7 Metabolites of Various Penicillium Species Encountered on Foods
Mycotoxins and Other Fungal Related Food Problems Downloaded from pubs.acs.org by YORK UNIV on 12/04/18. For personal use only.
A. E. POHLAND and P. MISLIVEC Bureau of Foods, Food and Drug Administration, Washington, D. C. 20204 The number of species in the genus Penicillium which have been shown to produce toxic metabolites is great. A survey of the literature concerning the frequency of occurrence of Penicillium species on foods and feeds has been made, and 13 species have been identified as common contaminants of foods and feeds. The chemistry and toxicological properties of the metabolites produced by these 13 species are discussed. Molds are ubiquitous in nature; in fact it is hard to specify an area or place where a mold will not grow and proliferate. This fact engen dered a tremendous impetus to study molds and the metabolites produced by molds. These studies progressed to the point where one may con fidently say that molds can produce many secondary metabolites—some of which are acutely toxic and some of which have other toxic manifesta tions (i.e., mutagenicity, teratogenicity, or carcinogenicity). However it was not until 1960 (when the problem of aflatoxin, elaborated by the mold Aspergillus flavus, became apparent) that concern arose over these metabolites in foods and feeds. Since that time mold species of many genera besides Aspergillus have been implicated as being capable of producing mycotoxins in foods and feeds; many of these toxins have been identified as the causative agents in various animal illnesses and deaths. Since the number of species in the genus Penicillium known to pro duce toxic metabolites is extensive, it is necessary to exert some caution in assessing the significance of these findings. The studies of the toxins produced by the various Penicillium species over the past decade have implicated the molds in illnesses and deaths of animals. It is therefore essential to evaluate carefully the hazardous potential to humans result ing from exposure to these toxins. To evaluate properly its hazardous potential, one must determine the species of Penicillium that produce mycotoxin in foods and feeds. For 110
7.
POHLAND AND MiSLivEC
of Pénicillium Species
Metabolites
111
e a c h species o n e m u s t c o n s i d e r the f o l l o w i n g p o i n t s : ( a ) h o w f r e q u e n t l y is the species e n c o u n t e r e d a n d o n w h a t f o o d s ; ( b ) w h a t q u a n t i t y of s u c h f o o d is c o n s u m e d b y h u m a n s a n d at w h a t age g r o u p ; ( c ) m e n t a l c o n d i t i o n s are r e q u i r e d b y t h e species m y c o t o x i n s the species
produces;
of a g i v e n species p r o d u c e s
(e)
(g)
which
w h a t p r o p o r t i o n of t h e isolates
the t o x i n ; ( f )
t o x i g e n i c isolate p r o d u c e s ;
what environ
for g r o w t h ; ( d )
h o w m u c h of the t o x i n t h e
h o w t o x i c the t o x i n is i n terms of b o t h
a m o u n t a n d effects; ( h ) does t h e t o x i n o c c u r i n foods a n d feeds, a t w h a t c o n c e n t r a t i o n , a n d is t h e t o x i n stable to f o o d p r o c e s s i n g ; ( i ) are species t h a t o c c u r f r e q u e n t l y b u t w i t h n o h i s t o r y of t o x i g e n i c i t y a c t u a l l y t o x i c ( P . funiculosum
i n field c o r n , for e x a m p l e ) .
T o a n s w e r these questions w e m u s t c o n s i d e r t h e f o l l o w i n g ( a ) t h e t y p e of f o o d w i l l often d e t e r m i n e the m o l d flora, e.g.,
facts:
P.
urticae
is c o m m o n l y f o u n d i n w h e a t flour p r o d u c t s b u t r a r e l y f o u n d i n c o r n o r beans; ( b )
t h e s o u r c e a n d p r o c e s s i n g stage of t h e f o o d also d e t e r m i n e s
t h e flora, e.g.,
a n d P . funiculosum
P. oxalicum
are c o m m o n l y f o u n d
c o r n i n the field w h e r e a s i n storage P . cyclopium predominate; (c)
and P.
on
viridicatum
c o n d i t i o n s of t e m p e r a t u r e a n d m o i s t u r e p r i o r t o a n d
d u r i n g f o o d storage g r e a t l y i n f l u e n c e the m o l d flora; ( d )
detection a n d
i d e n t i f i c a t i o n of t h e m o l d species is n o t a l w a y s s t r a i g h t f o r w a r d . T h i s is p a r t i c u l a r l y t r u e for species of Pénicillium;
m o s t species of Pénicillium
are
difficult to i d e n t i f y a n d are f r e q u e n t l y r e f e r r e d to i n t h e l i t e r a t u r e as a Pénicillium
sp. O t h e r s a r e s l o w g r o w e r s ( e.g., P. islandicum
purogenum)
and P.
pur-
a n d m a y g o u n d e t e c t e d b e c a u s e of t h e o v e r g r o w t h of fast
g r o w i n g species
of Pénicillium
or some o t h e r genus
(e.g.,
Rhizopus).
F r o m o u r o w n studies i t is a p p a r e n t t h a t t h e m a n n e r i n w h i c h t h e m o l d s are i s o l a t e d f r o m t h e f o o d is i m p o r t a n t . F o r e x a m p l e , to d e t e r m i n e t h e m o l d flora of p e p p e r c o r n s , the i s o l a t i o n m e d i u m u s e d w a s agar, a n d m u c h P . islandicum
potato-dextrose
w a s d e t e c t e d ; w i t h d r i e d beans,
however,
m a l t agar w i t h 7 . 5 % N a C l h a d to b e u s e d t o p r e v e n t b e a n g e r m i n a t i o n o n t h e p l a t e , a n d n o P . islandicum
was observed.
I t is p o s s i b l e t h a t t h i s
species w a s n o t a b l e to e s t a b l i s h g r o w t h o n t h e l a t t e r m e d i u m . C o n s i d e r i n g these facts w e p r o p o s e d
t h a t t h e Pénicillium
species
listed i n T a b l e I should be carefully investigated a n d evaluated for their Table I.
Pénicillium
Species Encountered on Foods and Feeds
I P. P.
cyclopium viridicatum
III
II P. P. P. P. P.
oxalicum expansum chrysogenum brevi-compactum funiculosum
P. P. P. P. P. P.
urticae islandicum citrinum variable fréquentons purpurogenum
112
MYCOTOXINS
h a z a r d o u s p o t e n t i a l a r i s i n g f r o m t h e i r o c c u r r e n c e o n foods a n d feeds ( J ) . T h i s list is b a s e d o n the extensive e x p e r i e n c e of m y c o l o g i s t s r e l a t i v e to t h e p r e s e n c e a n d r a t e o f o c c u r r e n c e of these Pénicillium a n d feeds. three
T h e o c c u r r e n c e of Pénicillium
groups:
group
quently encountered,
I—very
species o n f o o d s
species is l i s t e d i n T a b l e I i n
frequently encountered,
and group
III—occasionally
group
II—fre
encountered.
The
m e t a b o l i t e s e l a b o r a t e d b y e a c h of these species w i l l b e d i s c u s s e d l a t e r . S o m e o f the F D A - g e n e r a t e d d a t a c o n c e r n i n g n a t u r a l o c c u r r e n c e o n w h i c h T a b l e I is b a s e d are f o u n d i n T a b l e s I I a n d I I I ( 2 , 3 ) . Table II. Toxicogenic Penicillia Isolated from Commodities D u r i n g F D A Surveys % Commodity
SD
NSD
Species
Dried Beans (114 Samples)
Incidence*
Mycotoxin
0.1 — — 10 of 10 0.4 C i t r i n i n 38 of 51 3.3 P e n i c i l l i c Acid 3 of 15 2.4 C i t r i n i n O o f 15 2.4 O c h r a t o x i n 9 of 9 0.1 P a t u l i n 9 of 9 0.1 G r i s e o fulvin
P. P. P.
brevi-compactum citrinum cyclopium
1.7 3.5 17.3
P. P. P. P.
viridicatum viridicatum urticae urticae
18.0 18.0 0.4 0.4
White Pepper corns (24 Samples)
P. P.
islandicum citrinum
98.0 2.9
2.8 — 23.0 C i t r i n i n
Black Pepper corns (108 Samples)
P. P.
islandicum citrinum
0.1 1.4
0.0 — 0.0 C i t r i n i n
β
No. Isolates Positive
—
10 of 10
—
lof
1
N S D = not surface disinfected; S D = surface disinfected.
S e v e r a l other studies s u p p o r t the i m p o r t a n c e of the species of cillium
l i s t e d i n T a b l e I as i n v a d e r s of foods a n d feeds.
species of Pénicillium P. expansum cyclopium,
Péni-
I n a s t u d y of the
c a p a b l e of r o t t i n g p o m a c e o u s f r u i t s ( i n a d d i t i o n to
w h i c h is n o t o r i o u s i n this r e s p e c t ) M i s l i v e c f o u n d t h a t P. P. funiculosum,
a n d P. purpurogenum
rotters of a p p l e a n d a p p l e p r o d u c t s
w e r e h i g h l y effective
(4).
M i s l i v e c a n d T u i t e ( 5 ) also s t u d i e d d e n t c o r n kernels o b t a i n e d f r o m fields at harvest, f r o m cribs a n d b i n s , a n d f r o m e x p e r i m e n t a l storage tests d u r i n g 1964-1968.
Pénicillium
stored corn (6.4%
o f kernels i n f e c t e d ) , i n c r i b s a m p l e s ( 1 3 . 4 % ) , a n d
species w e r e f o u n d consistently i n u n -
i n c o m m e r c i a l samples of p o o r q u a l i t y . T h e c h i e f species i s o l a t e d f r o m u n s t o r e d kernels w e r e P. oxalicum, P. cyclopium.
P. funiculosum,
a n d to a l i m i t e d extent
T h e c h i e f species i s o l a t e d f r o m s t o r e d kernels w e r e P.
7.
P O H L A N D
A N D
Metabolites
M I S L I V E C
of Pénicillium Species
113
Table III. Incidence of Penicillia in 11 Wheat Paste Product Samples No. Samples with Each Species
Species P. Ρ. P. P. P. P. P. P.
cyclopium,
11 2 2 4 1 5 11 5
cyclopium fréquentons funiculosum islandicum luteum purpurogenum urticae viridicatum
P.
brevi-compactum,
of of of of of of of of
11 11 11 11 11 11 11 11
a n d P . viridicatum.
Hesseltine a n d
G r a v e s ( β ) f o u n d i n a n e x h a u s t i v e s t u d y t h a t P. cyclopium, a n d P . citrinum
P.
urticae,
o c c u r r e d most f r e q u e n t l y i n flour a n d r e f r i g e r a t e d d o u g h
products. Finally Ciegler, Mintzlaff, and Leistner (7) of 422 Pénicillium
reported the isolation
strains f r o m 44 m o l d - r i p e n e d sausages c o l l e c t e d i n 11
c o u n t r i e s ; P . viridicatum
a n d P . expansum
w e r e most f r e q u e n t l y e n c o u n
tered. E a r l i e r studies b y L e i s t n e r a n d A y r e s ( 8 ) of m o l d s o c c u r r i n g o n c u r e d meats (sausages a n d h a m s ) s h o w e d Pénicillium 89%
of the sausages a n d o n 8 3 % of t h e h a m s .
o b s e r v e d m o l d s b e l o n g e d to P . expansum, num, P. commune,
and P.
species present o n
T h e most frequently
P. janihinellum,
P.
chrysoge-
viridicatum.
T a b l e I V is a n a t t e m p t to s u m m a r i z e t h e v a r i o u s l i t e r a t u r e reports of o b s e r v e d illnesses a n d deaths of e x p e r i m e n t a l a n i m a l s w h e n e x p o s e d to a substrate m o l d e d w i t h t h e Pénicillium
species l i s t e d i n T a b l e I. A l s o
i n c l u d e d are n a t u r a l o u t b r e a k s of mycotoxicoses.
S e v e r a l r e v i e w articles
also a p p e a r e d i n w h i c h v a r i o u s species of Pénicillium
have been i m p l i
c a t e d i n mycotoxicoses; thus B o r k e r a n d c o - w o r k e r s ( 9 ) c i t e d 2 2 species of Pénicillium
as b e i n g m y c o t o x i g e n i c i n c l u d i n g P . citrinum,
P. islandicum,
P. expansum,
White
P.
a n d P . urticae.
cyclopium, Brook and
( J O ) h a v e l i s t e d 26 species i n c l u d i n g P . brevi-compactum,
chrysogenum, urticae,
P. purpurogenum,
and P.
P. citrinum,
P. cyclopium,
P. islandicum,
P. oxalicum,
P. P.
vindicatum.
O n c e studies s u c h as those o u t l i n e d a b o v e h a v e i d e n t i f i e d m o l d s f r e q u e n t l y f o u n d o n foods a n d feeds, w e c a n d e t e r m i n e w h a t m e t a b o l i t e s a r e p r o d u c e d b y a p a r t i c u l a r species a n d w h e t h e r these m e t a b o l i t e s are toxic. T h e s e questions are p a r t i c u l a r l y r e l e v a n t i f the f o o d or f e e d asso c i a t e d w i t h the f u n g a l species has b e e n i m p l i c a t e d i n a n i m a l illnesses or deaths. W i t h this i n m i n d let us e x a m i n e the k n o w n i n f o r m a t i o n r e l a t i v e to e a c h of the m o l d s l i s t e d i n T a b l e I.
114
MYCOTOXINS
Table I V . Mold P.
cyclopium
corn corn corn c o r n , beans, pickles a a
P.
viridicatum
Subject
Substrate
—
flour,
Pénicillium—
rat mouse sheep cattle mouse
maize barley corn rice rice r i c e , w h e a t , flour, beans, seaweeds
swine, horses pigs, r a t s mice, rats, guinea pigs mice rats mouse
α
α
P.
oxalicum
maize meal corn r i c e , m i s o , beans
ducks, mice, rats mouse mouse
P.
expansum
P.
chrysogenum
culture corn cereal corn cereal miso corn
Japanese q u a i l mouse rabbit mouse rabbit mouse mouse
maize meal malt flour
mouse cattle mouse
flour
mouse
rice rice rice
mouse human chick mouse
P.
brevi-compactum
P.
funiculosum
P.
urticae
filtrate
a
P.
islandicum
P.
citrinum
w h e a t , flour, beans
P.
variable
corn
P.
fréquentons
P.
purpurogenum
β
mouse
corn rice, wheat, grain corn
flour
mouse chicks mouse
Natural outbreaks of mycotoxicoses.
Group
I
I n terms of f r e q u e n c y of o c c u r r e n c e i n foods a n d feeds P . a n d P . vindicatum
cyclopium
a p p e a r to b e m o s t i m p o r t a n t . B o t h of these species
h a v e b e e n studied extensively, a n d they apparently produce
a host
of
s e c o n d a r y m e t a b o l i t e s , s o m e of w h i c h are e x t r e m e l y t o x i c a n d s o m e of
7.
P O H L A N D
A N D
M I S L I V E C
Metabolites
of Pénicillium Species
115
Mycotoxicoses Associations Effects (Oral)
Ref.
focal necrosis of m o s t organs, d e a t h l i v e r a n d k i d n e y lesions death death hepatotoxic, nephrotoxic
11,10 12 18 14 26
poisoning c h r o n i c k i d n e y degeneration l i v e r lesions, d e a t h pulmonary tumors h e p a t i c , r e n a l , gastric a n d s c r o t a l lesions neurotoxic, hepatotoxic, nephrotoxic
15 16 17, 18 19 20 26
death reduction i n weight gain, death hepatotoxic, nephrotoxic l i v e r lesions reduction i n weight gain skin reaction death skin reaction nephrotoxic, death reduction i n weight gain death death nephrotoxic hepatotoxic, nephrotoxic hepatoma hepatotoxic, death e d e m a of leg death nephrotoxic reduction i n weight gain, death
21,10 22 26 23 22 24, 10 22 24, 10 26 22 21 25 26 26 27, 28, 29
26 22
reduction i n weight gain, death
22
hepatotoxic, nephrotoxic congestion, h e m o r r h a g e , l i v e r a n d k i d n e y d a m a g e l i v e r lesions
26 SO 22
w h i c h are k n o w n t o e x h i b i t o t h e r t o x i c m a n i f e s t a t i o n s . I n e a c h instance t h e m o l d has b e e n i m p l i c a t e d as t h e c a u s a t i v e o r g a n i s m i n m a n y cases of a n i m a l illness a n d d e a t h (see P . cyclopium.
Table I V ) .
E x t e n s i v e studies of this o r g a n i s m r e s u l t e d i n t h e
i d e n t i f i c a t i o n of a v a r i e t y of m y c o t o x i n s , s o m e of w h i c h h a v e b e e n c o m m o n l y associated w i t h other m o l d species.
F o r example, ochratoxin A
116
MYCOTOXINS
(Structure I ) , a mycotoxin more commonly ochraceus,
associated w i t h
has b e e n f o u n d to b e p r o d u c e d b y P. cyclopium
t o x i n A is a c u t e l y t o x i c ( L D
5 0
=
Aspergillus
(31).
Ochra
2 0 - 2 2 m g / k g , r a t , o r a l ) (32)
a n d has
b e e n i m p l i c a t e d as a p o t e n t teratogen p e n i c i l l i c a c i d ( S t r u c t u r e I I ) (34),
(33).
P. cylopium
a mycotoxin
also p r o d u c e s
( L D o = 12 m g / 2 0 g , 3
m o u s e , o r a l ) ( 3 5 ) t h a t has b e e n i m p l i c a t e d as a possible c a r c i n o g e n a n d t h a t is p r o d u c e d b y at least 12 other species of Pénicillium.
(36)
Later a
series o f e x t r e m e l y toxic t r e m o r g e n i c toxins w e r e i s o l a t e d f r o m P . cyclopium
(37);
these i n c l u d e p e n i t r e m A ( L D
penitrem Β ( L D
5 0
=
5 0
1.05 m g / k g , m o u s e , I P ) ,
= 5.84 m g / k g , m o u s e , I P ) , a n d p e n i t r e m C . T h e s e
m a t e r i a l s w i l l b e d e s c r i b e d i n C h a p t e r 10. Table V . Compound
Formula
Ochratoxin A Penicillic acid Penitrem A (Tremortin A ) Penitrem Β (Tremortin B ) Cyclopiazonic acid Cyclopiazonic acid imine Bissecodehydrocyclopiazonic acid Cyclopiamine Cyclopeptin Dehydrocyclopeptin Cyclopenin Cyclopenol
C20H22N2O3
Viridicatin Viridicatol Palitantin Puberulic acid Puberulonic acid Cyclopolic acid Cyclopaldic acid Isoerythritol Mannitol E m o d i c acid ω-Hydroxyemodin
C H 0 N CuHuOjN Ci H 0 CsKUOe C9H 0 CnHiuOe CnHioOe C Hxo0 CeHuOe CuH80 CisHioOe
C oH 2
1 8
CIN0
C8H10O4 C37H44O6NCI C37H45O5N C20H20N2O3
C20H21N3O2
C26H33N3O5
Ci C Ci C
7
1 7 7
1 7
H H H H
1 6 1 4 1 4 1 4
1 5
4
4
N N 0 0
2 2 3 4
n
2
2 2
4
7
4
4
7
0 0 N N
2 2 2 2
MW 6
404 170 633 583 336 335 338 468 280 278 294 310 237 253 254 198 224 240 238 122 182 300 286
P.
cyclopium M.P.,
°C
169-72 86 237-9d 185-95d 245-6 277-8 168-9
95 202 184 210-11 215d 268 280 164-5 318 298d 147d 224-5 116-20 166-8 363-5 288
7.
POHLAND AND MISLIVEC
CYCLOPIAZONIC ACID IMINE IV
Metabolites
of Pénicillium Species
BISSECODEHYDRO CYCLOPIAZONIC ACID V
CYCLOPIAMINE VI
P . cyclopium p r o d u c e s m a n y o t h e r m e t a b o l i t e s (see these a r e a g r o u p o f c o m p l e x
Table V ) ; among
alkaloids: cyclopiazonic acid
I I I ) , cyclopiazonic acid imine (Structure I V ) , zonic acid (Structure V ) , and cyclopiamine
117
(Structure V I ) .
z o n i c a c i d has b e e n s t u d i e d t o x i c o l o g i c a l l y (51)
(Structure
bissecodehydrocyclopiaCyclopia
a n d is a p p a r e n t l y t h e
m a j o r t o x i c c o m p o n e n t i n c e r t a i n P . cyclopium isolates; 2.3 m g A g
(male
rat, I P ) caused convulsions followed b y death suggesting that i t m a y act as a n e u r o t o x i n .
O r a l administration d i d not cause convulsions.
The
m a j o r site of a c t i o n of t h e t o x i n o n o r a l a d m i n i s t r a t i o n a p p e a r e d to b e t h e spleen a n d the k i d n e y ( L D
5 0
— 36 m g / k g , m a l e r a t , o r a l ) .
Metabolites UV, nm
(solvent)
215, 226 295, 227, 225, 224, 225,
333 ( E t O H ) (H 0) 333 ( M e O H ) 286, 297sh ( M e O H ) 253, 384 ( M e O H ) 293 ( M e O H ) 276, 296sh ( M e O H )
293 286 211, 285
(MeOH) (MeOH) 290 (EtOH)
2
230, 320 ( E t O H ) 226, 284, 304sh, 316, 329sh ( M e O H ) 232
245, 278, 322
Ref. 82 88 89 89 Jfi 41 41 42 48 43 44 44 45 45 46 47 47 48 48 49 49 50 50
118
MYCOTOXINS
Ο
Η »H
Η VIRIDICATIN XI
VIRIDICATOL XII
Figure 1.
Ρ
P . cyclopium metabolites
T h e s t r u c t u r a l e l u c i d a t i o n o f these c o m p l e x m a t e r i a l s i s d e s c r i b e d i n a r e v i e w a r t i c l e b y H o l z a p f e l (42) as w e l l as i n m a n y p r e v i o u s p u b l i c a tions b y t h e same a u t h o r ; f o r S t r u c t u r e I I I this i n v o l v e d b a s i c a l l y r e c o g nition a n d combination of t h e indole nucleus a n d t h e tenuazonic systems.
acid
T r e a t m e n t o f c y c l o p i a z o n i c a c i d w i t h 2 5 % aqueous a m m o n i a
g e n e r a t e d S t r u c t u r e I V w h i c h a c c u m u l a t e d d u r i n g later stages o f t h e f e r m e n t a t i o n process.
Structure V is probably a precursor of Structure
I I I since i t a c c u m u l a t e s d u r i n g e a r l y stages o f f e r m e n t a t i o n a n d i s c o n v e r t e d i n t o S t r u c t u r e I I I b y β - c y c l o p i a z o n a t e oxidocyclase t u r e V I a n d its stereoisomer cyclopium
isocyclopiamine
isolate f r o m m o l d y p e a n u t s
( 5 2 ) . Struc
were produced
Another group of interrelated alkaloids produced b y P . is
presumably
m e t h i o n i n e (43)
derived
from
cyclopenol
anthranilic acid,
cyclopium
S-phenylalanine, a n d
(see F i g u r e 1 ) . T h e s e i n c l u d e c y c l o p e p t i n
V I I ) , dehydrocyclopeptin
by a P.
(42).
(Structure
(Structure V I I I ) , cyclopenin (Structure I X ) ,
(Structure X ) , viridicatin
(Structure X I ) , a n d viridicatol
( S t r u c t u r e X I I ) . Structures X I a n d X I I w e r e i s o l a t e d a n d i d e n t i f i e d first. T h u s oxidative degradation of Structure X I readily yields oxalic a c i d and 2-aminobenzophenone,
w h i l e Structure X I I yields
2-amino-3'-hydroxy-
b e n z o p h e n o n e ( 4 5 , 53).
These structures were later confirmed through
t o t a l synthesis (53, 54).
T h e structures of t h e b e n z o d i a z e p i n a l k a l o i d s
( Structures I X a n d X ) w e r e m o r e d i f f i c u l t to o b t a i n ; h o w e v e r , d e g r a d a t i o n studies l e a d i n g t o a n t h r a n i l i c a c i d a n d t h e a p p r o p r i a t e b e n z o i c a c i d , as w e l l as p h y s i c a l d a t a , i n d i c a t e d t h e n a t u r e o f t h e r i n g s y s t e m i n v o l v e d (44).
A t that time i t was k n o w n that treatment w i t h a c i d
converted
Structures I X a n d X t o c a r b o n d i o x i d e , m e t h y l a m i n e , a n d v i r i d i c a t i n a n d
7.
P O H L A N D
viridicatol. (55).
A N D
Metabolites
M I S L I V E C
of Pénicillium Species
119
S t r u c t u r e s I X a n d X w e r e l a t e r c o n f i r m e d b y t o t a l synthesis
Furthermore an enzyme
l i u m o f P . viridicatum
(cyclopenase) obtained f r o m the myce
accomplished the same conversion
(57).
o n t h e f o r m u l a o f S t r u c t u r e I X i t w a s r e l a t i v e l y s i m p l e to
Based
formulate
Structures X I a n d X I I . N o studies h a v e b e e n r e p o r t e d r e l a t i v e t o the t o x i c i t y o f a n y of these m e t a b o l i t e s . F i n a l l y P . cyclopium
has b e e n r e p o r t e d to p r o d u c e a n u m b e r of other
metabolites i n c l u d i n g palitantin (Structure X I I I ) , p u b e r u l i c XIV)
(Structure
a n d puberulonic (Structure X V ) acids, cyclopolic (Structure X V I )
and cylopaldic (Structure X V I I ) acids, isoerythritol, m a n n i t o l , a n d a p a i r of a n t h r a q u i n o n e s , e m o d i c a c i d ( S t r u c t u r e X V I I I ) a n d ω-hydroxyemodin (Structure X I X )
(see
Table V ) .
N o t o x i c o l o g i c a l studies h a v e
been
r e p o r t e d f o r a n y o f these m a t e r i a l s . CHO Ο Η Ο , Α ^ Η
CH OH 2
O
H
C
Y ^ V
O
H
H OC^k^cH OCH CYCLOPOLIC ACID 2
s
3
HO^-^Xj^CHa OCH3
EMODIC ACID (R=C0 H) 2
CYCLOPALDIC ACID
-HYDOXYEMODIN (R=CH OH) 2
XVI
P . viridicatum. and
XVIII XIX
XVII
T h i s m o l d is f r e q u e n t l y e n c o u n t e r e d i n s t o r e d grains
o n d e c a y i n g v e g e t a t i o n of t h e s o i l ; i t has b e e n i m p l i c a t e d as t h e
c a u s a t i v e agent i n m a n y instances of a n i m a l illnesses a n d deaths Table I V ) .
T h e s e facts, a l o n g w i t h t h e r e p o r t (19)
of
i n m i c e a t t r i b u t e d to a d m i n i s t r a t i o n of r i c e cultures of P . engendered
extensive r e s e a r c h i n t o the metabolites
(see
carcinogenicity
produced
viridicatum by
this
m o l d . T h e s e studies a p p e a r to i n d i c a t e t h a t t h e r e p o r t e d t o x i c i t y associ a t e d w i t h this m o l d m u s t arise f r o m a v a r i e t y of m y c o t o x i n s , o n l y some of w h i c h have been identified. P . viridicatum
has b e e n o b s e r v e d
to p r o d u c e
m e t a b o l i t e s t h a t are p r o d u c e d b y P . cyclopium (56),
m a n y of the
viridicatin (15), viridicatol (57), cyclopenin and cyclopenol
cyclopolic
a n d c y c l o p a l d i c a c i d (48),
same
including ochratoxin
mannitol, and isoerythritol
A
(45), (see
T a b l e V ) . I n a d d i t i o n r e c e n t findings s h o w t h a t o c h r a t o x i n Β ( S t r u c t u r e
120
MYCOTOXINS
'3
CH
4-HYDROXYOCHRATOXIN A XX
3
CH
3
CITRININ •XXII
XXI
I ) , 4-hydroxyochratoxin A (Structure X X ) , a n d 7-carboxy-3,4-dihydro-8hydroxy-3-methyl isocoumarin vindicatum
(Structure X X I ) are elaborated
by P.
( 5 8 ) . T h e s e structures w e r e e l u c i d a t e d b y c a r e f u l l y e v a l u
a t i n g s p e c t r a l d a t a ; t o x i c o l o g i c a l studies i n d i c a t e t h a t these d e r i v a t i v e s o f o c h r a t o x i n A are r e l a t i v e l y n o n t o x i c ( 3 2 ) . K r o g h a n d co-workers
(16, 17) i n t h e i r studies o f f u n g a l n e p h r o
toxicity isolated a n d identified oxalic a c i d a n d citrinin (Structure X X I I ) f r o m corn-steep l i q u o r cultures o f P . viridicatum. o r i g i n a l l y f r o m P . citrinum
C i t r i n i n was isolated
cultures ( 5 9 ) . F r i i s , H a s s e l a g e r , a n d K r o g h
( 16) o b s e r v e d t h a t f e e d i n g S t r u c t u r e X X I I t o s w i n e r e s u l t e d i n a n e p h r o p a t h y s i m i l a r to t h e n a t u r a l l y o c c u r r i n g p o r c i n e n e p h r o p a t h y ; also c i t r i n i n w a s a c u t e l y toxic t o m i c e ( L D
5 0
= 3 5 m g / k g , S C ) (60).
M u c h effort
w a s e x p e n d e d t o assign t h e s t r u c t u r e o f c i t r i n i n ; i t w a s k n o w n ( 5 9 ) t h a t d i l u t e a c i d c o n v e r t e d c i t r i n i n i n t o t w o p h e n o l s (Αχ, o p t i c a l l y a c t i v e a n d B i , o p t i c a l l y i n a c t i v e ) t h a t w h e n f u s e d w i t h a base y i e l d e d a m a t e r i a l w i t h the empirical formula C H i 0 . 9
as 4 - m e t h y l - 5 - e t h y l - r e s o r c i n o l
2
2
T h i s m a t e r i a l w a s later i d e n t i f i e d
( F i g u r e 2 ) (61).
Beconverting the opti
cally actively phenol ( C i i H i 0 ) t o citrinin then established t h e structure 6
for citrinin
3
(61,62).
M y c o p h e n o l i c a c i d ( S t r u c t u r e X X I I I ) has also b e e n i s o l a t e d f r o m P . viridicatum compactum
(64).
T h i s m a t e r i a l w a s o r i g i n a l l y i s o l a t e d f r o m P . brevi-
a n d is often r e f e r r e d t o as t h e first a n t i b i o t i c substance i s o
lated a n d purified from molds
(LD
5 0
= 2500 m g / k g , m o u s e , o r a l ) .
OH
Figure 2.
The structure of citrinin
A
7.
POHLAND A N D MISLIVEC
MYCOPHENOLIC ACID XXIII
Metabolites
121
of Pénicillium Species
VIRIDICATIC ACID XXIV
TERRESTRIC ACID XXV
good review b y B . J . W i l s o n covering the structural identification a n d b i o l o g i c a l a c t i v i t y o f this m a t e r i a l has b e e n p u b l i s h e d (65). to m y c o p h e n o l i c tetronic
acids
a c i d c u l t u r e filtrates o f P . viridicatum viridicatic acid
(Structure
XXIV)
I n addition
also p r o d u c e t h e a n d terrestric
acid
(Structure X X V ) ; from the mycelium mannitol, isoerythritol, a n d ergos t e r y l p a l m i t a t e w e r e o b t a i n e d (66).
Structure X X I V was determined b y
r e l a t i n g its p h y s i c a l properties t o those o f c a r l o s i c a c i d w h i c h has a b u t y r y l g r o u p i n t h e «-position, a n d b y h y d r o l y s i s to n-hexanoic
a c i d a n d β-
hydroxylaevulic acid. T w o f u r t h e r metabolites o f P . viridicatum
have been isolated a n d
identified: brevianamide A (Structure X X V I ) ( 6 7 ) , a compound origi n a l l y i s o l a t e d f r o m P . brevi-compactum ture X X V I I )
( 6 8 ) , and xanthomegnin
( 6 9 ) , a c o m p o u n d originally isolated from
(A.B)
XANTHOMEGNIN XXVII
XXVI magnini
N e i t h e r o f these m a t e r i a l s appears
(70).
toxic to m i c e .
(Struc
Trichophyton
appreciably
orally
F i n a l l y a r e p o r t (71) r e c e n t l y a p p e a r e d d e s c r i b i n g a n e w
m y c o t o x i n , v i r i d i c u m t o x i n (C30H31NO10) ( L D
5 0
— 122.4 m g / k g , rat, oral),
T h e m o l d s i n this g r o u p a r e e n c o u n t e r e d
f r e q u e n t l y o n foods a n d
of u n k n o w n structure ( T a b l e V I ) . Group
II
feeds ( T a b l e I ) a n d h a v e t h e p o t e n t i a l to p r o d u c e t o x i n ( T a b l e I V ) . H o w e v e r these m o l d s h a v e n o t y i e l d e d t h e l a r g e n u m b e r s o f toxins n o t e d f o r G r o u p I m o l d s , n o r h a v e t h e y b e e n s t u d i e d as extensively ( w i t h t h e possible exception of P . P . oxalicum. from this m o l d .
chrysogenum).
V e r y f e w metabolites h a v e b e e n i s o l a t e d a n d i d e n t i f i e d I t p r o d u c e s o x a l i c a c i d (71) w h i c h a p p a r e n t l y i s t o x i c
122
MYCOTOXINS
Table V I . Compound
Formula
Ochratoxin Β 4-Hydroxyochratoxin A 7-Carboxy-3,4-dihy dro8-hydroxy-3-methyl isocoumarin Oxalic acid Citrinin Mycophenolic acid Viridicatic acid Terrestric acid Brevianamide A Xanthomegnin Viridicumtoxin
C oH N0 C oH CIN0 2
1 9
2
1 8
6
7
C11H10O5
C2H2O4 C13H14O5
Pénicillium
MW
M.P.,
369 419 222
220-1 216-8 223
90 250 320 256 211 365 574 565
101 175d 141 174.5 89 215-230 285-300d 211
o n l y i n e x t r e m e l y h i g h dosage. B e c e n t l y , h o w e v e r , P . oxalicum b e e n s h o w n to p r o d u c e s e c a l o n i c a c i d D
°C
has also
(Structure X X V I I I ) and two
n e w a l k a l o i d s of u n k n o w n s t r u c t u r e , one of w h i c h w a s c a l l e d o x a l i n e T a b l e V I I ) . T h e structure of secalonic a c i d D w a s d e t e r m i n e d
(see
spectro-
s c o p i c a l l y b y r e l a t i n g its p r o p e r t i e s to those of its o p t i c a l a n t i p o d e ( s e c a l o n i c a c i d A ) , one of the toxic p i g m e n t s e l a b o r a t e d b y Claviceps P. expansum. this m o l d species. patulin (73)
purpurea.
A g a i n l i t t l e is k n o w n of t h e m e t a b o l i t e s p r o d u c e d
by
T h e m a j o r t o x i n i s o l a t e d a n d i d e n t i f i e d appears to b e
( S t r u c t u r e X X I X ) w h i c h is m o r e c o m m o n l y associated w i t h
the m o l d P . urticae
(see
d i s c u s s i o n of P . urticae).
T h e fact that P.
expan
sum is t h e m a j o r c o n t r i b u t o r to a p p l e r o t has e n g e n d e r e d m u c h interest i n t h e p o s s i b l e o c c u r r e n c e of p a t u l i n i n a p p l e p r o d u c t s .
P . expansum
is
also k n o w n to p r o d u c e c u r v u l a r i n ( S t r u c t u r e X X X ) , a m a t e r i a l c l o s e l y r e l a t e d to the estrogenic m a t e r i a l z e a r a l e n o n e P. chrysogenum.
(106).
T h i s m o l d has b e e n e x t e n s i v e l y s t u d i e d f r o m the have not
been
r e p o r t e d for this species a l t h o u g h a w i d e d i v e r s i t y o f m e t a b o l i t e s
s t a n d p o i n t of p e n i c i l l i n p r o d u c t i o n .
have
ο SECALONIC XXVIII
OH ACID D
T o x i c metabolites
PATULIN ΧΧΙΧ
CURVULARIN ΧΧΧ
7.
P O H L A N D
A N D
123
of Pénicillium Species
Metabolites
M I S L I V E C
Metabolites
viridicatum
UV, nm (solvent)
Ref.
218, 318 ( E t O H ) 213, 334 ( E t O H ) 218, 322 ( E t O H )
58 58 58
16, 17 63 64 66 66 67 69 71
222, 253, 319 ( E t O H ) 230, 268 ( E t O H ) 234, 256sh, 405 ( M e O H ) 227, 290sh, 395 ( C H C 1 ) 237, 285, 317, 331, 347, 424 ( E t O H ) 3
b e e n r e p o r t e d (see
Table V I I ) .
These include penicillin F
(Structure
X X X I ) , d e t h i o b i o t i n ( S t r u c t u r e X X X I I ) , adenosine-5-phosphate, 5-phosphate,
adenylosuccinic acid, chrysogine
inosine-
(Structure X X X I I I ) , and
tetracosanoic a c i d . B a l l i o a n d c o - w o r k e r s d e t e c t e d at least 16 d e r i v a t i v e s of adenosine, guanosine, i n o s i n e , c y t i d i n e , a n d u r i d i n e i n the m y c e l i u m of P . chrysogenum
(77).
I n a d d i t i o n S u t e r a n d T u r n e r (82)
PENICILLIN F XXXI
DETHIOBIOTIN χχχ,Ι
reported
CHRYSOGINE ΧΧΧΙΙΙ
the p r e s e n c e of 2 - p y r u v o y l a m i n o b e n z a m i d e ( S t r u c t u r e X X X I V ; not s h o w n ) i n t h e c u l t u r e filtrate of P . chrysogenum. w i t h a n y of these
N o t o x i c i t y has b e e n associated
compounds.
P . brevi-compactum.
T h i s m o l d is of p a r t i c u l a r interest since i t w a s
i n v o l v e d i n one of t h e earliest attempts ( 1 8 9 6 ) to relate a t o x i n p r o d u c e d b y a m o l d to the i n c i d e n c e of a h u m a n i l l n e s s — p e l l a g r a i n this case (83).
A l t h o u g h n o r e l a t i o n s h i p c o u l d b e e s t a b l i s h e d , w o r k i n this a r e a
d i d r e s u l t i n the first c h e m i c a l d e t e c t i o n system d e v i s e d to d e t e c t s p o i l a g e of m a i z e b a s e d o n the c o l o r r e a c t i o n b e t w e e n f e r r i c c h l o r i d e a n d p h e n o l i c metabolites. series
of
Raistrick a n d co-workers
phenolic
i s o l a t e d a n d i d e n t i f i e d (83)
materials i n c l u d i n g mycophenolic
acid
a
(Structure
X X I I I ) ( T a b l e V I ) , 3,5-dihydroxy-2-carboxybenzyl m e t h y l ketone (Struc ture X X X V ) , XXXVI) ,
3,5-dihydroxy-2-carboxyphenylacetyl
3,5-dihydroxy-2-carboxylbenzoyl
methyl
carbinol
(Structure
ketone
(Structure
X X X V I I ) , a n d 3,5-dihydroxyphthaUc a c i d (Structure X X X V I I I ) .
Later
124
MYCOTOXINS
xxxv
χχχνι
XXXVII
w o r k e r s i n v e s t i g a t i n g t h e biosynthesis o f m y c o p h e n o l i c a c i d i s o l a t e d t w o additional
metabolites:
5,7-dihydroxy-4-methylphthaUde
( Structure
X X X I X ) and6-famesyl-5,7-d%droxy-4-methylphthalide ( S t r u c t u r e X L ) . F i n a l l y s e v e r a l other m y c o p h e n o l i c
a c i d derivatives (Structures X L I -
X L I I I ) have been reported (Table V I I I ) .
I n a t t e m p t i n g t o isolate t h e h e p a t o t o x i c P . brevi-compactum
B i r c h a n d co-workers
substances
produced
by
i s o l a t e d a series o f n e u t r a l
compounds, mostly pigments: brevianamides A - F ( T a b l e V I I I ) . Struc t u r e X X V I ( b r e v i a n a m i d e A ) w a s d e t e r m i n e d first, b a s e d o n a c o m b i n a t i o n o f p h y s i c a l m e t h o d s w i t h b i o g e n e t i c hypotheses.
Brevianamide Β
w a s q u i c k l y s h o w n to b e a stereoisomer o f S t r u c t u r e X X V I . I r r a d i a t i o n of Structure X X V I ( A a n d Β ) yields brevianamides C (Structure X L I V ) a n d D ( S t r u c t u r e X L V ) w h i c h are s i m p l y c i s - t r a n s isomers; r e d u c t i o n o f these isomers w i t h N a B H
4
y i e l d s a single i n d o l e ( S t r u c t u r e X L V I ) . Table V I I .
Compound Oxalic acid Secalonic acid D Oxaline Patulin Curvularin Penicillin F Dethiobiotin Adenosine-5'-phosphate Inosine-5'-phosphate Adenylosuccinic acid C h o l i n e sulfate Chrysogine Tetracosanoic acid 2-Pyruvoylaminobenzamide
C2H2O4 C32H30O14 C24H25N5O4
C H2o0 N CioHi803N Ci H O N C H O N C H 0nN C5H 0 N 4
1 4
2
0
1 4
7
6
1 3
8
4
1 4
1 8
1 3
4
S
2
1 0
y
MW
Formula
C7H6O4 C16H20O5
M e t a b o l i t e s o f P . oxalicum
P P P
6
6
C10H10O2N2 C24H48O2 C10H10N2O3
M.P.,
°C
90 638
101 253-254
154 292 312 214 347 347 468 183 190 369 206
111 206-7 204d 156-8 178 191-5d
189-90 87.5 181H1
7.
POHLAND AND MISLIVEC
Metabolites
of Pénicillium Species
B r e v i a n a m i d e Ε a n d F w e r e assigned Structures X L V I I
and
125
XLVIII
based on physical data. T h e biogenetic precursor Structure X L I X postu lated b y B i r c h (91).
(90)
has r e c e n t l y b e e n i s o l a t e d f r o m Aspergillus
ustus
D e t a i l s of the biosynthesis of t h e b r e v i a n a m i d e s as w e l l as t h e i r
t o x i c o l o g i c a l effects a r e u n d e r s t u d y .
XLVI
P. expansum,
and P.
XLVII
chrysogenum
UV, nm (solvent) 248, 337 ( E t O H ) 277 ( M e O H ) 223, 271.5, 304 ( E t O H )
226, 230, 238, 265, 273, 292, 305, 316 ( E t O H ) 2 1 1 , 247, 302 ( M e O H )
Ref. 71 72 72 78 74 75 76 77 77 78 79 80 81 83
126
MYCOTOXINS
P. funiculosum.
M e t a b o l i t e s p r o d u c e d b y this m o l d species i n c l u d e
malonic acid, orsellinic acid (Structure L ) , a n uncharacterized
antiviral
agent, h e l e n i n e , w h i c h is t h o u g h t to b e a n u c l e o p r o t e i n , a n d t h e a n t h r a q u i n o n e f u n i c u l o s i n w h i c h is i d e n t i c a l to i s l a n d i c i n ( S t r u c t u r e L I ) (see
ORSELLINIC ACID L
ISLANDICIN LI
Table VIII. Compound 3,5-Dihydroxy-2-carboxyb e n z y l - m e t h y l ketone 3,5-Dihydroxy-2-carboxyphenyl-acetyl carbinol 3,5-Dihydroxy-2-carboxyb e n z o y l m e t h y l ketone 3,5-Dihydroxyphthalic acid 6-Farnesyl-5,7-dihydroxy4-methylphthalide E t h y l mycophenate Structure X L I I Mycochromenic acid Brevianamide A Β C D Ε F Isoerythritol Dihydroxyacetone M a l o n i c acid Orsellinic acid Funiculosin Mitorubrin Mitorubrinol Mitorubrinic acid Funicone
Formula
MW
Metabolites of M.P.,
°C
C10H10O5
210
152-6d
CioHioOe
226
200d
C10H10O7
224
125-35
CsHeOe
198 384
188 (206) 98-100
348 336 318 365 365 365 365 367 283 122 90 104 168 270 382 398 412 374
88-90 218-20 163-165 190-220 324-8d Glass Glass Glass 173-5 116-20 75-80 135 176 218 218 219-21
C24H32O4 C19H24O6 C17H20O7
CnHisOe C21H23N3O3 C21H23N3O3 C21H23N3O3 C21H23N3O3
C21H25N3O3
C H N 02 1 6
1 7
3
C4H10O4
CjHeOs C3H4O4
CeH80
4
C15H10O5 C21H18O7
CîiHieOe C^lHieOg CigHigOe
176-8
7.
P O H L A N D
A N D
Table V I I I ) .
M I S L I V E C
Metabolites
of Pénicillium Species
I n a d d i t i o n a series of metabolites
have been
127
isolated
w h i c h a r e s t r u c t u r a l l y s i m i l a r to t h e s c l e r o t i o r i n ( a z a p h i l o n e ) g r o u p of metabolites
(93);
these i n c l u d e m i t o r u b r i n ( S t r u c t u r e L I I ) , a c o m p o u n d
o r i g i n a l l y i s o l a t e d f r o m P . rubrum,
mitorubrinol (Structure L U I ) , mito-
r u b r i n i c a c i d ( S t r u c t u r e L I V ) , a n d f u n i c o n e ( S t r u c t u r e L V ) (see VIII).
P. brevi-compactum UV,
and P.
nm (solvent)
funiculosum Ref. 83
88 84 85, 86 303 245, 235, 236, 234, 235, 239, 277,
280, 256, 254, 259, 264, 296 283,
321.5, 332.5 404 ( M e O H ) 400 ( E t O H ) 450 ( E t O H ) 306, 470 ( E t O H ) (EtOH) 292 ( E t O H )
216, 266, 292, 346 ( E t O H ) 216, 266, 292, 346 ( E t O H ) 245, 310 ( 9 5 % E t O H )
87 87 87 88 89 89 89 89 89 49 92 94 95 96 97 97 98 98
Table
Group
HI
M o l d s i n this g r o u p are o n l y o c c a s i o n a l l y f o u n d o n foods a n d feeds. H o w e v e r , t h e y a r e i m p o r t a n t w i t h respect to c e r t a i n types of foods a n d d o p r o d u c e s o m e v e r y t o x i c , a n d i n some cases carcinogenic, metabolites. P . urticae
( P . patulum).
T h i s m o l d species has b e e n i m p l i c a t e d as
the causative agent i n a n outbreak of fatal poisoning of dairy cows i n Japan ( 9 9 ) . It was concluded that the toxin involved was patulin (Struc ture X X I V ) .
P a t u l i n is p r o d u c e d i n h i g h y i e l d s b y P . urticae
tremely toxic ( L D
5 0
=
i m p l i c a t e d as a c a r c i n o g e n (36).
Its c h e m i s t r y a n d toxicology h a v e b e e n
reviewed b y Ciegler, Detroy, and Lillehoj P . patulum
a n d is ex
0.7 m g / 2 0 g, mouse, o r a l ) ; p a t u l i n has also b e e n (106).
also p r o d u c e s t h e e x t r e m e l y u s e f u l a n t i m i c r o b i a l agent
g r i s e o f u l v i n ( S t r u c t u r e L V I ) . I t is s t i l l p r e s c r i b e d as a systemic t h e r a p e u t i c agent f o r cutaneous f u n g a l infections, a l t h o u g h i t a p p a r e n t l y has some carcinogenic
properties
T h e chemical a n d toxicological
(107).
properties of griseofulvin are carefully reviewed i n B . J . Wilson's article Table I X . Formula
Compound Griseofulvin Dehydrogriseofulvin 2,6-Dihydroxy-4-methyl8-methoxyxanthone 4,6-Dimethoxy-2'-methylg r i s a n - 3 , 4 ' ,6'-trione Structure L X Structure L X I Gentisic acid Gentisaldehyde G e n t i s y l alcohol 6-Methysalicylic acid 6-Formylsalicylic acid 3-Hydroxyphthalic acid Pyrogallol p-Hydroxybenzoic acid Anthranilic acid Gentisylquinone
MW
Metabolites of M.P.,
°C
C15H12O5
353 351 272
220 270-275 253-5
CieHieOe
304
245-8d
C17H17O5CI
337 353 154 138 140 152 166 182 126 138 137 138
181-2 212-4 199
C17H17O6CI
CnHiôOeCl
CnHnOeCl C7H6O4 C7IÏ6O3 C7H8O3
CeHeC^ CeHeOô CeHeOs C7H6O3
C H 0 N 7
7
2
C7H6O3
100 170 134 154 134 213 144 76
7.
P O H L A N D
A N D
Metabolites
M I S L I V E C
of Pénicillium Species OCH3
ο
129
ο
ΌΗ
CH^>,
Ο CH 0 3
•H
O
CH
3
LIX
LVIII
ΌΗ
R
o n miscellaneous Pénicillium
LX
R=OCH.
LXI
R=CH,
toxins ( 1 0 8 ) . I n a d d i t i o n , P . patulum
d u c e s five a d d i t i o n a l m a t e r i a l s r e l a t e d to d e h y d r o g r i s e o f u l v i n LVII),
2,6-dihydroxy-4-methyl-8-methoxyxanthone
4,6-dimethoxy-2 -methylgrisan-3,4 ,6 -trione ,
,
/
pro
(Structure
(Structure
LVIII),
(Structure L I X ) , and a pair
of s u s b t i t u t e d b e n z o p h e n o n e s ( S t r u c t u r e s L X a n d L X I ) ( T a b l e I X ) . t o x i c o l o g i c a l properties F i n a l l y P . patulum
of these m a t e r i a l s a r e a p p a r e n t l y n o t
p r o d u c e s m a n y p h e n o l i c c o m p o u n d s (see
w h i c h a p p a r e n t l y a r e i n t e r r e l a t e d b i o s y n t h e t i c a l l y (see
The
known.
Table I X )
Figure 3)
(104).
N o t o x i c i t y has b e e n associated w i t h these m a t e r i a l s . P . islandicum.
F e w molds have been studied more extensively or
s y s t e m a t i c a l l y t h a n P . islandicum. P. urticae
(P.
Interest i n t h e m e t a b o l i t e s of P .
patulum)
UV, nm (solvent) 236, 252, 241, 324 ( M e O H ) 242, 289, 330 ( E t O H ) 242, 269, 309, 340 ( E t O H )
Ref. 100 109 109 109
296 ( E t O H ) 298 ( E t O H )
323
109 109 101 101 102 103 104 104 104 104 104 105
islandi-
130
MYCOTOXINS
Figure 3. cum
Metabolites
of P. patulum
arises m a i n l y from e a r l y findings that r i c e n a t u r a l l y m o l d e d b y P . ( y e l l o w e d r i c e ) c o u l d cause acute a n d c h r o n i c l i v e r d a m a g e
islandicum
w h e n f e d t o m i c e (110).
T h i s finding c o u p l e d w i t h t h e f a c t t h a t A s i a t i c
p o p u l a t i o n s i n w h i c h r i c e forms a m a j o r p o r t i o n o f t h e d i e t also suffer f r o m a h i g h i n c i d e n c e o f l i v e r diseases i n c l u d i n g p r i m a r y h e p a t i c c a r c i n o m a (99) produced
gave i m p e t u s to a great d e a l o f r e s e a r c h i n t o t h e m e t a b o l i t e s b y P . islandicum
a n d their toxicological properties.
studies l e d e v e n t u a l l y to t h e i s o l a t i o n o f t w o e x t r e m e l y p o t e n t toxins, l u t e o s k y r i n ( L D
These hepato-
= 2.21 m g / k g , mouse, o r a l ) a n d c y c l o c h l o r o -
5 0
t i n e ( L D o = 6.55 m g / k g , m o u s e , 5
o r a l ) , b o t h o f w h i c h are b e l i e v e d
c a r c i n o g e n i c ( 2 3 ) . I n a d d i t i o n a s e c o n d e x t r e m e l y toxic p e p t i d e , i s l a n d i t o x i n ( m i n i m u m l e t h a l dose 3.6 m g / k g , S C , m o u s e ) h a s b e e n i s o l a t e d a n d i d e n t i f i e d (111, 112).
A n excellent r e v i e w o f these m a t e r i a l s as w e l l
as other toxins r e l a t e d to y e l l o w e d r i c e h a s a p p e a r e d P. ishndicum
(113).
p r o d u c e s a t least 2 7 q u i n o i d a l p i g m e n t s (see T a b l e X )
w h i c h m a y b e c o n v e n i e n t l y a r r a n g e d i n three groups.
T h e first g r o u p
Monomeric Anthraquinones
HO Chrysophanol Islandicin Emodin Catenarin ω-Hydroxyemodin Endocrocin
R, = H R = H R = C H , R, = H Η CH, Η OH OH Η Η CHs OH CH» Η OH Η OH Η CH OH C0 H OH Η CH, 2
Ο
OH
Ο
OH
8
2
2
TETRAHYDROCATENARIN LXIII
7.
POHLAND AND MISLIVEC
Metabolites
131
of Pénicillium Species
contains the m o n o m e r i c a n t h r a q u i n o n e s , a l l of w h i c h are d e r i v a t i v e s o f c h r y s o p h a n o l ( S t r u c t u r e L X I I ) : i s l a n d i c i n , e m o d i n , c a t e n a r i n , ω-hydroxyemodin, endocrocin, tetrahydrocatenarin ( Structure L X I I I ) , and dihydrocatenarin.
The
structures
of
these
quinones
are r e a d i l y d e r i v e d
c o m p a r i n g t h e i r p h y s i c a l p r o p e r t i e s , i n c l u d i n g c o l o r tests
by
(magnesium
a c e t a t e ) , u v , i r , N M R s p e c t r a , a n d x - r a y d i f f r a c t i o n d a t a , w i t h those of e q u i v a l e n t m a t e r i a l s o b t a i n e d t h r o u g h t o t a l synthesis.
These
synthetic
procedures generally involve the F r i e d e l - C r a f t s condensation of a p h t h a l i c anhydride w i t h a suitable phenol.
R e c e n t l y K e n d e et a l . (119)
reported
a n e w a p p r o a c h t o t h e t o t a l synthesis of i s l a n d i c i n i n v o l v i n g regiospecific p h o t o - F r i e s r e a r r a n g e m e n t (see
F i g u r e 4).
Dimeric Anthraquinones
OH
Dianhydrorugulosin Iridoskyrin Skyrin Dicatenarin Oxyskyrin Skyrinol Roseoskyrin Auroskyrin Rhodoislandin A Rhodoislandin Β Punicoskyrin Aurantioskyrin
Ο
Ri= R = H R, = H , R - O H R, = O H , R = h R, = R = O H One methyl of skyrin = C H O H Both methyls of skyrin = C H O H (chrysophanol + islandicin) (chrysophanol -j- emodin) (chrysophanol + catenarin) (emodin + islandicin) (catenarin -j- islandicin) (catenarin + emodin) 2
2
2
2
2
2
T h e s e c o n d g r o u p contains the d i m e r i c a n t h r a q u i n o n e s LXV):
(Structure
dianhydrorugulosin, iridoskyrin, skyrin, dicatenarin, oxyskyrin,
skyrinol, roseoskyrin, auroskyrin, rhodoislandin A , rhodoislandin B , p u n i c o s k y r i n , a n d a u r a n t i o s k y r i n ( T a b l e X ) . T h e structures of these m a t e r i a l s were
established p r i m a r i l y through reductive
Figure 4.
cleavage
Total synthesis of islandicin
with
alkaline
132
MYCOTOXINS
Table X . Compound
MW
Formula
Chrysophanol Islandicin Emodin Catenarin ω-Hydroxyemodin (citreorosein) Endocrocin (clavoxanthin) Tetrahydrocatenarin Dihydrocatenarin (+) Dianhydrorugulosin (+) Iridoskyrin (+) Skyrin (+) Dicatenarin (+) Oxyskyrin (+) Skyrinol ( + ) Roseoskyrin (+) Auroskyrin (+) Rhodoislandin A (+) Rhodoislandin Β (+) Punicoskyrin (+) Aurantioskyrin ( —) L u t e o s k y r i n ( —) R u b r o s k y r i n ( —) F l a v o s k y r i n ( —) R u g u l o s i n ( — ) Deoxyluteoskyrin ( —) D e o x y r u b r o s k y r i n ( —) 4 - a - O x y l u t e o s k y r i n Erythroskyrine Islanditoxin Cyclochlorotine 3-Hydroxyphthalic acid M a l o n i c acid s o d i u m d i t h i o n i t e (114)
Metabolites M.P.,
°C
C15H10O5 C15H10O5 C15H10O6 C15H10O6
254 270 270 286 286
195-6 218 256-7 244-6 288
C16H10O7
314
290-320d
290 288 538 538 538 570 554 570 522 522 538 538 554 554 574 574 544 542 558 558 590 455 572 605 182 104
~130d 95-105d 321 358-60d >360d >300d >360d >360 275-380d >300 >300 >300 >300 >300 281d 289d 215d 290d 293 255 >250d 130-3 258 251d 166 135
C15H10O4
C15H14O6 C15H12O6
C30H18O10 C30H18O10 C30H18O10 C30H18O12
CeoHisOn C30H18O12 C30H18O9 C30H18O9 C30H18O10 C30H18O10 C30H18O11 C30H18O11 C30H22O12 C30H22O12 C30H24O10
C30H22O10 C30H22O11 C30H22O11 C30H22O13 C26H33O6N C25H3608N5C12
CsHeOô C3H404
to t h e c o r r e s p o n d i n g m o n o m e r i c q u i n o n e s a n d
t h r o u g h i n s p e c t i o n o f t h e N M R s p e c t r a of t h e acetates (120).
Thus, for
example, reductive cleavage of dianhydrorugulosin yields two molecules of c h r y s o p h a n o l (see
F i g u r e 5). N o t e t h a t a l l of these m a t e r i a l s e x h i b i t oh
"S* '2
OH
"IL*
0
DIANHYDRORUGULOSIN
Figure 5.
0
Reduction of dimeric
CHRYSOPHANOL
anthraquinones
7.
POHLAND AND MISLIVEC
Metabolites
of Pénicillium Species
islandicum
of P.
UV,
Ref.
nm (solvent)
228, 257, 277, 287, 429 ( E t O H ) 231.5, 252, 288, 490, 512 ( E t O H ) 253, 266, 289, 436 ( E t O H ) 231, 257, 282, 492, 525 ( E t O H ) 221, 252, 290, 438, 458 s h ( E t O H )
114 115 116 116 117
274, 442 ( M e O H )
118
485, 514, 554 ( E t O H ) 495 (530i, 570i) ( E t O H ) 282 s h , 439 ( D i o x i n ) 286, 502 ( D i o x i n ) 257, 300, 462 ( E t O H )
117 117 128 121 114 1 &\J 122 120 120 120 120 120 120 120 m m 125 m m m 124 126 112 127 128 129
257, 300, 462 ( E t O H ) 258, 290, 448 ( D i o x a n )
280, 275, 267, 253,
133
350, 440 ( E t O H ) 4 1 5 , 435, 530, 540 (CHC1») 303, 312, 328, 368, 414 ( D i o x a n e ) 396.5 ( C H C 1 ) 3
280, 369, 380, 510, 531, 570 ( D i o x a n e ) 392, 409 ( E t O H ) 253, 259, 265 ( M e O H )
optical activity attributable to restricted rotation a r o u n d the b o n d
con
n e c t i n g t h e t w o m o n o m e r i c h a l v e s . C u r r e n t l y n o i n f o r m a t i o n is a v a i l a b l e c o n c e r n i n g t h e t o x i c i t y of these d i a n t h r a q u i n o n e s . T h e t h i r d g r o u p contains the m o d i f i e d b i a n t h r a q u i n o n e s ( T a b l e luteoskyrin (Structure L X V I , R = O H ) , R=OH),
flavoskyrin
X):
mbroskyrin (Structure
LXVII,
(Structure L X V I I I ) , rugulosin (Structure
LXIX),
deoxyluteoskyrin (Structure L X V I , R = H ) ,
deoxyrubroskyrin
(Structure
L X V I I , R = H ) , a n d 4 - a - o x y l u t e o s k y r i n ( S t r u c t u r e L X X ) . T h e structures of these c o m p o u n d s w e r e v e r y difficult to d e t e r m i n e ; t h e y w e r e r e s o l v e d b y c a r e f u l i n t e r p r e t a t i o n of t h e N M R s p e c t r a a n d w e r e firmed,
finally con
at least for r u g u l o s i n , b y x - r a y d i f f r a c t i o n studies ( 1 2 3 ) . F i g u r e 6
M Y C O T O X I N S
FLAVOSKYRIN LXVIII
Figure 6.
4-K-OXYLUTEOSKYRIN LXX
Modified bianthraquinones
from P . islandicum
7.
POHLAND
AND
Metabolites
MISLIVEC
of Pénicillium Species
135
ci
CI
ISLANDITOXIN LXXII
OH CH(CH ) CH 2
I II II / NH-C-CHNH-C-T
*
"\
5
3
}
Η
ο R U B R A T O X I N A (R=H, R'=0H)
:YCLOCHLOROT LXXIII
=0)
Β (R,R=
shows some of the o b s e r v e d i n t e r r e l a t i o n s h i p s b e t w e e n these m a t e r i a l s . P. islandicum
also p r o d u c e s the e x t r e m e l y t o x i c ( L D
5 0
=
60 m g / k g ,
mouse, i p ) metabolite erythroskyrine (Structure L X X I ) (113,126).
The
s t r u c t u r e of this p i g m e n t w a s d e t e r m i n e d b y c h e m i c a l d e g r a d a t i o n ex p e r i m e n t s w h i c h i n d i c a t e d the presence of t h e p o l y e n e system
(—CH=
C H — ) , the t e n u a z o n i c a c i d m o i e t y , a n d the d i a n h y d r o s o r b i t o l structure. 5
T h e r o l e of this c o m p o u n d i n i n t o x i c a t i o n b y P . islandicum-iniested
rice
has n o t y e t b e e n d e t e r m i n e d . F i n a l l y P . islandicum
p r o d u c e s t w o w a t e r - s o l u b l e , hexatotoxic, c y c l i c
peptides—islanditoxin (Structure L X X I I ) a n d cyclochlorotine LXXIII)
(see
Table X ) .
T h e tentative structures of these
(Structure extremely
t o x i c m a t e r i a l s h a v e b e e n d e d u c e d b y h y d r o l y s i s experiments
(112,127);
h o w e v e r some of the investigators i n this field f e e l t h a t these t w o toxins m a y be identical P.
variable.
(129). L i t t l e is k n o w n of the m e t a b o l i t e s p r o d u c e d b y this
m o l d . H o w e v e r i t p r o d u c e s ( + ) - r u g u l o s i n ( S t r u c t u r e L X I X ) , ergosterol, and
its p e r o x i d e
(130). T h i s m o l d is f r e q u e n t l y f o u n d o n foods
P. purpurogenum.
and
feeds a n d has b e e n i m p l i c a t e d i n m a n y cases of a n i m a l illnesses a n d deaths ( T a b l e I V ) .
I t has r e c e n t l y b e e n s h o w n (131)
c a p a b l e of p r o
d u c i n g h i g h y i e l d s of the e x t r e m e l y t o x i c m a t e r i a l s r u b r a t o x i n s A a n d Β (Structure L X X I V ) toxins h a v e b e e n
(LD
5 0
—100-200
commonly
m g / k g , oral, rat).
associated w i t h P . rubrum;
r e v i e w of the subject b y M . O . M o s s has b e e n p u b l i s h e d
These an (132).
myco
excellent
136
MYCOTOXINS
Ο Ο C H ^
LXXV LXXVI
PURPURIDE
PURPUROGENONE R=OH DEOXYPUPUROGENONE R=H
P . purpurogenum
LXXVI I
also p r o d u c e s c o p i o u s a m o u n t s
o f some h i g h l y
c o l o r e d p i g m e n t s ; a f e w o f these h a v e b e e n i s o l a t e d a n d i d e n t i f i e d . include
purpurogenone
(Structure L X X V I ,
(Structure
LXXV)
and
These
deoxypurpurogenone
T a b l e X I ) . T h e structure of purpurogenone
was
d e t e r m i n e d b y x - r a y c r y s t a l l o g r a p h i c analysis of t h e m o n o b r o m o a c e t a t e (145).
I t has b e e n s u g g e s t e d t h a t t h e p i g m e n t i s b i o s y n t h e s i z e d
t w o m o l e c u l e s o f e m o d i n via a n u n d e f i n e d s e q u e n c e o f reactions T h e s t r u c t u r e a s s i g n e d to d e o x y p u r p u r o g e n o n e
from (134).
was based on a compari
son o f its s p e c t r a l d a t a w i t h those o b t a i n e d f r o m p u r p u r o g e n o n e ,
the
f o r m a t i o n o f a pentaacetate i n s t e a d o f a hexaacetate a n d o x i d a t i v e d e g r a dation to 3-hydroxy-5-methylphthalic anthraquinone
(135).
acid and l,4-dihydroxy-2-methyl-
I n a d d i t i o n to Structures L X X V
and L X X V I
a
t h i r d , colorless m a t e r i a l w a s i s o l a t e d a n d g i v e n t h e t r i v i a l n a m e p u r p u r i d e ( S t r u c t u r e L X X V I I ) w h i c h w a s d e t e r m i n e d b y d i r e c t x - r a y analysis. T h e t o x i c o l o g i c a l p r o p e r t i e s of these c o m p o u n d s h a v e n o t b e e n i n v e s t i g a t e d . Table X I . Compound Purpurogenone Deoxypurpurogenone Purpuride Glauconic acid Glaucanic acid A n t i b i o t i c S L 3238 D - M a n n o n i c acid Alloisocitric acid Citromycetin Frequentin Sulochrin Asterric acid ( + ) Bisdechlorogeodin Questin Questinol Hadacidin Rubratoxin A Rubratoxin Β Mannitol
Formula
Metabolites Produced b y MW
M . P . , °C
7.
P O H L A N D
A N D
M I S L I V E C
Metabolites
of Pénicillium Species
137
GLAUCONIC ACID R=OH LXXVIII GLAUCANIC ACID R=H LXXIX
P . purpurogenum
also p r o d u c e s
a pair of nonadrides,
glauconic
( S t r u c t u r e L X X V I I I ) a n d g l a u c a n i c ( S t r u c t u r e L X X I X ) a c i d s , so n a m e d because they are constructed f r o m t w o identical C fragments. L i k e the 9
r u b r a t o x i n s these acids c o n t a i n t h e r e l a t i v e l y stable b i s a n h y d r i d e s t r u c t u r e . T h e structures o f these c o m p o u n d s w e r e e s t a b l i s h e d p r i m a r i l y b y degradation experiments c o u p l e d w i t h x-ray crystallographic data
{146).
T h e k e y p y r o l y t i c d e g r a d a t i o n p r o d u c t , g l a u c o n i n , w a s i d e n t i f i e d as a C o p e r e a r r a n g e m e n t p r o d u c t , a n d its s t r u c t u r e w a s p r o v e d b y synthesis (see F i g u r e 7 ) . F i n a l l y a n a n t i b i o t i c ( S L 3238-C27H41NO2) o f u n k n o w n s t r u c t u r e is r e p o r t e d to b e p r o d u c e d b y P . purpurogenum
(see T a b l e X I ) .
N o t o x i c o l o g i c a l i n f o r m a t i o n is a v a i l a b l e a b o u t t h i s m a t e r i a l . P . frequentans.
A s its n a m e i m p l i e s , this m o l d is c o m m o n l y f o u n d
i n a l l types o f m a t e r i a l s . N o n e o f t h e c o m m o n l y k n o w n m y c o t o x i n s , h o w ever, h a v e b e e n i s o l a t e d f r o m t h i s m o l d a l t h o u g h s e v e r a l metabolites a r e k n o w n (see T a b l e X I ) . T h e s e i n c l u d e c i t r o m y c e t i n ( S t r u c t u r e L X X X ) , P . purpurogenum
and P .
frequentans
UV, nm (solvent)
Ref.
253, 308, 388, 499, 530, 570 ( C H C 1 , ) 251, 275, 309, 389, 490, 529 ( C H C 1 ) 216.5 ( E t O H ) 223 220 3
232, 290 ( D i o x a n e ) 250, 215, 224, 224,
317 ( E t O H ) 285 ( E t O H ) 248, 285, 4 2 5 ( E t O H ) 247, 286, 4 3 2 ( E t O H )
250 ( C H C N ) 250 ( C H C N ) 3
3
m 185 136 137 187 188 189 H0 m 142 143 148 143 143 143 144 183 133 181
138
MYCOTOXINS
R RCH=è-CHO GLAUCONIN
Figure
7.
Formation
of ghuconin acid
from
glauconic
OH k - ^ V ^ V ^ ^ O H FREQUENTIN
/ V V ^ ^ O H J
4
"
k / V ^ \ ^ ^
PALITANTOL
LXXXI
Figure 8.
OR
H
PALITANTIN XIII
Rehtionship
between frequentin
OH
OH
SULOCHRIN
ASTERRIC ACID LXXXI II
LXXXII
and palitantin
O ^ BISDECHLOROGEODIN LXXXIV
QUESTIN R=CH LXXXV QUESTINOL R =CH OH LXXXVI 3
7
2
f r e q u e n t i n ( S t r u c t u r e L X X X I ; F i g u r e 8), p a l i t a n t i n ( S t r u c t u r e X I I I ; see P . cyclopium),
sulochrin (Structure L X X X I I ) , asterric a c i d
L X X X I I I ) , bisdechlorogeodin
(Structure
(Structure L X X X I V ) , a n d a p a i r of a n -
thraquinone pigments, questin (Structure L X X X V ) a n d questinol (Struc ture L X X X V I ) .
T h e structure of citromycetin was based p r i m a r i l y o n
7.
POHLAND AND MISLIVEC
Metabolites
of Pénicillium Species
139
d e g r a d a t i o n results i n w h i c h m e t h y l - O - d i m e t h y l c i t r o m y c e t i n w a s w i t h permanganate
to y i e l d
cleaved
2-carboxy-3-hydroxy-5,6-dimethoxybenzoate
( 1 3 7 ) . F r e q u e n t i n ( S t r u c t u r e L X X X I ) w a s q u i c k l y d e d u c e d b y its r e a d y conversion
into palitantol, a product
(Structure X I I I ) b y N a B H produces
sulochrin
4
readily obtained
reduction (Figure 8).
(Structure
L X X X I I I ) , and bisdechlorogeodin
LXXXII),
asterric
palitantin
acid
also
(Structure
(Structure L X X X I V ) ; the latter t w o
c o m p o u n d s are i n t e r r e l a t e d i n t h a t b i s d e c h l o r o g e o d i n i n t o asterric a c i d s i m p l y b y h e a t i n g i n w a t e r . b e e n p r e v i o u s l y i s o l a t e d f r o m Oospora ture of b i s d e c h l o r o g e o d i n
from
P . frequentans
is e a s i l y c o n v e r t e d
A l l three c o m p o u n d s h a d
sulphurea-ochracea,
a n d the struc
has b e e n c o n f i r m e d b y t o t a l synthesis
T h e structures of q u e s t i n ( S t r u c t u r e L X X X V )
and questinol
(143).
(Structure
L X X X V I ) w e r e established t h r o u g h degradation experiments a n d c o m p a r i s o n w i t h d e r i v a t i v e s of e m o d i n a n d ω-hydroxyemodin.
N o toxicity
has b e e n associated w i t h a n y of these m a t e r i a l s .
Conclusion T h e 13 Pénicillium
species i d e n t i f i e d as c o m m o n l y
f o u n d o n foods
p r o d u c e a l a r g e n u m b e r of m e t a b o l i t e s ; s o m e of these m a y b e classified as t r u e m y c o t o x i n s .
H o w e v e r , l i t t l e is k n o w n a b o u t t h e t o x i c o l o g i c a l p r o p
erties of m a n y of t h e m e t a b o l i t e s , a n d this needs to b e s t u d i e d .
Finally
v e r y l i t t l e is k n o w n a b o u t t h e o c c u r r e n c e of these m e t a b o l i t e s i n foods a n d feeds.
Literature
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16.
Cited
Mislivec, P., private communication. Mislivec, P., Bruce, V., Dieter, C., unpublished data. Mislivec, P., unpublished data. Mislivec, P., Ph.D. Thesis, Purdue University, 1968. Mislivec, P. B., Tuite, J., Mycologia (1970) 62 (1), 67. Hesseltine, C. W., Graves, R. R., Econ. Bot. (1966) 20, 156. Ciegler, Α., Mintzlaff, H. J., Leistner, L., Fleischwirtschaft (1972) 52 (10), 1311. Leistner, L., Ayres, J. C., Fleischwirtschaft (1968) 48 (1), 62. Borker, E., Insalata, N. F., Levi, C. P., Witzman, J. S., Advan. Appl. Microbiol. (1966) 8, 315. Brook, P. J., White, E. P., Annu. Rev. Phytopathol. (1966) 4, 171. Purchase, I. F. H., Toxicol.Appl.Pharmacol. (1971) 18, 114. Carlton, W. W., Tuite, J., Toxicol Appl. Pharmacol. (1970) 17, 289. Wilson, B. J., Wilson, C. H., Hayes, A. W., Nature (1968) 220, 77-78. Albright, J. L., Aust, S. D., Byers, J. M., Fritz, T. E., Brodie, B. O., Olsen, R. E., Link, R. P., Simon, J., Rhoades, Η. E., Brewer, R. L., J. Amer. Vet. Med. Assoc. (1964) 144, 1013. Cunningham, K. G., Freeman, G. G., Biochem. J. (1953) 53, 328. Friis, P., Hasselager, E., Krogh, P., Acta Pathol Microbiol. Scand. (1969) 77, 559.
140
MYCOTOXINS
17. Krogh, P., Hasselager, E., Friis, P., Acta Pathol. Microbiol. Scand. (1970) 78, 401. 18. Carlton, W. W., Tuite, J., Pathol. Vet. (1970) 7, 68. 19. Zwicker, G. M., Carlton, W. W., Tuite, J., Food Cosmet. Toxicol. (1973) 11, 989. 20. McCracken, M . D., Carlton, W. W., Tuite, J., Food Cosmet. Toxicol. (1974) 12, 79. 21. Scott, D. B., Mycopathol Mycol Appl. (1965) 25, 213. 22. Carlton, W. W., Tuite, J., Mislivec, P., Toxicol. Appl. Pharmacol. (1968) 13 372 23. Mintzlaff, H. J., Fleischwirtschaft (1971) 51, 344. 24. Joffe, A. Z., Mycopathol. Mycol. Appl. (1962) 16, 201. 25. Yamamoto, T., J. Pharm. Soc. Jap. (1954) 74, 797. 26. Enomoto, M., Saito, M., Ann. Rev. Microbiol. (1972) 26, 279. 27. Kobayashi, M. et al, Proc. Jap. Acad. (1959) 35, 501. 28. Uraguchi, K. et al, Food Cosmet. Toxicol. (1972) 10, 193. 29. Tsunoda, H., Proc. U.S.-Jap. Conf. Toxic Microorganisms, 1st, Honolulu, 1968, "U.S. Dept. of Interior and U.J.N.R. Panels on Toxic Micro organisms," Washington, D.C., p. 143. 30. Forgacs, J., Koch, H., Carll, W. T., White-Stevens, R. H., Amer. J. Vet. Res. (1958) 19, 744. 31. Ciegler, Α., Fennell, D. I., Mintzlaff, H . J., Leistner, L., Naturwissenschaften (1972) 59, 365. 32. Chu, F. S., Crit. Rev. Toxicol (1974) 2 (4), 499. 33. Hayes, A. W., Hood, R. D., Lee, H. L., Teratology (1974) 9, 93. 34. Birkinshaw, J. H., Oxford, A. E., Raistrick, H., Biochem. J. (1936) 30, 394. 35. Murnagham, M. F., J. Pharmacol Exp. Ther. (1946) 88, 119. 36. Dickens, F., Jones, Η. Ε. H., Brit. J. Cancer (1965) 19, 392. 37. Hou, C. T., Ciegler, Α., Hesseltine, C. W., Appl. Microbiol. (1971) 21 (6), 1101. 38. Ciegler, Α., Kurtzman, C. P., Appl. Microbiol (1970) 20 (5), 761. 39. Hou, C. T., Ciegler, Α., Hesseltine, C. W., Can. J. Microbiol. (1971) 17 (5), 599. 40. Holzapfel, C. W., Tetrahedron (1968) 24, 2101. 41. Holzapfel, C. W., Hutchison, R. D., Wilkins, D. C., Tetrahedron (1970) 26, 5239. 42. Holzapfel, C. W., in "Microbial Toxins," A. Ciegler, S. Kadis, J. Ajl, Eds., p. 435, Academic, New York, 1971. 43. Framm, J., Nover, L., Azzouny, A. E., Richter, H., Winter, K., Werner, S., Luckner, M., Eur. J. Biochem. (1973) 37, 78. 44. Mohammed, Y. S., Tetrahedron Lett. (1963) 28, 1953. 45. Birkinshaw, J. H., Luckner, M., Mohammed, Y. S., Mothes, K., Stickings, C. E., Biochem. J. (1963) 89, 196. 46. Birch, A. J., Kocor, M., J. Chem. Soc. (1960) 866. 47. Aulin-Erdtman, G., Theorell, H., Acta Chem. Scand. (1950) 4, 1490. 48. Birkinshaw, J. H., Raistrick, H., Ross, D. J., Stickings, C. E., Biochem. J. (1952) 50, 610. 49. Oxford, A. E., Raistrick, H., Biochem. J. (1935) 29, 1599. 50. Anslow, W. K., Breen, J., Raistrick, H., Biochem. J. (1940) 33, 159. 51. Purchase, I. F. H., Toxicol. Appl. Pharmacol. (1971) 18, 114. 52. Schabort, J. C., Wilkins, D. C., J. S. Afr. Chem. Inst. (1969) 22, S9. 53. Bracken, Α., Pocker, Α., Raistrick, H., Biochem. J. (1954) 57, 587. 54. White, J. D., Haefliger, W. E., Dimsdale, M. J., Tetrahedron (1970) 26, 233. 55. Martin, P. K., Rapoport, H., Smith, H . W., Wong, T. L., J. Org. Chem. (1969) 34 (5), 1359.
7.
POHLAND AND MISLIVEC
Metabolites
of Penicillium Species
141
56. van Walbeek, W., Scott, P. M., Harwig, J., Lawrence, J. W., Can. J. Microbiol. (1969) 15, 1281. 57. Luckner, M., Mohammed, Y. S., Tetrahedron Lett. (1964) 29, 1987. 58. Hutchison, R. D., Steyn, P. S., Thompson, D. L., Tetrahedron Lett. (1971) 43, 4033. 59. Hetherington, A. C., Raistrick, H., Trans. Roy. Soc. (London) (1931) Β 220, 269. 60. Cartwright, N . J., Robertson, Α., Whalley, W. B., Nature (1949) 163, 94. 61. Brown, J. P., Cartwright, N . J., Robertson, Α., Whalley, W. B., Nature (1948) 162, 72. 62. Johnson, D. H., Robertson, Α., Whalley, W. B., J. Chem. Soc. (1950) 2971. 63. Cartwright, N . J., Robertson, Α., Whalley, W. B., J. Chem. Soc. (1949) 1563. 64. Burton, H. S., Brit. J. Exp. Pathol. (1949) 30, 151. 65. Wilson, B. J., in "Microbial Toxins," Vol. VI, A. Ciegler, S. Kadis, S. J. Ajl, Eds., p. 459, Academic, New York, 1971. 66. Birkinshaw, J. H., Samant, M. S., Biochem. J. (1960) 74, 369. 67. Wilson, B. J., Yang, D. T., Harris, T. M., Appl. Microbiol. (1973) 26 (4), 633. 68. Birch, A. J., Wright, J. J., Chem. Commun. (1969) 644. 69. Pohland, A. E., Stack, M. E., unpublished data. 70. Just, C., Day, W., Blank, F., Can. J. Chem. (1963) 41, 74. 71. Hutchinson, R. D., Steyn, P. S., van Rensburg, S. J., Toxicol. Appl. Pharmacol. (1973) 24, 507. 72. Steyn, P. S., Tetrahedron (1970) 26, 51. 73. Scott, P. M., Miles, W. F., Taft, P., Dube, J. G., J. Agric. Food Chem. (1972) 20 (2), 450. 74. Birch, A. J., Musgrave, O. C., Richards, R. W., Smith, H., J. Chem. Soc. (1959) 3146. 75. Clarke, H . J., Johnson, J., Robinson, R., "The Chemistry of Penicillin," Princeton University, Princeton, 1949. 76. Tatum, E. L., J. Biol. Chem. (1945) 160, 455. 77. Ballio, Α., Casinovi, C., Serlupi-Crescenzi, G., Biochim. Biophys. Acta (1956) 20, 414. 78. Ballio, Α., Serlupi-Crescenzi, G., Nature (1957) 179, 154. 79. deFlines, J., J. Amer. Chem. Soc. (1955) 77, 1676. 80. Hikino, H., Nabetani, S., Takemoto, T., J. Pharm. Soc. Jap. (1973) 93 (5), 619. 81. Peck, R. L., Anderson, R. J., J. Biol. Chem. (1941) 140, 89. 82. Suter, P. J., Turner, W. B., J. Chem. Soc. (1967) 2240. 83. Clutterbuck, P. W., Oxford, A. E., Raistrick, H., Smith, G., Biochem. J. (1932) 26, 1441. 84. Oxford, A. E., Raistrick, H., Biochem. J. (1932) 26, 1902. 85. Canonica, L., Kroszcynski, W., Ranzi, B. M., Rindone, B., Scolastico, C., Chem. Commun. (1971) 257. 86. Ibid. (1970) 1357. 87. Campbell, I. M., Calzadilla, C. H., McCorkindale, N . J., Tetrahedron Lett. (1966) 42, 5107. 88. Birch, A. J., Wright, J. J., Tetrahedron (1970) 26, 2329. 89. Birch, A. J., Russel, R. Α., Tetrahedron (1972) 28, 2999. 90. Birch, A. J., J. Agric. Food Chem. (1971) 19 (6), 1088. 91. Steyn, P. S., Tetrahedron (1973) 29, 107. 92. Godin, P., Biochim. Biophys. Acta (1953) 11, 114. 93. Whalley, W. B., Pure Appl. Chem. (1963) 7, 565. 94. Yamamoto, T., J. Pharm. Sci. Jap. (1955) 75, 761. 95. Mosbach, Κ., Z. Naturforsch. (1959) 14b, 69.
142
MYCOTOXINS
96. Igarasi, H., J. Agric. Chem. Soc. Jap. (1939) 15, 225. 97. Buchi, G., White, J. D., Wogan, G. N., J. Amer. Chem. Soc. (1965) 87 (15), 3484. 98. Merlini, L., Nasini, G., Selva, Α., Tetrahedron (1970) 26, 2739. 99. Uraguchi, K., Tatsuno, T., Tsukioka, M., Sakai, Y., Sakai, F., Koboyashi, Y., Saito, M., Enomoto, M., Miyaki, M., Jap. J. Exp. Med. (1961) 31, 1. 100. Grove, J. F., MacMillan, J. T., Mulholland, T. P. C., Rogers, M. A. T., J. Chem. Soc. (1952) 3949. 101. Birkinshaw, J. H., Bracken, Α., Michael, S. Α., Raistrick, H . , Lancet (1943) 245, 625. 102. Birkinshaw, J. H., Bracken, Α., Raistrick, H., Biochem. J. (1943) 37, 726. 103. Anslow, W. K., Raistrick, H., Biochem. J. (1931) 25, 39. 104. Bassett, E. W., Tanenbaum, S. W., Experientia (1958) 14, 38. 105. Engel, B. G., Brzesk, W., Helv. Chim. Acta (1947) 30, 1472. 106. Ciegler, Α., Detroy, R. W., Lillehoj, Ε. B., in "Microbial Toxins," Vol. VI, A. Ciegler, S. Kadis, S. J. Ajl, Eds., p. 409, Academic, New York, 1971. 107. Paget, G. E., Walpole, A. L., Nature (1958) 182, 1320. 108. Wilson, B. J., in "Microbial Toxins," Vol. VI, A. Ciegler, S. Kadis, S. J. Ajl, Eds., Academic, New York, 1971. 109. McMaster, W. J., Scott, A. I., Trippett, S., J. Chem. Soc. (1960) 4628. 110. Miyake, M., Saito, M., Enomoto, M., Shikata, T., Ishiko, T., Uraguchi, K., Sakai, F., Tatsuno, T., Tsukioka, M., Sakai, Y., Sato, T., Acta Pathol. Jap. (1960) 10, 75. 111. Marumo, S., Sumiki, Y., J. Agric. Chem. Soc. (1955) 29, 305. 112. Marumo, S., Bull. Agric. Chem. Soc. Jap. (1959) 23 (5), 428. 113. Saito, M., Enomoto, M., Tatsuno, T., in "Microbial Toxins," Vol. VI, A. Ciegler, S. Kadis, S. J. Ajl, Eds., p. 299, Academic, New York, 1971. 114. Howard, Β. H., Raistrick, H., Biochem. J. (1954) 56, 56. 115. Howard, Β. H., Raistrick, H., Biochem. J. (1949) 44, 227. 116. Gatenbeck, S., Acta Chem. Scand. (1958) 12, 1985. 117. BuLock, J. D., Smith, J. R., J. Chem. Soc. (1968) 1941. 118. Gatenbeck, S., Acta Chem. Scand. (1959) 13 (2), 386. 119. Kende, A. S., Belletire, J. L., Hume, E. L., Tetrahedron Lett. (1973) 31, 2935. 120. Ogihara, Y., Kobayashi, N., Shibata, S., Tetrahedron Lett. (1968) 15, 1881. 121. Howard, Β. H., Raistrick, Α., Biochem. J. (1954) 57, 212. 122. Shibata, S., Takido, M., Ohta, Α., Kurosu, T., Chem. Pharm. Bull. (1957) 6, 573. 123. Kobayashi, N., Iitaka, Y., Sankawa, U., Ogihera, Y., Shibata, S., Tetrahedron Lett. (1968) 58, 6135. 124. Takeda, N . , Seo, S., Ogihara, Y., Sankawa, U., Iitaka, I., Kitagawa, I., Tetrahedron Lett. (1973) 29, 3703. 125. Seo, S., Sankawa, U., Ogihara, Y., Iitaka, Y., Shibata, S., Tetrahedron (1973) 29, 3721. 126. Shojii, J., Shibata, S., Chem. Ind. (1964) 419. 127. Ishikawa, I., Ueno, Y., Tsunoda, H.,I..Biochem. (1970) 67 (6), 753. 128. Gatenbeck, S., Acta Chem. Scand. (1957) 11 (3), 555. 129. Shibata, S., private communication. 130. Yamazaki, M., Fujimoto, H., Miyaki, K., Yakugaku Zasshi (1972) 92 (1), 101. 131. Natori, S., Sakaki, S., Kurata, H., Udagawa, S., Ichinoe, M., Saito, M., Umeda, M., Ohtsubo, K., Appl. Microbiol. (1970) 19 (4), 613. 132. Moss, M. O., in "Microbial Toxins," Vol. VI, A. Ciegler, S. Kadis, S. J. Ajl, Eds., p. 381, Academic, New York, 1971. 133. Buchi, G., Snader, Κ. M., White, J. D., Gougoutas, J. Z., Singh, S.,J.Amer. Chem. Soc. (1970) 92, 6638.
7.
134. 135. 136. 137. 138. 139. 140. 141. 142. 143. 144. 145. 146.
POHLAND
AND
MISLIVEC
Metabolites
of Pénicillium Species
143
Roberts, J. C., Thompson, D. J., J. Chem. Soc. (1971) 3488. Roberts, J. D., Thompson, D. J., J. Chem. Soc. (1971) 3493. King, T. J., Roberts, J. C., Thompson, D. J., J. Chem. Soc. (1973) 78. Barton, D. H. R., Sutherland, J. K., J. Chem. Soc. (1965) 1769. Bollinger, P., Sigg, H. P., Haerri, E., Ger. Patent 2,005,976 (1970) ; Chem. Abstr. (1970) 73, 108. Angeletti, Α., Cerruti, C. F., Ann. Chim. Appl. (1930) 20, 424. Beppu, T., Abe, S., Sakaguchi, R., Bull. Agric. Chem. Soc. (1957) 21, 263. Cavill, G. W., Robertson, Α., Whalley, W. B., J. Chem. Soc. (1950) 1031. Sigg, H . P., Helv. Chim. Acta (1963) 46, 1061. Mahmoodian, Α., Stickings, C. E., Biochem. J. (1964) 92, 369-378. Kaczka, Ε. Α., Citterman, C. O., Dulaney, E. L., Folkers, K., Biochem. J. (1962) 1, 340-43. King, T. J., Roberts, J. C., Thompson, D. J., Chem. Commun. (1970) 1499. Baldwin, J. E., Barton, D. H . R., Bloomer, J. L., Jackman, L. M., Rodriguez-Hahn, L., Sutherland, J. K., Experientia (1962) 18, 345.
RECEIVED November 8, 1974.