75 Structural and Catalytic Properties of Nickel
Downloaded by CALIFORNIA INST OF TECHNOLOGY on February 7, 2017 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch075
Modified Molecular Sieves V. PENCHEV, H. MINCHEV, V. KANAZIREV, and I. TSOLOVSKI
1
Institute of Organic Chemistry, Bulgarian Academy of Sciences, Sofia
The limit of stability of the crystal framework at different extents of Ni ion exchange of type A molecular sieve is shown by means of electron microscopy, differential thermal analysis, and x-ray diffraction. The data obtained from catalytic studies are in accord with the results of physical methods, showing preservation of the molecular sieve properties after reduction of the Ni ions. Metallic Ni aggregates on the external surface of the zeolite. In the dehydrogenation of cyclohexane and the hydrogenolysis of n-hexane, type A molecular sieve shows the properties of metallic Ni on an inert support. When NiNaA is mixed mechanically with CaY, a typical bifunctional catalyst is obtained.
" X T i c k e l catalysts o n a s u p p o r t h a v e b e e n a n d c o n t i n u e to b e a subject ^
of m u l t i l a t e r a l studies, the results of w h i c h h a v e h e l p e d the d e v e l
o p m e n t of the t h e o r y of the p o l y f u n c t i o n a l catalyst. erties of N i m o l e c u l a r sieves i n the presence of H studied completely.
2
T h e catalytic prop
(2,7,
8) h a v e n o t b e e n
S t u d y of zeolite s t r u c t u r a l changes a n d the c o n d i
t i o n of t h e m e t a l after t h e r m a l a n d h y d r o g e n treatment comparatively poor.
have
been
T h e same is true f o r the influence of zeolite t y p e
o n t h e c a t a l y t i c a c t i v i t y of the m e t a l . T h i s study aims to give a d d i t i o n a l i n f o r m a t i o n o n the subject. A s t y p e A m o l e c u l a r sieve m o d i f i e d w i t h N i proves to b e a suitable subject f o r c l a r i f y i n g some of t h e s t r u c t u r a l a n d c a t a l y t i c p e c u l i a r i t i e s of zeolites, i t is g i v e n m a i n c o n s i d e r a t i o n . Present address : Institute of G e n e r a l a n d Inorganic C h e m i s t r y , B u l g a r i a n A c a d e m y of Sciences, Sofia. 1
434
Flanigen and Sand; Molecular Sieve Zeolites-II Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
75.
Nickel
PENCHEV E T A L .
Modified
Molecular
435
Sieves
Experimental F o r this s t u d y , L i n d e N a A z e o l i t e w a s u s e d . T h e i o n e x c h a n g e w a s c a r r i e d out w i t h 0 . 1 N s o l u t i o n of N i ( N 0 ) , a c c o r d i n g to o u r m e t h o d (6). I n T a b l e I , some of t h e d a t a o b t a i n e d are s h o w n . T h e a c i d i t y of t h e s a m ples w a s d e t e r m i n e d b y p o t e n t i o m e t r i c t i t r a t i o n w i t h C H O K ( 9 ) . T h e t h e r m o g r a p h i c studies w e r e c a r r i e d o u t u n d e r c o n d i t i o n s d e s c r i b e d i n Ref. 11. T h e r e d u c t i o n was c h e c k e d o n a s a m p l e p r e v i o u s l y r e d u c e d w i t h H u n d e r c o n d i t i o n s s i m i l a r to those i n c a t a l y t i c a c t i v a t i o n . T h e same p r o c e d u r e was c a r r i e d out i n N f l o w f o r c o m p a r i s o n . F i g u r e 1 illustrates the results. X - r a y studies of zeolite w i t h N i i n i o n f o r m w e r e c a r r i e d o u t m a k i n g use of C r r a d i a t i o n (10). T h e x-ray patterns o f the r e d u c e d samples w e r e m a d e w i t h C u r a d i a t i o n , t h e samples b e i n g p l a c e d i n 0 . 5 - m m d i a m e t e r L i n d e m a n c a p i l l a r y tubes. O n platinum—carbon r e p l i c a , e l e c t r o n m i c r o s c o p e studies w e r e c a r r i e d o u t (12). I n o r d e r to c l a r i f y the changes i n the zeolite w h e n heated, a d d i t i o n a l x-ray a n d electron m i c r o s c o p e studies w e r e c a r r i e d o u t o n Samples 3 a n d 4, h e a t e d at D T A s p e e d u p to 3 6 0 ° , 4 4 0 ° , 6 4 0 ° , 7 4 0 ° , 8 8 0 ° , a n d 1 0 7 0 ° C . T h e c a t a l y t i c properties w e r e e x a m i n e d i n the process of d e h y d r o g e n a t i o n of c y c l o hexane a n d h y d r o g e n o l y s i s a n d h y d r o i s o m e r i z a t i o n of n-hexane. T h e tests u n d e r a t m o s p h e r i c pressure w e r e c a r r i e d o u t i n a fixed-bed flow m i c r o r e a c t o r . T h e catalyst was r e d u c e d w i t h H i n the c a t a l y t i c r e a c t o r at 400 ° C d u r i n g a 4 - h o u r p e r i o d . D e h y d r o g e n a t i o n w a s c a r r i e d o u t at 3 0 0 ° C , space v e l o c i t y (F/W) \Ah~\ m o l e r a t i o H / C H — 5 : 1 , a n d d i l u t i o n o f t h e catalyst b y a n i n e r t m a t e r i a l . T h e c o n d i t i o n s of h y d r o genolysis a n d i s o m e r i z a t i o n are as f o l l o w s : t e m p e r a t u r e r a n g e : 3 0 0 ° 4 0 0 ° C , F/W 2h~\ H / C H 5 : 1 m o l e , a n d d i l u t i o n w i t h i n e r t m a t e r i a l . T h e p r o d u c t s w e r e a n a l y z e d b y t h e gas c h r o m a t o g r a p h i c m e t h o d . 3
2
3
Downloaded by CALIFORNIA INST OF TECHNOLOGY on February 7, 2017 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch075
2
2
2
2
2
Table I.
Sample D a t a DTA
No. of Sample 1 2 3 4 5 4a 4b Results
Ni, Wt %
Degree of Exchange, %Eqv
0 3.6 4.0 5.9 10.6 5.9 5.9
0 18 23 34 55 34 34
and
Acidity Mg Eqv
X 10\ H /Gram +
in Ν2
in H
0.50 1.56
0.45 3.45
0.60 0.71 0.60
1.16 1.12
2
1.16
Data
Loss of Wt,
Initial Temp, of Destruc tion, °C
22.4
840
24.0 25.0 26.3 23.0 22.0
780 750 640 740 755
%
Discussion
T h e x-ray studies (6) s h o w that after i o n exchange, N i zeolites r e t a i n t h e i r p r i m a r y structure.
M o r e d e t a i l e d i n f o r m a t i o n o n the s t a b i l i t y
of t h e N i zeolite w a s o b t a i n e d b y a t h e r m o g r a p h i c m e t h o d ( F i g u r e 1 ) .
Flanigen and Sand; Molecular Sieve Zeolites-II Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
Downloaded by CALIFORNIA INST OF TECHNOLOGY on February 7, 2017 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch075
436
MOLECULAR
SIEVE ZEOLITES
II
260° 1 10
Figure
1.
I
I 30
I
I 50
1
' 70
1
Differential thermograms and NiNaA zeolites
A p r o n o u n c e d e n d o t h e r m a l effect ( 1 6 0 ° - 2 4 0 ° C )
90 Trnin
of NaA a n d 2 high-temperature
e x o t h e r m a l effects ( 7 0 0 ° - 9 8 0 ° C ) w e r e o b s e r v e d i n a l l samples. N i f o r m s are c h a r a c t e r i z e d b y another e x o t h e r m a l effect ( 3 7 0 ° C ) , w h i c h is w e a k e r t h a n the other t w o . C o m p a r i s o n of D T A a n d D T G curves shows that the e n d o t h e r m a l effect corresponds to the l i b e r a t i o n o f w a t e r f r o m t h e m o l e c u l a r sieves.
T h e w a t e r l i b e r a t i o n is i n stages, a n d c o m p l e t e d e h y
d r a t i o n occurs o n l y after d e s t r u c t i o n of t h e m o l e c u l a r sieve f r a m e w o r k . E v e n at temperatures h i g h e r t h a n 6 0 0 ° C , a b o u t 1% w e l l - b o n d e d w a t e r r e m a i n s i n t h e zeolite. A l t h o u g h this q u a n t i t y of w a t e r is s m a l l , i t p l a y s a definite p a r t i n t h e s t r u c t u r a l s t a b i l i t y a n d the c a t i o n c o m p a r i s o n
(4).
T h e o b s e r v e d character of d e h y d r a t i o n is s h o w n e v e n better i n t h e N i sieves. T h e p e a k of the e n d o t h e r m a l r e a c t i o n is s p l i t i n t w o , a n d its shift to l o w e r temperatures has b e e n o b s e r v e d .
T h e total quantity of water
a d s o r b e d b y t h e zeolite increases f r o m 22 to 2 6 % w i t h i n c r e a s i n g degree of i o n exchange ( T a b l e I ) , w h i c h is i n a c c o r d w i t h t h e greater h y d r a t i o n a b i l i t y of t h e N i ions ( 3 ) . W h e n N i is i n t r o d u c e d , i t decreases t h e r e l a t i v e d y n a m i c t h e r m a l s t a b i l i t y ; t h e b e g i n n i n g of t h e first h i g h - t e m p e r a t u r e exoeffect n o t e d o n t h e D T A p l o t s , w h i c h m a r k s t h e d e s t r u c t i o n o f t h e f r a m e w o r k ( I ) , decreases f r o m 8 4 0 ° to 6 4 0 ° C ( T a b l e I ) . T h e a d d i t i o n a l e l e c t r o n m i c r o s c o p e ( F i g u r e 2c,d,e) a n d x-ray studies ( F i g u r e 3 ) s h o w
Flanigen and Sand; Molecular Sieve Zeolites-II Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
Downloaded by CALIFORNIA INST OF TECHNOLOGY on February 7, 2017 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch075
75.
PENCHEV ET
AL.
Figure 2.
Nickel
Modified
Molecular
Sieves
437
Electron microscope photos of zeolite samples a. h. c. d. e.
No. 1 No. 4 No. 4 heated to 640° No. 4 heated to 870° No. 4 heated to 1070°
that the zeolite structure r e m a i n s u n c h a n g e d u n t i l t h e b e g i n n i n g of t h e first h i g h - t e m p e r a t u r e exoeffect a n d later transforms into a state a m o r p h o u s to x-rays.
A t the e n d , a n e w c r y s t a l phase is f o r m e d w i t h a
n e p h e l i n e structure.
T h e r m o g r a p h i c studies f o r S a m p l e 4 treated u n d e r
c o n d i t i o n s analogous to t h e c a t a l y t i c a c t i v a t i o n s h o w c o n s i d e r a b l e changes i n the endoeffect o n l y c h a r a c t e r i s t i c of the r e d u c e d s a m p l e ( F i g u r e 1 ) . Y e t , after h e a t i n g at 400 ° C , some n o n r e v e r s i b l e changes o c c u r , m a r k e d
Flanigen and Sand; Molecular Sieve Zeolites-II Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
438
MOLECULAR
SIEVE
ZEOLITES
II
b y a decrease o f t h e t o t a l a d s o r p t i o n c a p a c i t y b y 2 - 3 % ( T a b l e I ) a n d d i s a p p e a r a n c e o f some o f t h e w e a k e r x-ray lines ( F i g u r e 3 ) .
ί 1 11 11
Downloaded by CALIFORNIA INST OF TECHNOLOGY on February 7, 2017 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch075
H i
I
, . Ι ι I, i . l
i Lill
i . 1—i—1_1
ili.il 11 h il
\ I.,!.. i i i l l j l l 20
α
I
I
I, Ιΐ,ΙΙ,ιιιιΙ 60
40
/A4inH
}
1 I 1
I . , . . , .
III
.
.
Il
M4inN
t
1 1
Mi I 11,111 u ι i- I ' • • • 100 120 80 29—Cu~Kei 1070'C
ι ι
.,,111
11,1,
ί
. ιI
1 1 i l 1 1 11 1Il
eeo'c
IL
, ι il
?40'c
I ι II
L_L
JLL
I • Il
il lui
111
111 I ..
440'C 360'C
ι
Lull I. 40
640'C
il i 120
80
M*
140 2G~Cr-K«
Figure 3. X-ray diffraction data on Sample 4; the arrows note lines characteristic of Ni and NiO a. Heating in air b. Heating to 400° in H or N flow 2
2
A l t h o u g h t h e c y c l o h e x a n e m o l e c u l e has a b i g g e r c r i t i c a l d i a m e t e r size ( 6 . 1 A ) t h a n t h e e n t r y openings o f t y p e A m o l e c u l a r sieve, d e h y d r o g e n a t i o n occurs to a c o n s i d e r a b l e degree.
T h i s r e s u l t confirms i n a cata
l y t i c w a y f o r t y p e A zeolites t h e fact, a c c e p t e d f o r m o l e c u l a r sieves X a n d Y ( 7 , 1 3 ) , that after r e d u c t i o n w i t h H , N i aggregates o n t h e e x t e r n a l 2
z e o l i t e surface i n crystals o f c o n s i d e r a b l e size. T a b l e I I shows that the specific a c t i v i t y o f t h e m e t a l decreases as its c o n c e n t r a t i o n increases o n the catalyst. T h i s effect m i g h t b e c o n s i d e r e d a n i n d i c a t i o n o f a n increase of N i c r y s t a l size. X - r a y studies ( F i g u r e 3 ) c o n f i r m t h e presence o f m e t a l l i c N i . D e t e r m i n a t i o n o f N i c r y s t a l sizes f r o m t h e l i n e breadths is d i f f i c u l t because o f t h e c o i n c i d e n c e o f a l l d i f f r a c t i o n lines of N i a n d N i O w i t h t h e lines o f t h e zeolite. T h e c o n s i d e r a b l y l o w e r specific a c t i v i t y o f
Flanigen and Sand; Molecular Sieve Zeolites-II Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
75.
Table I I .
Mol Sieve
Downloaded by CALIFORNIA INST OF TECHNOLOGY on February 7, 2017 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch075
Nickel
PENCHEV E T AL.
Quantity Wt% Ni
Modified
Molecular
439
Sieves
Specific A c t i v i t y and Concentration of N i Hydrogenolysis of n-Hexane, Grams C