r e a c t i o n of t h e same c o m p o u n d f r o m t h e c o m p o n e n t carbonates
(1300°C
f o r several days w i t h f r e q u e n t r e g r i n d i n g s ) gives a surface area of o n l y 0.8 m
• g" .
2
1
I n the C d - M n - O system the c o m p o u n d C d M n 0 8 has b e e n p r e p a r e d 2
3
Downloaded by MONASH UNIV on June 7, 2013 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1970-0186.ch007
at 5 0 0 ° C f o r 1 h r , i n o x y g e n f r o m a s o l i d s o l u t i o n c a l c i t e p r e c u r s o r h a v i n g a 2 : 3 C d : M n r a t i o . T h i s c o m p o u n d has a surface area o f 9 8 m
• g " ; t h e same
2
1
compound
p r e p a r e d b y c o n v e n t i o n a l s o l i d state
r e a c t i o n h a d a surface area o f 3 m • g " . 2
1
I n g e n e r a l , the s o l i d s o l u t i o n p r e c u r s o r m e t h o d gives i m p r o v e m e n t s i n surface area r e l a t i v e t o c o n v e n t i o n a l s o l i d state t e c h n i q u e s t h a t r a n g e f r o m a f a c t o r of 10 to 100. A n a d d i t i o n a l benefit t h a t c a n b e d e r i v e d f r o m t h e r e l a t i v e l y l o w synthesis t e m p e r a t u r e s afforded b y the s o l i d s o l u t i o n p r e c u r s o r t e c h n i q u e is the a b i l i t y t o synthesize t o t a l l y n e w m a t e r i a l s . F i g u r e 3 shows t h a t the l o w reaction temperatures made possible b y the solid solution pre cursors reveals f a i r l y
complex
subsolidus relations i n t h e C a - M n - O
system, i n c l u d i n g f o u r c o m p o u n d s
t h a t a r e n o t stable a t 1 a t m 0
2
a b o v e 1000°C. T h e first c o m p o u n d t o a p p e a r i s C a M n O i , w h i c h is also the most 7
2
stable m i x e d - v a l e n c e c o m p o u n d o f t h e system. I t c o n t a i n s six M n one M n
and a C a
and
3 +
a n d has a s t r u c t u r e r e l a t e d t o p e r o v s k i t e ( 1 0 ) , w i t h t h r e e M n
4 +
2 +
3 +
o n the A site. T h i s c o m p o u n d w a s first r e p o r t e d b y B o c h u
et a l . (10), w h o e m p l o y e d pressures of 80 k b a r a n d r e a c t i o n t e m p e r a t u r e s of 1 0 0 0 ° C f o r its synthesis. J o u b e r t , i n a p r i v a t e c o m m u n i c a t i o n , reports t h a t t h e y also h a v e b e e n a b l e t o p r e p a r e this p h a s e w i t h o u t h i g h p r e s sure ( I I ) . A b o v e 9 6 0 ° C , C a M n 0 i 7
2
breaks d o w n i n t o C a M n 0 a n d 2
4
Mn 0 . 2
3
A t l o w e r t e m p e r a t u r e s ( T < 940° C ) a n o t h e r m i x e d - v a l e n c e a p p e a r s w i t h a C a / M n r a t i o of 1 / 3 .
shows that o n e - t h i r d o f the m a n g a n e s e is present as M n i n d i c a t e s a f o r m u l a of C a M n 0 . 3
6
phase
T h e r m o g r a v i m e t r i c analysis i n H 4 +
a n d therefore
T o u s s a i n t (12) reports a C a M n 0 i n 3
7
h i s s t u d y , b u t his p u b l i s h e d X - r a y p a t t e r n shows o n l y t h e s t r o n g l i n e s o f CaMn 0 . 4
8
H e states t h a t there w e r e s m a l l a m o u n t s o f t h e c a l c i u m - r i c h
phase C a M n 0
3
present i n h i s p r e p a r a t i o n o f C a M n 0 . 3
7
Below 910°C a
c o m p o u n d w i t h a C a / M n r a t i o o f 1 / 4 appears i n the p h a s e d i a g r a m . I n this case t h e r m o g r a v i m e t r i c analysis shows t h a t o n e - h a l f of t h e m a n g a n e s e
American Chemical Society Library 1155 16th St.. N.W.
In Solid State Chemistry: A ContemporaryO.C. Overview; Holt, S., et al.; Washington. 20036 Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
2
148
SOLID S T A T E C H E M I S T R Y :
is present as M n
4 +
A CONTEMPORARY
, l e a d i n g to a f o r m u l a of C a M r ^ O g .
OVERVIEW
Toussaint
(12)
reports a p h a s e C a M n 0 , b u t h i s X - r a y d a t a s h o w i t to b e a m i x t u r e 4
7
containing predominantly C a M n O i . 7
X - r a y patterns f o r C a M n O 3
e
A t h o r o u g h analysis of o u r
2
own
a n d C a M n O g is n o t c o m p l e t e , b u t i t does 4
a p p e a r that these t w o phases are r e l a t e d s t r u c t u r a l l y . T h e y c a n b o t h b e w r i t t e n as C a . M n 0 , w h e r e x — a
1/3
2
for C a M n 0 3
6
and x —
C a M n O , s u g g e s t i n g t h a t t h e y are r e l a t e d to t h e A a . M n 0 4
s
s c r i b e d b y F o u a s s i e r et a l .
2
1/4
for
phases
de
(13).
Below 890°C a compound
h a v i n g a C a / M n r a t i o of 2 / 3
becomes
stable. T h e r m o g r a v i m e t r i c analysis gives a f o r m u l a of C a M n 0 2
w h i c h i n d i c a t e s that a l l m a n g a n e s e
are 4 + .
Ca Mn 0 2
3
8
3
(14),
8
is a l a y e r e d
Downloaded by MONASH UNIV on June 7, 2013 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1970-0186.ch007
s t r u c t u r e c o n s i s t i n g o f i n f i n i t e m a n g a n e s e o x i d e sheets h e l d together Ca
2 +
i n trigonal prismatic coordination w i t h oxygen
by
(15).
T h e s o l i d s o l u t i o n p r e c u r s o r t e c h n i q u e w a s t h e o n l y synthesis m e t h o d f o u n d to y i e l d t h e l o w - t e m p e r a t u r e C a - M n - O c o m p o u n d s i n p u r e f o r m . C o n v e n t i o n a l s o l i d state r e a c t i o n m e t h o d s w o u l d y i e l d these
compounds
o n l y as constituents of m u l t i p h a s e m i x t u r e s , e v e n after p r o l o n g e d hundred hours) regrindings. CaMn0
3
firings
(several
at 8 0 0 ° - 9 0 0 ° C w i t h n u m e r o u s i n t e r r u p t i o n s f o r
T h e l o w - t e m p e r a t u r e phases d i s c u s s e d a b o v e , a l o n g w i t h
a n d C a M n 0 , w e r e the o n l y phases e n c o u n t e r e d i n the M n - r i c h 2
4
p o r t i o n o f the p h a s e d i a g r a m , a l t h o u g h syntheses f r o m precursors
of
intermediate compositions were tried. A s m i g h t be expected
f r o m t h e presence
of
a n u m b e r of
mixed-
v a l e n c e phases, the r e a c t i o n k i n e t i c s of the l o w e r - (less t h a n 1 0 0 0 ° C ) t e m p e r a t u r e p h a s e d i a g r a m are v e r y sensitive to several e x p e r i m e n t a l v a r i a b l e s . S u b t l e changes i n the o x y g e n p a r t i a l pressure d u r i n g r e a c t i o n h a v e r a t h e r d r a m a t i c effects o n the r e a c t i o n k i n e t i c s . S u c h changes i n the o x y g e n ' p a r t i a l pressure m a y b e b r o u g h t a b o u t b y the presence r e s i d u a l surface species.
of
F o r example, washing the solid solution pre
cipitate precursor w i t h a hydrocarbon
c a n i m p e d e the a t t a i n m e n t o f
single-phase p r o d u c t s . P r e s u m a b l y d u r i n g d e c o m p o s i t i o n i n t h e presence of h y d r o c a r b o n s , a C O / C 0
2
a t m o s p h e r e is l o c a l l y g e n e r a t e d a t r e a c t i o n
interfaces. T h e i n i t i a l r e d u c i n g a t m o s p h e r e w i l l f a v o r f o r m a t i o n of phases with M n
3 +
, w h i c h m u s t t h e n react to f o r m the e q u i l i b r i u m p h a s e .
In a
similar manner, g r i n d i n g the starting materials or intermediate products u n d e r a c e t o n e has a m a r k e d effect o n t h e a b i l i t y t o a t t a i n e q u i l i b r i u m . I n fact, g r i n d i n g u n d e r acetone a n d t h e n r e d u c i n g atmosphere that C a M n O 4
s
firing
causes
a sufficiently
( w h i c h has a h i g h M n
r e l a t i v e to its d e c o m p o s i t i o n p r o d u c t s , C a M n O 3
e
and C a M n O 7
content
4 +
i 2
) cannot
b e f o r m e d . T h i s i n d i c a t e s that e v e n t h o u g h t h e r e a c t i o n is c a r r i e d out at t h e r i g h t t e m p e r a t u r e a n d o x y g e n p a r t i a l pressure, t h e r e a c t i o n k i n e t i c s for
the
formation
of
CaMn^Og from
CaMn 0 3
6
and
CaMn O 7
i 2
are
very slow. We
have observed
that the decomposition
of
the solid solution
In Solid State Chemistry: A Contemporary Overview; Holt, S., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
7.
Solid State
LONGO E T A L .
149
Precursors
p r e c u r s o r does not a l w a y s d i r e c t l y l e a d to t h e d e s i r e d p r o d u c t .
For
e x a m p l e , a p p r o p r i a t e c a l c i t e precursors f o r C a M n O i o a n d for C a M n 0 7 , 4
upon decomposition
i n oxygen,
consist p r e d o m i n a n t l y of C a M n 0
3
l e a d to m i x e d - p h a s e and C a M n 0 .
3
2
3
2
products,
which
I t is a p p a r e n t t h a t t h e
4
u n u s u a l l y h i g h s t a b i l i t y of t h e p e r o v s k i t e (16) structures of C a M n 0
3
a n d perovskite-related
a n d C a M n 0 , r e s p e c t i v e l y , create l a r g e d r i v i n g 2
4
forces, w h i c h i n t u r n create u n f a v o r a b l e k i n e t i c s f o r t h e f o r m a t i o n of C a M n O i o and C a M n 0 . 4
3
3
2
T h e p u r i t y of r e a c t i o n p r o d u c t s c a n also b e
7
affected b y t h e h e a t i n g rate e m p l o y e d .
Precursors should be introduced
i n t o a f u r n a c e t h a t has a l r e a d y b e e n p r e h e a t e d to t h e r e a c t i o n t e m p e r a ture. E x c e s s i v e l y s l o w h e a t i n g rates are to b e a v o i d e d , since t h e y p e r m i t
Downloaded by MONASH UNIV on June 7, 2013 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1970-0186.ch007
the f o r m a t i o n of n o n e q u i l i b r i u m phases.
F o r example, Cai-a-Mn^COs
p r e c u r s o r s w i l l s l o w l y d e c o m p o s e at l o w temperatures
(about 500°C)
to y i e l d M n oxides a n d C a - r i c h c a r b o n a t e . T h e d e c o m p o s i t i o n t e m p e r a t u r e s f o r t h e n e w l o w - t e m p e r a t u r e phases a r e v e r y sensitive to t h e e q u i l i b r i u m o x y g e n pressure. O n c e t h e phases h a v e b e e n f o r m e d b y c o n t r o l of t e m p e r a t u r e t r e a t m e n t at 1 a t m 0 , t h e y 2
c a n b e d e c o m p o s e d b y s w i t c h i n g to f l o w i n g a i r — o r m o r e d r a m a t i c a l l y b y firing i n stagnant a i r . F o r e x a m p l e , C a M n 0 , w h o s e 4
t e m p e r a t u r e i n flowing 0 stagnant a i r .
8
decomposition
is 9 1 0 ° C , w i l l d e c o m p o s e i f fired at 8 1 0 ° C i n
2
T h e effect o n t h e s t r u c t u r a l l y r e l a t e d C a M n 0 3
6
is less
p r o n o u n c e d , p r e s u m a b l y b e c a u s e i t contains a l o w e r p e r c e n t a g e of M n . 4 +
A
firing
a t m o s p h e r e of p u r e C 0
2
destabilizes a l l t h e
low-temperature
phases ( C a M n 0 , C a M n O , C a M n 0 , a n d C a M n O i ) to t e m p e r a t u r e s 2
3
8
3
e
4
8
7
2
at least as l o w as 7 0 0 ° C . For
the c o m p o u n d s
i n the m a n g a n e s e - r i c h p o r t i o n of t h e
d i a g r a m there is a clear c o r r e l a t i o n b e t w e e n the p e r c e n t a g e of M n the
decomposition
temperature
i n 1-atm
0 . 2
The
one
phase 4 +
exception
and is
C a M n 0 , w h i c h is a n e x t r e m e l y r e f r a e t o r y p h a s e d e s p i t e t h e f a c t t h a t a l l 3
its m a n g a n e s e is M n . T h i s i n c r e a s e d t h e r m a l s t a b i l i t y c a n b e u n d e r s t o o d 4 +
i n terms of the u n i q u e s t a b i l i t y offered b y t h e p e r o v s k i t e s t r u c t u r e as w e l l as its r e l a t i v e l y h i g h c a l c i u m content.
Conclusions T h e s o l i d s o l u t i o n p r e c u r s o r t e c h n i q u e has b e e n i n t r o d u c e d as a n effective m e t h o d f o r m i x e d - m e t a l - o x i d e synthesis. W e h a v e f o u n d t h a t t h e a t o m i c scale m i x i n g of cations i n s o l i d s o l u t i o n precursors h a v i n g t h e oalcite s t r u c t u r e results i n the a b i l i t y to synthesize f u l l y r e a c t e d m i x e d m e t a l oxides at s i g n i f i c a n t l y l o w e r t e m p e r a t u r e s a n d i n shorter t i m e s t h e n are r e q u i r e d for c o n v e n t i o n a l s o l i d state synthesis t e c h n i q u e s .
These
l o w e r t e m p e r a t u r e s of r e a c t i o n h a v e y i e l d e d oxides w i t h surface areas t h a t are 10 to 100 times h i g h e r t h a n the same oxides p r e p a r e d b y c o n v e n t i o n a l methods.
In Solid State Chemistry: A Contemporary Overview; Holt, S., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
150
SOLID S T A T E C H E M I S T R Y :
Not only
A CONTEMPORARY
does t h e s o l i d s o l u t i o n p r e c u r s o r
OVERVIEW
synthesis r o u t e
give
h i g h e r - s u r f a c e - a r e a c o m p l e x oxides, b u t i t also p r o v i d e s a n a p p r o a c h t o t h e d i s c o v e r y o f t o t a l l y n e w m a t e r i a l s t h a t are n o t stable at t h e h i g h e r t e m p e r a t u r e s t h a t u s u a l l y c h a r a c t e r i z e c o n v e n t i o n a l s o l i d state reactions. F o r e x a m p l e , t h e s o l i d s o l u t i o n p r e c u r s o r t e c h n i q u e has a l l o w e d u s t o assemble a n e w s u b s o l i d u s C a - M n - O p h a s e d i a g r a m c o n t a i n i n g s e v e r a l n e w l o w - t e m p e r a t u r e phases. T h e s o l i d s o l u t i o n p r e c u r s o r synthesis r o u t e is t h o u g h t t o h a v e w i d e a p p l i c a b i l i t y since M g , C a , C d , M n , F e , C o , N i , a n d Z n carbonates a l l f o r m t h e c a l c i t e structure. A l l t h e m o n o x i d e s o f these same
elements,
p l u s those o f S r a n d B a , f o r m t h e r o c k salt s t r u c t u r e , t h e r e b y p r o v i d i n g
Downloaded by MONASH UNIV on June 7, 2013 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1970-0186.ch007
a n alternate l o w - t e m p e r a t u r e synthesis r o u t e u t i l i z i n g r o c k salt s t r u c t u r e , s o l i d s o l u t i o n precursors. T h e s e r o c k salt precursors m a y b e o b t a i n e d b y decomposition,
i n i n e r t o r r e d u c i n g atmospheres,
calcite precursor.
of t h e a p p r o p r i a t e
T h e a r a g o n i t e g r o u p represents a n o t h e r c o l l e c t i o n of
m e t a l carbonates that c a n b e effectively e m p l o y e d as s o l i d s o l u t i o n p r e cursors.
A r a g o n i t e is a p o l y m o r p h of c a l c i t e , a n d t h e cations t h a t w i l l
c r y s t a l l i z e w i t h its s t r u c t u r e i n c l u d e c a l c i u m , s t r o n t i u m , l e a d , a n d b a r i u m . Acknowledgments We
gratefully acknowledge
t h e assistance of H . J . B r a d y , J . T .
L e w a n d o w s k i , a n d G . Springston i n the preparation a n d characterization of t h e m a t e r i a l s m e n t i o n e d i n this s t u d y .
Literature Cited 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16.
Schnettler, F. J.; Monforte, F. R.; Rhodes, W. W. Sci. Ceram. 1968, 4, 79. Kim, Y. S.; Monforte, F. R. Am. Ceram. Soc. Bull. 1971, 50, 532. Stuijts, A. L. Sci. Ceram. 1970, 5, 335. Sato, T.; Kuroda, C.; Saito, M. Ferrites: Proc. Int. Conf. Jpn. 1970, 72. Clabaugh, W. S.; Swiggard, E. M.; Gilchrist, J. J. Res. Natl. Bur. Stand. 1956, 56, 289. Gallagher, P. K.; Johnson, D. W. Thermochim. Acta 1972, 4, 283. Clavenna, L. R.; Longo, J. M.; Horowitz, H . S. U.S. Patent 4 060 500, 1977. Pantony,D.A.;Siddiqi. Talanta 1962, 9, 811. Horowitz, H. S.; Longo, J. M . Mater. Res. Bull. 1978, 13, 1359. Bochu, B.; Chenevas, J.; Joubert, J. C.; Marezio, M. J. Solid State Chem. 1974, 11, 88. Joubert, J. C., private communication. Toussaint, H . Rev. Chim. Miner. 1964, 1, 141. Fouassier, C.; Delmas, C.; Hagenmuller, P. Mater. Res. Bull. 1975, 10, 443. Horowitz, H. S.; Longo, J. M. U.S. Patent 4 049 790, 1977. Ansell, G. B.; Horowitz, H . S.; Longo, J. M. "International Conference of Crystallography, 11th," Poland, 1978, 157. Yoshimura, M.; Nakamura, T.; Sata, T. Bull. Tokyo Inst. Technol. 1974, 120, 13.
RECEIVED September 15, 1978.
In Solid State Chemistry: A Contemporary Overview; Holt, S., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1980.