C h a p t e r 45
Stress Analysis of the Silicon Chip-Plastic Encapsulant Interface S. Oizumi, N . Imamura, H . Tabata, and H. Suzuki Electrotechnical Research Laboratory, Nitto Electric Industrial Company, L t d . ,
Downloaded by FUDAN UNIV on March 15, 2017 | http://pubs.acs.org Publication Date: August 26, 1987 | doi: 10.1021/bk-1987-0346.ch045
Shimohozumi-cho, Ibaraki-shi, Osaka 567, Japan
I t i s critical to increase the adhesion strength of the interface between the S i - c h i p and the molding compound. During temperature cycle t e s t i n g , delamination s t a r t s from the chip edge. Once the delamination begins, it is facilitated toward the chip center. As the delamination spreads along the interface, the package cracking at the c h i p ' s edge increases because of high t e n s i l e stress and high maximum shear s t r e s s . The highest p r o b a b i l i t y that package cracking will occur e x i s t s with complete delamination. Molding compounds which e x h i b i t a higher thermal expansion c o e f f i c i e n t and a greater f l e x u r a l modulus display a higher tendency toward delamination due to the high shear stress at the chip edge.
P l a s t i c m o l d i n g e n c a p s u l a n t s f o r IC and L S I c o n t r i b u t e t o f a i l u r e s caused by package c r a c k s , d e f o r m a t i o n o f the aluminum p a t t e r n s , passivation layer cracks, etc., during temperature cycle t e s t s . (1,2,3,4) These failures are due to differences between the thermal expansion c o e f f i c i e n t (TEC) o f t h e m o l d i n g compound and t h a t of the S i - c h i p . S o l u t i o n s f o r the above f a i l u r e s a r e not simple. Lowering s t r e s s generated w i t h i n t h e m o l d i n g compound i t s e l f i s one a p p r o a c h . (5,6) S i l i c o n e m o d i f i e d epoxy r e s i n s have b e e n d e v e l o p e d w i t h t h i s o b j e c t i v e w h i c h d i s p l a y a l o w e r TEC a n d f l e x u r a l modulus. R e d e s i g n i n g the s t r u c t u r e of the e n t i r e package i s another method. (7) I n t h i s s t u d y , the mechanism o f f a i l u r e was i n v e s t i g a t e d e x p e r i m e n t a l l y a n d m a t h e m a t i c a l l y . We e s t i m a t e d the r e l a t i v e s t r e s s , which i s c a l l e d e x p e r i m e n t a l s t r e s s i n t h i s s t u d y , f r o m TEC a n d f l e x u r a l m o d u l u s d a t a f o r t h e m o l d i n g c o m p o u n d . I n a d d i t i o n , we a n a l y z e d t h e s t r e s s a t t h e i n t e r f a c e b e t w e e n t h e molding encapsulant and t h e S i - c h i p during temperature cycling tests. The l o c a l s t r e s s e s , w h i c h c a u s e d e l a m i n a t i o n b e t w e e n the molding encapsulant and S i - c h i p , were c a l c u l a t e d by the Finite Element Method (FEM). The e x i s t a n c e o f t h e d e l a m i n a t i o n was c o n f i r m e d u s i n g S c a n n i n g A c o u s t i c Tomography ( S A T ) , a n o n - d e s t r u c t i v e evaluation technique used t o d e t e c t v o i d s and d e t a c h e d surfaces w i t h i n a packaged d e v i c e .
0097-6156/87/0346-0537$06.00/0 © 1987 A m e r i c a n C h e m i c a l Society
Bowden and Turner; Polymers for High Technology ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
POLYMERS FOR HIGH T E C H N O L O G Y
538
Downloaded by FUDAN UNIV on March 15, 2017 | http://pubs.acs.org Publication Date: August 26, 1987 | doi: 10.1021/bk-1987-0346.ch045
BACKGROUND D u r i n g t e m p e r t u r e c y c l e t e s t i n g f r o m - 8 0 °C t o 2 0 0 ° C , l i q u i d t o l i q u i d , we s o m e t i m e s o b s e r v e d p a c k a g e c r a c k i n g , d e f o r m a t i o n o f t h e aluminum pattern, and p a s s i v a t i o n layer cracking. Figure 1 d i s p l a y s SEM p h o t o g r a p h s t h a t i l l u s t r a t e t h e s e p h e n o m e n a . Example A i l l u s t r a t e s p a c k a g e c r a c k i n g s t a r t i n g from t h e c h i p edge moving u p w a r d a t a p p r o x i m a t e l y a 120 a n g l e . Example Β shows d e f o r m a t i o n of an aluminum p a t t e r n . The d i r e c t i o n o f t h e d e f o r m a t i o n i s t o w a r d the c h i p center and the degree of deformation i s highest at the outside of the chip. Example C i s a p a s s i v a t i o n l a y e r c r a c k a t t h e bonding pad on t h e c h i p . The o c c u r r a n c e o f t h e s e f a i l u r e s i s o f t e n used as an i n d i c a t i o n o f the low s t r e s s c h a r a c t e r i s t i c s o f a mold ing compound. A correlation has been established that these failures increase as the number of temperature test cycles increases. EXPERIMENTAL STRESS The
relative
stress
the
following
Equation
i s calculated
as experimental
S -
KÎ E(T)-a(T)dT T ,
JTi
S: K:
Experimental Constant
OC(T):
Thermal
E(T):
F l e x u r a l Modulus o f Molding
Τ:
stress
by using
(1).
(1)
Stress
Expansion Coefficient
of Molding
Compound
Compound
Temperature
The T E C o f t h e S i - c h i p i s n e g l i g a b l e b e c a u s e i t i s o n e o r d e r o f magnitude l o w e r t h a n t h a t o f t h e m o l d i n g compound. The s t r e s s values from Equation ( 1 ) a r e adequate f o r use i n comparing the stress levels generated between the molding compounds a n d t h e Si-chip. F i g u r e 2 s h o w s t h e t e m p e r a t u r e dépendance o f t h e f l e x u r a l m o d u l u s a n d t h e TEC o f a m o l d i n g compound, w h i c h must be c o n s i d e r e d when calculating the experimental stress. Flexural modulus decreases slightly with increasing temperature and decreases rapidly from around 160 C , which is the glass transition temperature. In contrast, the thermal expansion coefficient behavior i s apparently opposite t h a t o f the f l e x u r a l modulus, and i n c r e a s e s r a p i d l y f r o m a p p r o x i m a t e l y 160 C . We c a n c a l c u l a t e t h e e x p e r i m e n t a l s t r e s s u s i n g E q u a t i o n (1) b y m e a s u r i n g t h e t e m p e r a t u r e dépendance o f t h e s e m o l d i n g compound p r o p e r t i e s . Figure 3 exhibits t h e e x p e r i m e n t a l s t r e s s f o r t h r e e t y p e s o f m o l d i n g compounds. Compound A i s a c o n v e n t i o n a l m o l d i n g compound. Compounds Β a n d C a r e low s t r e s s m o l d i n g compounds. T h i s d a t a was g e n e r a t e d f r o m - 5 0 C t o 175 C b y u s i n g E q u a t i o n ( 1 ) . NOTE: The s t r e s s o f t h e m o l d i n g compound t o t h e S i - c h i p i s assumed t o be s t r e s s - f r e e a t t h e m o l d i n g temperature 175 C . This figure i l l u s t r a t e s that the experimental s t r e s s increases as temperature decreases. Constant Κ i s 1 i n t h i s calculation. Compound C a p p a r e n t l y generates less than either
Bowden and Turner; Polymers for High Technology ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
Bowden and Turner; Polymers for High Technology ACS Symposium Series; American Chemical Society: Washington, DC, 1987. Figure
1: Package
Failure
Downloaded by FUDAN UNIV on March 15, 2017 | http://pubs.acs.org Publication Date: August 26, 1987 | doi: 10.1021/bk-1987-0346.ch045
5
3
1
S
ι
δ
δ
r
Η >
m
g
Ν G
ο
POLYMERS FOR HIGH T E C H N O L O G Y
Downloaded by FUDAN UNIV on March 15, 2017 | http://pubs.acs.org Publication Date: August 26, 1987 | doi: 10.1021/bk-1987-0346.ch045
540
Temp.CC) Figure
2:
Temperature Dependency of Thermal Expansion C o e f f i c i e n t
Figure
3:
Experimental
Flexural Modulus o f Compound
Stress
Bowden and Turner; Polymers for High Technology ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
and
45.
Silicon
OIZUMI ET A L .
Chip-Plastic
Encapsulant
541
Interface
Downloaded by FUDAN UNIV on March 15, 2017 | http://pubs.acs.org Publication Date: August 26, 1987 | doi: 10.1021/bk-1987-0346.ch045
Compound A o r B . A c c o r d i n g l y , Compound A h a s a h i g h e r p r o b a b i l i t y of i n d u c i n g package f a i l u r e s d u r i n g temperature c y c l e t e s t i n g . The e x p e r i m e n t a l s t r e s s i s an i n d i c a t i o n o f a m o l d i n g compound's low stress characteristics. Furthermore, i t provides a satisfactory a p p r o x i m a t i o n o f t h e s t r e s s l e v e l s t h a t a m o l d i n g compound w o u l d impart to the S i - c h i p . We d e f i n e t h i s e x p e r i m e n t a l s t r e s s t o b e the t o t a l or " b u l k y " s t r e s s o f a m o l d i n g compound t o a s i l i c o n chip. Next, we f o c u s e d on l o c a l s t r e s s i n an e n t i r e package to determine which s t r e s s caused the package f a i l u r e . To m e e t t h i s o b j e c t i v e , t h e F i n i t e E l e m e n t M e t h o d was c h o s e n . However, i t s use r e q u i r e d s e v e r a l a s s u m p t i o n s t o be d e f i n e d p r i o r t o c a l c u l a t i o n . ASSUMPTIONS 1.
The t e m p e r a t u r e d e p e n d e n c e o f t h e m a t e r i a l p r o p e r t i e s o f t h e m o l d i n g compound s h o u l d be c o n s i d e r e d t o c a l c u l a t e t h e s t r e s s accurately. The a v e r a g e TEC a n d a v e r a g e F l e x u r a l M o d u l u s w e r e c a l c u l a t e d using Equation (2). These v a l u e s are c o n s i d e r e d t o be a d e q u a t e for the comparison of the l o c a l s t r e s s of the m o l d i n g compound ( T a b l e I).
a -
Γ*αν\ύτ/ΔΤ J t
'
(2)
Ε -
CC : E: C((T): E(T) : Τ: ΔΤ:
E (T) d τ /ΔΤ
Average Thermal Expansion C o e f f i c i e n t Average F l e x u r a l Modulus Thermal Expansion Coefficient F l e x u r a l Modulus Temperature T - T (Thermal Load) 1
2
TABLE I :
MATERIAL
2. 3. 4.
MATERIAL PROPERTIES 2 Ε(kg/mm )
(1/°C)
V
Compound A
2.38
χ
10~
5
1290
0.25
Compound Β
2.04
χ
10"
5
1110
0.25
Compound C
1.81
χ
10~
5
964
0.25
Si-Chip
2.60
χ
10"
6
13000
0.28
Lead
7.00
χ
10~
6
20800
0.29
Frame
Analysis i s 2-dimensional. A n a l y s i s i s plane stress c o n d i t i o n . Element i s q u a d r i l a t e r a l .
Bowden and Turner; Polymers for High Technology ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
542
POLYMERS FOR HIGH T E C H N O L O G Y
5.
Number o f
6.
Thermal be
e l e m e n t s i s 2 1 0 7 ; number o f n o d a l p o i n t s i s 2 2 0 0 . F i n i t e Element Model Figure 4 l o a d i s f r o m - 8 0 C t o 175 C . The s t r e s s i s a s s u m e d ο
stress
free
at
the molding
temperature,
to
175 C .
Downloaded by FUDAN UNIV on March 15, 2017 | http://pubs.acs.org Publication Date: August 26, 1987 | doi: 10.1021/bk-1987-0346.ch045
R E S U L T S AND D I S C U S S I O N Figure 5 i l l u s t r a t e s the shear s t r e s s d i s t r i b u t i o n over a c h i p for t h e t h r e e compounds whose e x p e r i m e n t a l s t r e s s v a l u e s a r e shown i n F i g u r e 3. F o r a l l t h r e e c o m p o u n d s , t h e maximum s h e a r s t r e s s o c c u r s a t the c h i p edge, and t h i s s t r e s s d e c r e a s e s r a p i d l y toward the c h i p center. I t i s b e l i e v e d t h a t t h i s maximum v a l u e o f t h e s h e a r s t r e s s causes delamination at the interface between the Si-chip and molding ecapsulant. A s a r e s u l t , i t c a n be c o n c l u d e d t h a t Compound A h a s a h i g h e r p o s s i b i l i t y o f d e l a m i n a t i o n r e l a t i v e t o Compounds Β and C. The o c c u r r a n c e o f d e l a m i n a t i o n was c o n f i r m e d u s i n g S A T , a n o n - d e s t r u c t i v e e v a l u a t i o n t e c h n i q u e u s i n g sound waves t o g e n e r a t e o p t i c a l images. F i g u r e 6 shows t h e d e l a m i n a t i o n advancement d u r i n g temperature cycle t e s t i n g . P r i o r t o t e m p e r a t u r e c y c l i n g , no d e l a m i n a t i o n i s a p p a r e n t between the S i - c h i p and m o l d i n g encapsulant interface. A f t e r 400 c y c l e s , d e l a m i n a t i o n o r i g i n a t e s at the four c o r n e r s of the s i l i c o n c h i p . I n c r e a s i n g t o 800 c y c l e s » d e l a m i n a t i o n advances half-way across the c h i p s u r f a c e . At 1,000 c y c l e s , t h e r e c e a s e s t o be a n y a d h e s i o n . Figure 7 graphically compares experimental stress versus p r i n i c p a l s t r e s s at the c h i p ' s edge. The l a r g e r t h e experimental stress, the l a r g e r the compressive stress, tensile stress, and maximum s h e a r s t r e s s . Compound A e x h i b i t s t h e l a r g e s t experimental stress value and, therefore, the highest p o s s i b i l i t y of package cracking. Based on the fact that delamination advances during temperature c y c l e t e s t i n g , h y p o t h e t i c a l c h a n g e s w e r e made i n t h e l e n g t h o f d e l a m i n a t i o n d u r i n g FEM c a l c u l a t i o n s f o r Compound A , s l i p was* a l l o w e d b e t w e e n e l e m e n t s . F i g u r e 8 shows t h e r e s u l t s o f t h i s e v a l u a t i o n f o r d e l a m i n a t i o n advancement. In a d d i t i o n to the c h i p ' s e d g e , we s e e that there are a l s o peaks of shear s t r e s s at the hypothetical delamination points. These peaks of shear s t r e s s are positioned higher than the shear s t r e s s for complete adhesion. From t h i s d a t a i t h a s b e e n c o n c l u d e d t h a t t h e s e p e a k s facilitate t h e s p r e a d i n g o f d e l a m i n a t i o n from t h e edge o f t h e c h i p t o w a r d s t h e chip's center. F i g u r e 9 shows t h e p r i n c i p a l s t r e s s e s a t t h e c h i p edge w i t h the d e l a m i n a t i o n advancement. We u n d e r s t a n d t h a t t e n s i l e stress and maximum shear stress at the c h i p edge i n c r e a s e s as the delamination advances. When c o m p l e t e d e l a m i n a t i o n o c c u r s , t e n s i l e s t r e s s and s h e a r s t r e s s have reached t h e i r h i g h e s t v a l u e s . I t can b e c o n c l u d e d t h e n , t h a t t h e maximum p o s s i b i l i t y o f p a c k a g e c r a c k i n g o c c u r s when t h e r e i s c o m p l e t e d e l a m i n a t i o n . This package c r a c k i n g phenomena must a l s o be related to aluminum p a t t e r n d e f o r m a t i o n and p a s s i v a t i o n l a y e r c r a c k i n g . CONCLUSIONS 1.
Lowering
the
thermal
expansion
coefficient
and
flexural
Bowden and Turner; Polymers for High Technology ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
mod-
OIZUMI ET A L .
Silicon
Chip-Plastic
Encapsulant
Interface
Downloaded by FUDAN UNIV on March 15, 2017 | http://pubs.acs.org Publication Date: August 26, 1987 | doi: 10.1021/bk-1987-0346.ch045
45.
Bowden and Turner; Polymers for High Technology ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
543
POLYMERS FOR HIGH T E C H N O L O G Y
Downloaded by FUDAN UNIV on March 15, 2017 | http://pubs.acs.org Publication Date: August 26, 1987 | doi: 10.1021/bk-1987-0346.ch045
544
Figure
ô: D e l a m i n a t i o n Test
Advancement
During
Temperature
ο Compound A Δ Compound Β • Compound C
10
-rrna^^—ο
0
{Tension I ^Compression I
10
1
30Ô
1
400
2
50Ô"
Experimental Stress (kg/cm)
Figure
7: P r i n c i p a l Stress
f o r 3 Compounds
Bowden and Turner; Polymers for High Technology ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
Cycle
OIZUMI ET A L .
Silicon
Chip-Plastic
Encapsulant
Interface
10,
Downloaded by FUDAN UNIV on March 15, 2017 | http://pubs.acs.org Publication Date: August 26, 1987 | doi: 10.1021/bk-1987-0346.ch045
9F
Distance from the Chip Center (mm) Figure
8: Shear
Stress
D i s t r i b u t i o n with a Delamination
o Complete Adhesion - Δ Delamination 0.2mm 0 Delamination 0.4mm • Delamination 0.95mm . • Complete Delamination ^ ^ ~ — r
• Τ max
r\ /
5
Δ
V 0 1
Figure
0
•
·
05 1
ΪΌ 1
1L5
Length of Delamination (mm)
9: P r i n c i p a l Stress
with a Delamination
Bowden and Turner; Polymers for High Technology ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
POLYMERS FOR HIGH T E C H N O L O G Y
546
2.
u l u s o f a m o l d i n g compound i s one method t o p r e v e n t p a c k a g e c r a c k i n g at the c h i p edge. I n c r e a s i n g the a d h e s i o n s t r e n g t h o f a m o l d i n g e n c a p s u l a n t and Si-chip interface i s a n o t h e r method t o p r e v e n t the package c r a c k i n g at the c h i p edge.
ACKNOWLEDGMENTS The a u t h o r s w o u l d l i k e t o t h a n k D r . T . M o r i u c h i a n d M r . K . I k o o f N i t t o E l e c t r i c I n d u s t r i a l C o . , L t d . , a n d M r . K . Kuwada o f N i t t o D e n k o A m e r i c a , I n c . f o r t h e i r h e l p f u l comments a n d e n c o u r a g e m e n t s .
Downloaded by FUDAN UNIV on March 15, 2017 | http://pubs.acs.org Publication Date: August 26, 1987 | doi: 10.1021/bk-1987-0346.ch045
LITERATURE CITED 1. 2.
3.
4. 5. 6. 7.
R.E. Thomas, Stress-Induced Deformation of Aluminum Metalization in Plastic Molded Semiconductor Devices, Proc. 35th ECC, 1985, pp. 37-45. M. Isagawa, Y. Iwasaki, and T. Sutoh, Deformation of A1 Metalization in Plastic Encapsulated Semiconductor Devices Caused by Thermal Shock, 18th Annual Proceedings, Reliability Physics, 1980, pp. 171-177. S. Okikawa, M. Sakimoto, M. Tanaka, T. Sato, T. Toya, and Y. Hara, Stress Analysis of Passivation Film Crack for Plastic Molded LSI Caused by Thermal Stress, Proc. International Society for Testing and Failure Analysis, Oct. 1983, Los Angeles, CA. K. Miyake et a l . , Thermal Stress Analysis of Plastic Encapsulated Integrated Circuits by FEM, IECE Proc., Japan, 1984, p. 2833. K. Kuwata, K. Iko, and H. Tabata, Low Stress Resin Encapsulant for Semiconductor Devices, Proc. 35th ECC, 1985, pp. 18-22. H. Suzuki, T. Moriuchi, and M. Aizawa, Low Mold Stress Epoxy Molding Compounds for Semiconductor Encapsulation, Nitto Electric Industrial Co., Ltd., 1979. Steven Groothuis, Walter Schroen, and Masood Murtuza, Computer Aided Stress Modeling for Optimizing Plastic Package Reliability, 23rd Annual Proceedings, Reliability Physics, 1985, pp. 184-191.
RECEIVED
April 8, 1987
Bowden and Turner; Polymers for High Technology ACS Symposium Series; American Chemical Society: Washington, DC, 1987.