2 Structured and Simple Models of Enzymatic Lysis and Disruption of Yeast Cells
Separation, Recovery, and Purification in Biotechnology Downloaded from pubs.acs.org by UNIV LAVAL on 07/13/16. For personal use only.
J. B. Hunter and J. A. Asenjo Biochemical Engineering Laboratory, Department of Chemical Engineering and Applied Chemistry, Columbia University, New York, NY 10027
Microbial cell-wall-lytic enzymes are widely used in the laboratory for cell breakage, proto-plasting of yeasts and bacteria, and for studies of the structure and composition of microbial cell walls (1). Recently lytic systems have come under consideration as a specific and chemically mild way to rupture microbial cells on an industrial scale (2,3). There appear to be attractive commercial applications of lytic systems for the recovery of enzymes, antigens and other recombinant products accumulated within cells, for upgrading of microbial biomass for food and feed uses (4,5) and for the manufacture of functional biopolymers from cell wall carbohydrates (6). This paper presents two models of enzymatic lysis of yeast cells; a simplified two-step model, accounting for protein release at cell lysis followed by proteolysis, and a more complex mechanistic model which describes the removal of the two layers of the yeast wall and the extrusion and rupture of the protoplast and organelles. The use of these models in predicting the release and breakdown of microbial proteins, and the application of the structured model to enzyme recovery will also be discussed. One p r o b l e m i n p r o d u c t i o n o f r e c o m b i n a n t p r o t e i n s i s r e c o v e r y o f the f i n i s h e d product from the c e l l s which accumulate i t . T h i s problem i s p a r t i c u l a r l y acute i n the case o f y e a s t s and f u n g i , which have tough, t h i c k c e l l w a l l s which are d i f f i c u l t t o r u p t u r e mechanic a l l y o r by s o n i c a t i o n . Product s e c r e t i o n i s not always f e a s i b l e , even f o r l o w - m o l e c u l a r - w e i g h t p r o d u c t s , a l t h o u g h a newly developed s e c r e t i o n p r o c e s s f o r y e a s t (7) a p p e a r s p r o m i s i n g . 0097-6156/ 86/ 0314-0009$06.50/ 0 © 1986 American Chemical Society
Separation, Recovery, and Purification in Biotechnology Downloaded from pubs.acs.org by UNIV LAVAL on 07/13/16. For personal use only.
10
SEPARATION, RECOVERY, AND PURIFICATION IN BIOTECHNOLOGY
There a r e numerous examples of overproduced r e c o m b i n a n t p r o t e i n s w h i c h p r e c i p i t a t e i n t r a c e l l u l a r l y i n E_. c o l i , f o r m i n g d e n s e i n c l u s i o n b o d i e s ( 8 ) ; t h e s e p r o d u c t s i n c l u d e i n s u l i n and s o m a t o s t a t i n , b o t h very small p r o t e i n s . In yeast, recombinant v i r a l surface antigen p r o t e i n s a r e n o t s e c r e t e d , b u t a s s e m b l e i n t o p a r t i c l e s ( 9 ) . Subc e l l u l a r s t r u c t u r e s such as m i t o c h o n d r i a , l y s o s o m e s o r t h e v a c u o l e must a l s o be r e c o v e r e d by c e l l b r e a k a g e , f o r use e i t h e r as b i o c a t a l y s t s (10) o r as an i n i t i a l s t e p i n t h e p u r i f i c a t i o n o f enzymes a s s o c i a t e d w i t h s u c h s t r u c t u r e s . U n t i l now, t h e s e p r o d u c t s h a v e g e n e r a l l y b e e n h a r v e s t e d by m e c h a n i c a l l y r u p t u r i n g t h e c e l l s i n a homogenizer, bead m i l l or French p r e s s . The h i g h s h e a r f i e l d s , e l e v a t e d t e m p e r a t u r e s and g a s - l i q u i d i n t e r f a c e s g e n e r a t e d i n t h e s e d e v i c e s can denature p r o t e i n s , e s p e c i a l l y multi-enzyme complexes and m e m b r a n e - l i n k e d p r o t e i n s (11) . M o r e o v e r , t h e s e p a r a t i o n of c e l l d e b r i s from the products i s e s p e c i a l l y complicated i f the product i s p a r t i c u l a t e , f r a g i l e or membrane-associated. L y t i c enzyme s y s t e m s p r o v i d e a c h e m i c a l l y m i l d , l o w - s h e a r and c a t a l y t i c a l l y s p e c i f i c a l t e r n a t i v e t o m e c h a n i c a l c e l l d i s ruption. D e p e n d i n g on t h e p a r t i c u l a r l y t i c s y s t e m e m p l o y e d and i t s p u r i t y , t h e e n z y m e s may be e n g i n e e r e d t o a t t a c k c e l l w a l l comp o n e n t s a l o n e , w i t h o u t p r o d u c t damage. The e n z y m e l y s o z y m e , active a g a i n s t some b a c t e r i a l c e l l w a l l s , h a s b e e n u s e d t o h a r v e s t b o v i n e g r o w t h h o r m o n e g r a n u l e s f r o m _E. c o l i ( 8 ) , a n d a m e m b r a n e - a s s o c i a t e d h y d r o x y l a s e c o m p l e x f r o m P. p u t i d a ( 1 1 ) ; u s e o f o t h e r b a c t e r i o l y t i c enzymes f r o m a v a r i e t y o f m i c r o b i a l s o u r c e s h a v e a l s o been reported (3). I n v e s t i g a t i o n s i n t o t h e s u b c e l l u l a r l o c a t i o n o f enzyme a c t i v i t i e s i n m i c r o b i a l c e l l s s u g g e s t t h a t one o r more enzyme p r o d u c t s c o u l d be s p e c i f i c a l l y f r a c t i o n a t e d f r o m a s i n g l e b a t c h o f c e l l s by p r o p e r l y c o n t r o l l i n g c e l l d i s r u p t i o n . Invertase i n yeast i s p o s s i b l y the best example of t h i s p r i n c i p l e . The s t u d i e s l e a d i n g to d i s c o v e r y of i t s l o c a t i o n ( i n the p e r i p l a s m i c space) have b e e n s u m m a r i z e d by P h a f f ( 1 2 ; p . 1 7 1 - 1 7 3 ) , and a s a m p l e p r o c e s s f o r i t s r e c o v e r y h a s b e e n p r o p o s e d ( 4 ) . The r e c o v e r y o f s e v e r a l d i f f e r e n t enzymes i n h i g h y i e l d and h i g h r e l a t i v e p u r i t y s h o u l d be p o s s i b l e u s i n g a c o m b i n a t i o n o f l y t i c enzymes, s u r f a c t a n t s and o s m o t i c s u p p o r t b u f f e r s t o s e l e c t i v e l y and s e q u e n t i a l l y r e l e a s e p r o t e i n s from p a r t i c u l a r s t r u c t u r e s . C e l l f r a c t i o n a t i o n b y m e c h a n i c a l r u p t u r e h a s a l r e a d y come u n d e r investigation. Two s e p a r a t e s t u d i e s o f m e c h a n i c a l r u p t u r e o f y e a s t showed d i f f e r e n t r a t e s o f r e l e a s e f o r enzymes i n d i f f e r e n t c e l l l o c a t i o n s (13,14). W a l l - l i n k e d and p e r i p l a s m i c enzymes w e r e r e leased r e l a t i v e l y f a s t e r than t o t a l p r o t e i n , s o l u b l e cytoplasmic e n z y m e s a t a b o u t t h e same r a t e , a n d t h e m i t o c h o n d r i a l e n z y m e f u m a r a s e l a t e r t h a n t o t a l p r o t e i n (13) . P r o t e o l y s i s by t h e y e a s t s own e n z y m e s was n o t f o u n d t o b e a p r o b l e m . A c t i v i t i e s of the r e l e a s e d e n z y m e s d e c l i n e d s l o w l y o r n o t a t a l l w h e n d i s r u p t i o n was cont i n u e d a f t e r t h e end o f p r o t e i n r e l e a s e , and t h e e f f e c t o f s h e a r was not separated from the e f f e c t of p r o t e o l y s i s . S h e t t y and K i n s e l l a (15) a l s o f o u n d a l o w r a t e o f p r o t e o l y s i s a f t e r m e c h a n i c a l d i s r u p t i o n , though t h i o l r e a g e n t s added t o weaken the c e l l w a l l s b e f o r e d i s r u p t i o n c a u s e d an i m p o r t a n t i n c r e a s e i n t h e e x t e n t of p r o t e i n b r e a k down . 1
2.
HUNTER AND ASENJO
Model
Enzymatic Lysis and Disruption of Yeast Cells
11
Background
Yeast c e l l structure. The e x t e n s i v e body o f l i t e r a t u r e on c e l l c o m p o s i t i o n and s t r u c t u r e has r e c e n t l y been reviewed b y B a l l o u and e a r l i e r by Phaff (12). A s a n e n g i n e e r i n g a p p r o x i m a t i o n , t h e c e l l w a l l o f y e a s t may b e c o n s i d e r e d a s a t w o - l a y e r s t r u c t u r e . ( F i g u r e 1) T h e i n n e r w a l l i s composed o f a m i x t u r e o f b r a n c h e d 3(1-3) a n d 3(1-6) l i n k e d g l u c a n s , glucose polymers s i m i l a r t o c e l l u l o s e (12). The o u t s i d e o f t h e g l u c a n l a y e r i s covered w i t h a mannan-protein complex c o n s i s t i n g of a c r o s s - l i n k e d n e t w o r k o f p r o t e i n m o l e c u l e s , t o w h i c h a r e a t t a c h e d two t y p e s o f mannan: a n a c i d i c o l i g o s a c c h a r i d e , a n d a h i g h e r m o l e c u l a r w e i g h t p h o s p h o m a n n a n h a v i n g a d.p. o f a b o u t 1 0 0 ( 1 7 ) . From t h e p e r s p e c t i v e o f c e l l l y s i s , t h i s m a n n o p r o t e i n l a y e r s e r v e s to p r o t e c t t h e g l u c a n s from h y d r o l y t i c enzymes (18,19,20). Within t h e t w o w a l l l a y e r s i s t h e p r o t o p l a s t , c o m p r i s e d o f a p l a s m a membrane e n c l o s i n g the c y t o s o l and the s u b c e l l u l a r s t r u c t u r e s .
Separation, Recovery, and Purification in Biotechnology Downloaded from pubs.acs.org by UNIV LAVAL on 07/13/16. For personal use only.
wall (16)
Enzymes o f t h e l y t i c system. M i c r o b i a l y e a s t - l y t i c enzyme systems are w i d e l y d i s t r i b u t e d i n n a t u r e , and have been i s o l a t e d from R h i z o c t o n i a sp., ( 4 ) , B a c i l u s c i r c u l a n s (21), Coprinus macrorhizus (22), a n d C y t o p h a g a s p . ( 2 3 ) , among o t h e r s o u r c e s . C r u d e y e a s t l y t i c enzyme s y s t e m s c o m p r i s e s e v e r a l h y d r o l y t i c a c t i v i t i e s , o f t e n i n c l u d i n g c h i t i n a s e , mannanase, and a v a r i e t y o f p r o t e a s e s a n d g l u c a n a s e s ( 1 ) . Only two o f t h e s e a c t i v i t i e s , a l y t i c protease anda l y t i c glucanase, are e s s e n t i a l f o r l y s i s (19,24,20). L y t i c glucanases u s u a l l y b i n d p r e f e r e n t i a l l y t o l o n g c h a i n s o f 3(1-3) g l y c o s i d i c l i n k a g e s , such a s those found i n m i c r o f i b r i l l a r y e a s t w a l l glucan. I n g e n e r a l , the l y t i c g l u c a n a s e s have a n endo- a c t i o n p a t t e r n b u t some a t t a c k e x o - w i s e , r e l e a s i n g o l i g o s a c c h a r i d e s o f 5 glucose u n i t s from the s t r u c t u r a l yeast glucan. Other glucanases, with d i f f e r e n t substrate s p e c i f i c i t y anda c t i o n p a t t e r n s , are u s u a l l y p r e s e n t i n t h e l y t i c s y s t e m and a c t s y n e r g i s t i c a l l y t o d e g r a d e i n s o l u b l e y e a s t g l u c a n t o g l u c o s e a n d d i s a c c h a r i d e s (25) . Lytic p r o t e a s e s have a c h a r a c t e r i s t i c h i g h a f f i n i t y f o r the y e a s t w a l l s u r f a c e , and o f t e n have anomalously low a c t i v i t i e s a g a i n s t c o n v e n t i o n a l protein substrates. Their role i n l y s i s of viable yeast c e l l s cannot be s u b s t i t u t e d by o r d i n a r y p r o t e a s e s . (20,26). We u s e d a l y t i c s y s t e m f r o m O e r s k o v i a x a n t h i n e o l y t i c a L L - G 1 0 9 f r o m t h e c o l l e c t i o n o f M. L e c h e v a l i e r , a t R u t g e r s U n i v e r s i t y . F i l t e r e d c u l t u r e b r o t h was u s e d a s t h e enzyme s o u r c e . Details of t h e enzyme p r o d u c t i o n a r e g i v e n e l s e w h e r e ( 2 7 , 2 8 ) . The l y t i c a c t i v i t y o f the O e r s k o v i a system i s due t o a l y t i c p r o t e a s e and an endo 3 ( 1 , 3 ) g l u c a n a s e ( 2 0 ) , p o s s i b l y s u p p l e m e n t e d w i t h a n exo 3 ( 1 - 3 ) glucanase removing a 5-sugar u n i t from the c h a i n (29). Sequence o f c e l l l y s i s . Enzymatic c e l l l y s i s begins w i t h b i n d ing o f the l y t i c protease t o the outer mannoprotein l a y e r o f t h e wall. The p r o t e a s e opens up t h e p r o t e i n s t r u c t u r e , r e l e a s i n g w a l l p r o t e i n s and mannans, a n d e x p o s i n g t h e g l u c a n s u r f a c e b e l o w ( F i g u r e 2). Next, the glucanase a t t a c k s the i n n e r w a l l and s o l u b i l i z e s the g l u c a n ( 1 9 ) . When t h e c o m b i n e d a c t i o n o f p r o t e a s e a n d g l u c a n a s e has opened a s u f f i c i e n t l y l a r g e h o l e i n the c e l l w a l l , the plasma membrane a n d i t s c o n t e n t s a r e e x t r u d e d a s a p r o t o p l a s t ( 1 ) . I n o s m o t i c a l l y s u p p o r t e d b u f f e r s c o n t a i n i n g .55 t o 1.2M s u c r o s e o r
12
SEPARATION, RECOVERY, AND PURIFICATION IN BIOTECHNOLOGY
Separation, Recovery, and Purification in Biotechnology Downloaded from pubs.acs.org by UNIV LAVAL on 07/13/16. For personal use only.
Mannoprotein Units
Cell Membrane Figure 1
Structural Glucan Units
Double-layered structure o f the yeast w a l l , t h e c e l l membrane
Figure
2
Schematic o f l y s i n g
yeast
cell
enclosing
2.
HUNTER AND
ASENJO
Enzymatic Lysis and Disruption of Yeast Cells
13
m a n n i t o l , the p r o t o p l a s t remains i n t a c t but i n d i l u t e b u f f e r s i t l y ses i m m e d i a t e l y , r e l e a s i n g c y t o p l a s m i c p r o t e i n s and the organelles w h i c h may t h e m s e l v e s l y s e . Meanwhile, p r o t e i n s r e l e a s e d from the w a l l and the cytoplasm are subject t o a t t a c k by product-degrading p r o t e a s e contaminants i n the l y t i c system (28,30).
Separation, Recovery, and Purification in Biotechnology Downloaded from pubs.acs.org by UNIV LAVAL on 07/13/16. For personal use only.
Models Mathematical models w i t h d i f f e r e n t l e v e l s o f s t r u c t u r e are usef u l f o r the d e s i g n o f r e a c t o r s , t o c a r r y out s i m u l a t i o n s t u d i e s , f o r p r o c e s s o p t i m i z a t i o n and f o r i n c r e a s i n g our u n d e r s t a n d i n g o f t h e mechanistic, b i o l o g i c a l behavior o f biochemical systems. H i s t o r i c a l l y t h e r e has been l i t t l e p u b l i s h e d work on models o f microbial cell lysis. The models proposed f o r o v e r a l l c e l l l y s i s have been e l e m e n t a r y and t h e i r a p p l i c a t i o n has been l i m i t e d . Firsto r d e r and M i c h a e l i s - M e n t e n m o d e l s h a v e b e e n u s e d t o e s t i m a t e t h e performance o f a sample l y s i s p r o c e s s (2 3) , L y s i s o f f r e e z e - d r i e d M i c r o c o c c u s l y s o d e i k t i c u s c e l l s b y l y s o z y m e was modeled w i t h a second-order rate expression (31) . A t t h e o t h e r e n d o f t h e s p e c t r u m of mathematical c o m p l e x i t y i s a model o f l y s o z y m e - c a t a l y z e d degradat i o n o f s o l u b l e b a c t e r i a l c e l l - w a l l o l i g o s a c c h a r i d e s , f o c u s i n g on the d e g r e e o f p o l y m e r i z a t i o n o f t h e s u b s t r a t e a n d t h e b i n d i n g modes o f enzyme t o s u b s t r a t e s ( 3 2 ) . A c c o u n t i n g f o r one enzyme a n d c a r b o h y d r a t e o l i g o m e r s u p t o d.p. 9, i t h a s n i n e d i f f e r e n t i a l e q u a t i o n s a n d t e n p a r a m e t e r s , and was t e s t e d o n p u r i f i e d r a d i o l a b e l e d oligosaccharides. A l t h o u g h u s e f u l f o r e l u c i d a t i n g enzyme a c t i o n p a t t e r n s , s u c h models are too d e t a i l e d t o be r e a d i l y a p p l i e d t o a multi-enzyme, m u l t i - s u b s t r a t e system. The t w o m o d e l s o f y e a s t l y s i s p r e s e n t e d h e r e have been d e v e l o p ed t o s e r v e t w o d i f f e r e n t p u r p o s e s . The s i m p l e model i s a lumped, t w o - s t e p m o d e l w h i c h f o l l o w s t h e m a j o r f e a t u r e s o f t h e d a t a a n d may prove u s e f u l f o r design o f l y s i s reactors. The s t r u c t u r e d model, w h i c h can a c c o u n t f o r the s o u r c e o f p r o t e i n w i t h i n the c e l l , was developed t o g a i n a m e c h a n i s t i c b a s i s f o r p r e d i c t i n g the e f f e c t s o f u n t e s t e d p r o c e s s c o n d i t i o n s , and t o a i d i n s i g h t i n t o the p h y s i c a l p r o c e s s e s a t work d u r i n g l y s i s . S
Simple model. The s i m p l e model was b u i l t f o r compact d e s c r i p t i o n o f t h e d a t a i n a p r e - d e t e r m i n e d r a n g e o f y e a s t a n d enzyme c o n c e n trations. I t t r e a t s c e l l l y s i s and p r o t e o l y s i s as s i n g l e - s t e p r e a c t i o n s i n sequence. Both r e a c t i o n s are modeled w i t h M i c h a e l i s Menten k i n e t i c s , even though y e a s t , the s u b s t r a t e o f the f i r s t r e a c t i o n , i s p a r t i c u l a t e and the p r o t e i n s are s o l u b l e . The d i f f e r e n t enzymes o f t h e l y t i c s y s t e m a r e g r o u p e d t o g e t h e r i n t o a n a l l - i n c l u s i v e s i n g l e enzyme, E , b e a r i n g b o t h t h e p r o t e o l y t i c and y e a s t - l y t i c activities. A l l o f the c e l l s t r u c t u r e s are a l s o considered together a s a u n i f i e d y e a s t c e l l m a s s , Y. When a c e l l i s a t t a c k e d b y e n z y m e s i t i s p r e s u m e d t o d i s s o l v e i n s t a n t a n e o u s l y , r e l e a s i n g i t s e n t i r e mass a s s o l u b l e p r o t e i n s , p e p t i d e s andcarbohydrates. The assumption o f i n s t a n t a n e o u s s o l u t i o n o f t h e c e l l mass c o n s t r a i n s t h e m o d e l f o r use w h e r e t h e l y s i s medium i s hypo-osmotic andp r o t o p l a s t s cannot s u r v i v e i n t a c t .
14
SEPARATION, RECOVERY, A N D PURIFICATION IN BIOTECHNOLOGY
O n l y two i n d e p e n d e n t v a r i a b l e s a r e u s e d : y e a s t ( Y ) a n d e n z y m e (E); t h e measured v a r i a b l e s a r e y e a s t , T C A - i n s o l u b l e p r o t e i n (Ρ), T C A - s o l u b l e p r o t e i n ( p e p t i d e s , S ) , and c a r b o h y d r a t e s (C); a l l are e x p r e s s e d a s g/1 d r y b a s i s . E n z y m e c o n c e n t r a t i o n was e x p r e s s e d a s t h e v o l u m e p e r c e n t o f c r u d e l y t i c enzyme p r e p a r a t i o n added t o t h e reaction mixture. P r o t e o l y t i c and o t h e r c a u s e s f o r l y t i c enzyme d e a c t i v a t i o n ( e . g . , t h e r m a l ) h a v e been assumed t o be n e g l i g i b l e ( 2 8 ) , k E'(Y
dY dt
-k (Y-Y a
Separation, Recovery, and Purification in Biotechnology Downloaded from pubs.acs.org by UNIV LAVAL on 07/13/16. For personal use only.
œ
(Y -
dP _
dY
>
f
" py
dt dS _
-f sy
dt dC
Yco)
r
=
_
+
Yco)
Κ
k E-P —Ρ
(2)
dt,
ρ + s + κ
dY/
k Ε·Ρ _J2 Ρ + S + K mp 1 + -
dt,
(1)
Ώ
m
P
1+
Y *
(3)
dY' "~fcy
dt
(4)
.dt,
V a r i a b l e names and p a r a m e t e r v a l u e s
are given
i n Table
I.
On t h e r i g h t - h a n d s i d e o f e q u a t i o n 1, t h e i n i t i a l t e r m r e p r e s e n t s a u t o l y s i s and t h e second t e r m , e n z y m a t i c l y s i s . Equation 2 d e s c r i b e s p r o t e i n breakdown by p r o d u c t - d e g r a d i n g proteases. The f i r s t t e r m on t h e r i g h t s i d e s t a n d s f o r t h e p r o t e i n r e l e a s e d f r o m l y s i n g c e l l s , and t h e second term, breakdown o f t h e p r o t e i n a l r e a d y in solution. E q u a t i o n 3 shows t h a t p e p t i d e s a r e r e l e a s e d f r o m l y s i n g y e a s t , b u t a l s o a r i s e f r o m b r e a k d o w n o f l o n g e r p r o t e i n s , P. Since the protease a c t i v i t y against s o l u b l e p r o t e i n s i s con s i d e r e d n o n - s p e c i f i c , b o t h l o n g - and s h o r t - c h a i n p r o t e i n s w i l l be a t t a c k e d b y t h e e n z y m e w i t h e s s e n t i a l l y t h e same a f f i n i t y p e r g r a m of s u b s t r a t e . Hence, S w i l l a c t as a c o m p e t i t i v e i n h i b i t o r o f t h e e n z y m e a c t i v i t y a g a i n s t P, w h e r e t h e i n h i b i t i o n c o n s t a n t i s e q u a l to t h e M i c h a e l i s c o n s t a n t K ^ . C a r b o h y d r a t e r e l e a s e i s shown i n equation 4. Parameters f o r t h e s i m p l e model were d e t e r m i n e d g r a p h i c a l l y by Eadie-Hofstee p l o t t i n g of i n i t i a l r e a c t i o n rates and s u b s t r a t e c o n centrations. D e t a i l s a r e g i v e n e l s e w h e r e (30). As has been ob served i n h y d r o l y s i s of other s o l i d s u b s t r a t e s , a r e s i d u e of nonl y s e d s u b s t r a t e was f o u n d a t e x t e n d e d r e a c t i o n t i m e s , w h e n d Y / d t tended toward zero. The e x t e n t o f r e a c t i o n was s t r o n g l y d e p e n d e n t on i n i t i a l s u b s t r a t e and enzyme c o n c e n t r a t i o n s ( 3 3 , 3 4 ) . An e m p i r i c a l f u n c i t o n f o r Y^ was f i t t e d t o t h e u l t i m a t e t u r b i d i t y d a t a f o r l y s i s r u n s a t a v a r i e t y o f i n i t i a l y e a s t and enzyme c o n c e n t r a t i o n s u s i n g a l e a s t squares method. The c a l c u l a t e d v a l u e s f o r Yoo w e r e u s e d i n t h e s i m u l a t i o n s (30) . F i g u r e 3 s h o w s r e s u l t s o f the simple model. S t r u c t u r e d model. T h i s model c o n s i d e r s l y s i s of t h e c e l l from the v i e w p o i n t of p r o g r e s s i v e breakdown of the c e l l s t r u c t u r e s , s t a r t i n g f r o m t h e o u t e r w a l l l a y e r and p r o g r e s s i n g t o t h e s u b c e l l u l a r s t r u c t u r e s i n s i d e t h e p r o t o p l a s t (35). Here the c e l l i s d i v i d e d i n t o
HUNTER AND ASENJO
2.
Table
L.
Enzymatic Lysis and Disruption of Yeast Cells
15
Lumped m o d e l v a r i a b l e s a n d p a r a m e t e r s
V a r i a b l e s - Simple Model Y Y e a s t , mg/1 Y Original yeast concentration Yoo U l t i m a t e y e a s t c o n c e n t r a t i o n , mg/1; p r o p o r t i o n a l 0
Separation, Recovery, and Purification in Biotechnology Downloaded from pubs.acs.org by UNIV LAVAL on 07/13/16. For personal use only.
to
residual
turbidity.
^°°= a 4 b E + c Y
Ρ S C Ε
0
+
I
P r o t e i n ( T C A - i n s o l u b l e ) , mg/1 P e p t i d e s ( T C A - s o l u b l e ) , mg/1 C a r b o h y d r a t e s , mg/1 Enzyme, % ( v / v ) o f r e a c t i o n m i x t u r e Parameters-Simple
Yoo c o n s t a n t s :
a: b: c: d:
Model
3.6342 χ 1 0 "
1
- 2 . 6 5 8 4 χ 10 ~ 6
6.0442 χ ΙΟ"" -9.9603 χ 1 0
1
k
a
Rate constant
for autolysis
k
r
Rate constant
for lysis,
K
m
M i c h a e l i s constant
3.987 χ 1 0 - ^ m i n "
s i m p l e m o d e l 15.51 mg/L-min-%ez
for lysis,
for proteolysis,
1902 mg/L
kp
Rate constant
Κ
Michaelis constant, proteolysis,
4 5 9 8 mg/L
Inhibition
2 6 0 7 7 mg y e a s t / L
f
constant, proteolysis,
Fraction ofprotein
i n yeast
4.441
0.4048
f y
Fraction of peptides i n yeast
0.0777
f
Fraction of carbohydrates
0.3687
g
1
i n yeast
mg/L-min-%ez
16
SEPARATION, RECOVERY, AND
PURIFICATION IN BIOTECHNOLOGY
Separation, Recovery, and Purification in Biotechnology Downloaded from pubs.acs.org by UNIV LAVAL on 07/13/16. For personal use only.
f o u r r e g i o n s ; t h e o u t e r w a l l o r w a l l p r o t e i n (WP); i n n e r w a l l o r w a l l g l u c a n (WG) ; t h e c y t o s o l (CS) a n d t h e o r g a n e l l e s , h e r e g r o u p e d t o g e t h e r as m i t o c h o n d r i a ( M I ) . The l y t i c s y s t e m i s a p p r o x i m a t e d a s t h r e e enzymes, a l y t i c g l u c a n a s e , Eg, w h i c h h y d r o l y z e s the i n n e r c e l l w a l l g l u c a n , a l y t i c p r o t e a s e , Ep, w h i c h a t t a c k s o n l y t h e o u t e r w a l l l a y e r and a d e s t r u c t i v e p r o t e a s e , E^, a c t i v e a g a i n s t s o l u b l e p r o t e i n s . P r o d u c t i n h i b i t i o n i s i n c l u d e d i n a l l enzyme r e a c t i o n s . Adsorption and d e s o r p t i o n o f t h e e n z y m e s t o t h e y e a s t w a l l i s n e g l e c t e d , since a d s o r p t i o n k i n e t i c s a p p e a r e d i n s t a n t a n e o u s on t h e t i m e s c a l e o f o u r measurements (35). A s c h e m a t i c o f t h e r e a c t i o n p a t h w a y s i s shown i n Figure 4. Special EGA
variables. =
(WG
-
r-WP)
The g l u c a n h y d r o l y s i s r a t e i s n o t r e l a t e d d i r e c t l y t o t o t a l g l u c a n c o n c e n t r a t i o n WG, b u t r a t h e r t o t h e a m o u n t o f g l u c a n made a c c e s s i b l e to a t t a c k through removal of w a l l p r o t e i n from the outside of the c e l l . EGA, " e x p o s e d g l u c a n , a c c e s s i b l e " r e p r e s e n t s t h e amount o f g l u c a n u n c o v e r e d by r e m o v a l o f t h e o u t e r w a l l . The p r o p o r t i o n a l i t y constant r i s the weight r a t i o of w a l l glucan to w a l l p r o t e i n .
PBR
The o v e r a l l r a t e o f s o l u b l e p r o t e i n h y d r o l y s i s , PBR, protein breakdown r a t e , a c c o u n t s f o r d e s t r u c t i o n o f s o l u b l e p r o t e i n by the destructive protease. The r e l e a s e o f c y t o s o l i n t o t h e m e d i u m d e p e n d s o n t h e o s m o t i c breakage of the p r o t o p l a s t s , which occurs at a r a t e approximately p r o p o r t i o n a l t o t h e o s m o t i c g r a d i e n t a c r o s s t h e p l a s m a membrane ( 3 6 ) . The i n t e r n a l o s m o l a l i t y o f t h e c e l l s was e s t i m a t e d t o b e 0.617 Os/L ( 3 5 ) , w h e r e 1 Os/L i s e q u i v a l e n t t o 1 M o l / L o f a n i d e a l s o l u t e . The e x t e r n a l o s m o l a l i t y i s t h e sum o f t h e c o n t r i b u t i o n f r o m t h e b u f f e r s y s t e m i n t h e m e d i u m ( a b o u t 0.02M i n o u r e x p e r i m e n t s ) a n d the s u b s t a n c e s r e l e a s e d by l y s i n g p r o t o p l a s t s . The s t a b i l i z a t i o n o f t h e r e m a i n i n g c e l l s by t h e s e s u b s t a n c e s i s f a r s t r o n g e r t h a n c o u l d be e x p e c t e d s o l e l y on t h e b a s i s o f o s m o t i c e f f e c t s , a n d c o u l d r e s u l t from the r e l e a s e of c a t i o n s which i n t e r a c t w i t h s p e c i f i c receptors o n t h e p l a s m a membrane ( 3 7 ) . The r e l e a s e o f s o l u b l e p r o d u c t s o f g l u c a n a n d p r o t e i n h y d r o l y s i s a r e a l s o e x p e c t e d t o add t o t h e s t a b i l i z i n g e f f e c t of the l y s a t e . The e f f e c t i v e o s m o l a l i t y o f c e l l l y s a t e was f i t t o a L a n g m u i r e x p r e s s i o n , w h e r e 0 S M i s t h e maximum s t a b i l i z i n g e f f e c t and Κ is the e q u i l i b r i u m constant f o r i n t e r a c t i o n of the s t a b i l i z e r s w i t n the protoplasts. The r e s u l t i n g e q u a t i o n , L
Q
S
K
C
S
C S
C S
V o s J * + o ~ > 1 + Κ ( C S * + CS - CS) osm ο e x p r e s s e s t o t a l e f f e c t i v e o s m o l a l i t y i n the l y s i s medium. B i s the o r i g i n a l o s m o l a l i t y o f t h e l y s i s b u f f e r a n d CS* i s t h e sum of p r o t e i n , p e p t i d e s and c a r b o h y d r a t e s p r e s e n t a t t h e s t a r t o f r e a c t i o n . 0SM
x
= B
0
+
Q
HUNTER AND ASENJO
Enzymatic Lysis and Disruption of Yeast Cells
en
s ο
Separation, Recovery, and Purification in Biotechnology Downloaded from pubs.acs.org by UNIV LAVAL on 07/13/16. For personal use only.
5
TIME - MINUTES Figure
3
Simple model s i m u l a t i o n o f yeast l y s i s Y e a s t c e l l m a s s , mg/1 mg/1 P e p t i d e s , mg/1 h y d r a t e s , mg/1 0.78 g/1 y e a s t c o n c e n t r a t i o n ; 1 0 % enzyme
Oligopeptides Amino Acids
Soluble Proteins Cytoplasmic Enzymes
- Carbo-
1. Protease attack 2. Glucanase attack 3. Release of cell contents 4. Lysis of organelles 5. Glucan hydrolysis 6
Wall Protein Wall Enzymes Wall Mannan
Protein,
1
7. > Product proteolysis Ô ;
/-\ Proteins Organelles-- Organellar Enzymes
Carbohydrates
fl(l-3) Oligosaccharides Glucose Figure
4
Reaction
pathways f o r s t r u c t u r e d model
18
SEPARATION, RECOVERY, AND PURIFICATION IN BIOTECHNOLOGY
Based on t h e p r o d u c t OSM[/K the s t a b i l i z i n g e f f e c t o f c e l l l y s a t e a t l o w c o n c e n t r a t i o n s i s e q u i v a l e n t t o 4.4 χ 10 Os/mg c y t o s o l released (35). c
H
Wall
hydrolysis
equations.
d(WP) dt 1
Separation, Recovery, and Purification in Biotechnology Downloaded from pubs.acs.org by UNIV LAVAL on 07/13/16. For personal use only.
WP (Km wjy_ WP - WP ο Ki wp
wp ρ WP Km wp
+
(1)
EGA Ε wg g (Km wg WG - WG ο l + # ^ + Km Km sg wg k
d(WG) dt
(2)
R e l e a s e o f c y t o s o l and m i t o c h o n d r i a . The o s m o t i c g r a d i e n t b e tween p r o t o p l a s t s and b u f f e r o r m i t o c h o n d r i a and b u f f e r d r i v e s t h e r e l e a s e o f p r o t e i n i n t o t h e medium. I f t h e o s m o l a l i t y o f t h e e x t e r n a l medium e x c e e d s t h e i n t e r n a l o s m o l a l i t y o f t h e p r o t o p l a s t o r o r g a n e l l e , no r u p t u r e o c c u r s . The o s m o l a l i t y d e c r e a s e s i n t e r n a l l y , and i n c r e a s e s e x t e r n a l l y , as m a t e r i a l i s r e l e a s e d from t h e p r o t o p l a s t . In addition, the r e l e a s e o f c y t o s o l i s p r o p o r t i o n a l t o t h e s i z e o f t h e opening i n t h e w a l l g l u c a n , up t o a maximum h o l e s i z e o f 1/3 o f t h e c e l l ^ sur face area. d(CS) dt
-
(CS).k
(CS)
d(MI) dt
f l
«k^max^OSM^
CS,
d(CS) ' dt
k
CS CS
r m
- 0SM )]· max(.33, 1 x
[ m a x ( 0 , 0.3 - OSK^.) ] ·ΜΙ
WG ) WG
(3)
(4)
Soluble products. V a l u e s f o r T C A - i n s o l u b l e p r o t e i n , p e p t i d e s and c a r b o h y d r a t e s r e l e a s e d w e r e e s t i m a t e d b y summing t h e c o n t r i b u t i o n t o each p o o l from t h e breakdown o f each c e l l u l a r s t r u c t u r e .
^ dt
- - f pwp
f pm
d(WP) [ dt
- f pes
'd(CS)'
I
dt
«k [ m a x ( 0 , 0.3 - OSM ) ] ·ΜΙ - PBR rm χ
(5)
2.
HUNTER AND ASENJO
'd(WP)' - - f [dt swp
^ dt
f sm
Separation, Recovery, and Purification in Biotechnology Downloaded from pubs.acs.org by UNIV LAVAL on 07/13/16. For personal use only.
dÇ dt
m
19
Enzymatic Lysis and Disruption of Yeast Cells
- f
d(CS)l
ses
+
dt
-k [ m a x ( 0 , 0.3 - OSM ) ] - M I + P B R rm χ
_ d(WG) dt
_ f
(6)
-d(CS) ' dt
(
7
)
T o t a l y e a s t c e l l m a s s w a s e s t i m a t e a s t h e s u m o f WG, WP, C S , a n d M I ( s t r u c t u r e s r e m a i n i n g w i t h t h e c e l l ) , w i t h a n added f a c t o r a c c o u n t i n g for non-protein, non-carbohydrate substances i n the c e l l . T h e s e sums generate v a l u e s f o r y e a s t , p r o t e i n , p e p t i d e s and carbohydrates f o r comparison t o e x p e r i m e n t a l measurements. The v a r i a b l e s f o r t h e s t r u c t u r e d m o d e l a r e l i s t e d Parameter values are given i n Table I I I(35).
Table
II.
i n Table I I .
Structured Model V a r i a b l e s
EGA
Exposed glucan, a c c e s s i b l e f o r h y d r o l y s i s by glucanase
Y
Initial
Q
WG
Wall
WG
Original
0
CS CS
q u a n t i t y o f y e a s t , mg/1 d r y b a s i s
g l u c a n , mg/1 a m o u n t o f g l u c a n ; = Y « f W G , mg/1 0
Q
CS*
Original
quantity of cytosol
Long-chain
Oligopeptides
M
M i t o c h o n d r i a l m a s s , mg/1 Q
Q
Eg
Q
material i n
Q
W a l l p r o t e i n , mg/1
S
B
0
0
Ρ
M
= Y « f C S , mg/1
I n i t i a l amount o f o s m o t i c a l l y s t a b i l i z i n g r e a c t i o n medium: P + S + C Q
WP
0
C y t o s o l , mg/1
p r o t e i n (TCA - i n s o l u b l e ) , mg/1 (TCA - s o l u b l e ) , mg/1
O r i g i n a l mass o f m i t o c h o n d r i a Osmotic s t r e n g t h o f b u f f e r , G l u c a n a s e enzyme o f l y t i c protease
enzyme,
i n cell
= Y » f M , mg/1 0
0
Os/kg
system, %(V/V) o f m i x t u r e
Ep
Lytic
E(j
Destructive o r product-degrading
%(V/V) o f m i x t u r e
WE
Yeast
e n z y m e i n w a l l s , mg/1
CE
Yeast
e n z y m e i n c y t o s o l , mg/1
ME
Yeast
e n z y m e i n m i t o c h o n d r i a , mg/1
protease,
%(V/V)
SEPARATION, RECOVERY, AND PURIFICATION IN BIOTECHNOLOGY
20
Table I I I ,
S t r u c t u r e d model parameters and t h e i r
Ratio of wall
to wall
R a t e c o n s t a n t , g l u c a n a s e on
Kg
Michaelis Km, sg
Separation, Recovery, and Purification in Biotechnology Downloaded from pubs.acs.org by UNIV LAVAL on 07/13/16. For personal use only.
glucan
wp Kin wp Ki wp
mg/L-min-%ez
4424
mg/L
800
Rate constant, p r o t e o l y s i s
4.441 m g / L - m i n ~ % e z
Michaelis
o f WP
constant
Inhibition o f WP
constant,
mg/L
459.8
mg/1
919.6
mg/1
proteolysis
of Ρ
constant
Rate constant
"rm
WG
M i c h a e l i s c o n s t a n t , g l u c a n a s e on soluble glucan
Michaelis
^ p
1.326 mg WG/mg WP 10.58
WG
c o n s t a n t , g l u c a n a s e on
Rate constant, p r o t e o l y s i s
Ρ
protein
1.441 m g / L - m i n - % e z 4598
f o r CS
leakage
mg/L
3.987 χ 1 0 - " m i n "
Rate constant
f o r CS
release
1.6667 m i n "
Rate constant
f o r MI
breakage
0.6 m i n "
protein
i n wall
Ε pes Ε
Fraction
protein
i n cytosol
0.3753
Fraction
protein
i n mitochondria
0.75
pm
Fraction
peptides i n wall
^swp
Fraction
peptides
Fraction
peptides i n mitochondria
0.05
Fraction
of carbohydrates
0.3145
CCS
protein
protein
i n cytosol
0.1170
i n cytosol
Initial
fraction
fWG
Q
Initial
fraction of wall
glucan
0.1922
fWP
Q
Initial
fraction
protein
0.1450
Initial
fraction of mitochondria
fM
0
of cytosol
of wall
OSMi
Internal osmolality
0SM
Maximum e f f e c t i v e o s m o l a l i t y released l y s i s products
T
ewp
of yeast
1
0.0566
0
fCS
1
1
0.9434
Fraction
pwp
values
i n yeast
cell
0.5612
0.7652 0.617
Os/L
0.539
Os
of
Equilibrium constant f o r osmotic s t a b i l i z a t i o n of protoplasts
8.135 χ l O - ^ L / m g CS
P r o p o r t i o n o f enzyme i n w a l l
0.01
protein
P r o p o r t i o n o f enzyme i n c y t o s o l
0.01
P r o p o r t i o n o f enzyme i n m i t o c h o n d r i a
0.01
2.
HUNTER AND ASENJO
Enzymatic Lysis and Disruption of Yeast Cells
21
The s t r u c t u r e d m o d e l s i m u l a t e s t h e p r o g r e s s o f l y s i s i n t e r m s of t h e c e l l ' s s t r u c t u r a l components d u r i n g l y s i s . The decrease i n WP s t a r t s i m m e d i a t e l y , a s i t i s t h e f i r s t c o m p o n e n t a t t a c k e d by t h e l y t i c enzymes. WG b r e a k d o w n l a g s WP r e m o v a l , a n d c y t o s o l r e l e a s e l a g s g l u c a n breakdown, as suggested by the s e q u e n t i a l i t y b u i l t i n t o the model. The m i t o c h o n d r i a a r e r e l e a s e d l a s t , and t e n d t o a c c u m u l a t e b e c a u s e t h e y a r e more r e s i s t a n t t o o s m o t i c r u p t u r e than the p r o t o p l a s t s . A t y p i c a l g r a p h i s shown i n F i g u r e 5 a . I n F i g u r e 5b, s t r u c t u r e d m o d e l e s t i m a t e s o f y e a s t c e l l m a s s , p r o t e i n , p e p t i d e s a n d c a r b o h y d r a t e s a r e p r e s e n t e d f o r t h e same e n z y m e a n d yeast concentrations.
Separation, Recovery, and Purification in Biotechnology Downloaded from pubs.acs.org by UNIV LAVAL on 07/13/16. For personal use only.
Results The s i m p l e a n d s t r u c t u r e d m o d e l s i m u l a t i o n s f o r y e a s t m a s s a n d s o l u b l e p r o t e i n , p e p t i d e s and c a r b o h y d r a t e s a r e compared i n F i g u r e 6 f o r t h e y e a s t a n d e n z y m e c o n c e n t r a t i o n s h o w n i n F i g u r e s 3 a n d 4, a n d in Figure 7 for a concentrated yeast c e l l slurry. The simple model f i t s the data f a i r l y w e l l a t both yeast c o n c e n t r a t i o n s , i n every v a r i a b l e except the p e p t i d e s . The f i t f o r a l l v a r i a b l e s a t l o n g e r r e a c t i o n times i s d i r e c t l y r e l a t e d t o use o f the e x t e n t - o f - r e a c t i o n t e r m Yoo i n t h e y e a s t l y s i s e q u a t i o n . The s t r u c t u r e d m o d e l p r o v i d e s a d i s t i n c t i m p r o v e m e n t o v e r t h e simple model, i n the i n i t i a l stages o f the r e a c t i o n . The i n i t i a l l a g s i n t h e h y d r o l y s i s o f t o t a l y e a s t mass a n d c a r b o h y d r a t e i n f i g ures 6 and 7 are very w e l l represented. The p o s s i b i l i t y remains t h a t the i n i t i a l l a g s r e l a t e p a r t l y t o a d s o r p t i o n o f l y t i c enzymes t o t h e c e l l w a l l . On t h e t i m e s c a l e o f o u r e x p e r i m e n t s , h o w e v e r , a d s o r p t i o n appeared t obe instantaneous (35). A t h i g h y e a s t c o n c e n t r a t i o n ( f i g u r e 7) a t t h e l a t e r s t a g e s o f r e a c t i o n , the carbohydrates c o n t i n u e t o r i s e though t u r b i d i t y i s l e v e l l i n g o f f . A p p a r e n t l y some w a l l h y d r o l y s i s i s o c c u r r i n g e v e n though the t o t a l yeast s o l i d s c o n c e n t r a t i o n i s not v i s i b l y d e c l i n i n g . T h i s r e s u l t i s i n c o n t r a s t t o f i g u r e 6, w h e r e t h e s t r u c t u r e d m o d e l f o l l o w s carbohydrate data c l o s l e y , and the h y d r o l y s i s o f w a l l glucan i s e s t i m a t e d t o go e s s e n t i a l l y t o c o m p l e t i o n . Presumably the glucanase a t t a c k s t h e more s u s c e p t i b l e amorphous g l u c a n a t a h i g h e r r a t e than the f i b r i l l a r glucan f r a c t i o n o f the w a l l . Such dependence on p h y s i c a l s t r u c t u r e i s w e l l known t o o c c u r i n e n z y m a t i c h y d r o l y s i s o f c e l l u l o s e (38,34). I f t h e a n a l o g y i s c o r r e c t , t h e amorphous c a r b o hydrateds c o u l d be s o l u b i l i z e d without s u b s t a n t i a l l y changing the m i c r o f i b r i l network s t r u c t u r e i n the w a l l , o r r e l e a s i n g p r o t o plasts. C e l l u l o s e / c e l l u l a s e system r e s u l t s a l s o suggest t h a t t h i s e f f e c t o u g h t t o b e more p r o n o u n c e d a t t h e h i g h e r y e a s t - t o - e n z y m e r a t i o shown i n F i g u r e 7, t h a n a t t h e l o w e r r a t i o o f F i g u r e 6. A l i m i t a t i o n o f b o t h m o d e l s i s o v e r e s t i m a t i o n o f t h e amount o f p r o t e i n r e l e a s e d . P e p t i d e p r e d i c t i o n s b y the s i m p l e model are too high as w e l l . The e f f e c t resembles a gap i n the m a t e r i a l b a l a n c e , as i f the models p r e d i c t a l a r g e r q u a n t i t y o f p r o t e i n a c i o u s m a t e r i a l than i s a c t u a l l y present i n t h e c e l l s . P o s s i b l y some c y t o p l a s m i c p r o t e i n s are not r e l e a s e d d u r i n g p r o t o p l a s t breakage. I n f i g u r e 6, i n s o l u b l e p r o t e i n s could account f o r a s u b s t a n t i a l p a r t o f t h e r e s i d u a l y e a s t a t 90 m i n u t e s d i g e s t i o n .
Separation, Recovery, and Purification in Biotechnology Downloaded from pubs.acs.org by UNIV LAVAL on 07/13/16. For personal use only.
SEPARATION, RECOVERY, AND PURIFICATION IN BIOTECHNOLOGY
45
TIME - MINUTES ure
5
Structured
5a
Cell
model s i m u l a t i o n
structures CY
of yeast
cytosol
WP w a l l p r o t e i n
—
lysis
WG w a l l — - — —-MI
glucan
mitochondria
mg/1
45
TIME - MINUTES 5b
C e l l mass and r e l e a s e d compounds "Y e a s t c e l l m a s s , mg/1 Peptides,
mg/1
mg/1
- P r o t e i n , mg/1 Carbohydrates,
HUNTER A N D ASENJO
Enzymatic Lysis and Disruption of Yeast Cells
Separation, Recovery, and Purification in Biotechnology Downloaded from pubs.acs.org by UNIV LAVAL on 07/13/16. For personal use only.
I
Figure
Figure
6
7
TIME- MINUTES
TIME-MINUTES
TIME-MINUTES
TIME-MINUTES
Comparison o f simple and s t r u c t u r e d models - I n t i t i a l y e a s t c o n c e n t r a t i o n 0.78 g/1 ( d . b ) , 1 0 % e n z y m e S t r u c t u r e d model — Simple model
Comparison o f simple and s t r u c t u r e d models - I n i t i a l y e a s t c o n c e n t r a t i o n 3 6 . 3 g/1 ( d . b ) 4 0 % e n z y m e Symbols as i n f i g u r e 6
24
SEPARATION, RECOVERY, AND PURIFICATION IN BIOTECHNOLOGY
W o r k c o n t i n u e s i n two a r e a s : p u r i f i c a t i o n of the l y t i c system to a l l o w p r o t e a s e and g l u c a n a s e l e v e l s t o be c o n t r o l l e d i n d e p e n d e n t l y and i n v e s t i g a t i o n o f t h e r e l e a s e o f s i t e - s p e c i f i c y e a s t enzymes and s u b c e l l u l a r f r a c t i o n s by e n z y m a t i c lysis. Applications
Separation, Recovery, and Purification in Biotechnology Downloaded from pubs.acs.org by UNIV LAVAL on 07/13/16. For personal use only.
The s t r u c t u r e d model's d e t a i l e d a c c o u n t i n g o f t h e f a t e o f c e l l s t r u c t u r e s c a n b e u s e d t o make p r e d i c t i o n s a b o u t t h e e f f e c t s o f a number o f i m p o r t a n t p r o c e s s v a r i a b l e s , f o r e x a m p l e : The r a t i o o f l y t i c p r o t e a s e t o g l u c a n a s e i n t h e l y t i c system T h e e f f e c t o f pH o r t e m p e r a t u r e o n s y n e r g i s m b e t w e e n t h e l y t i c enzymes Elimination of "destructive" protease (for bioactive protein recovery) or supplementation with a d d i t i o n a l proteases ( f o r f o o d and f e e d a p p l i c a i t o n s ) The a d d i t i o n o f p r o t e a s e i n h i b i t o r s a t a p o i n t o r p o i n t s d u r i n g l y s i s , e f f e c t i v e l y l o w e r i n g k p o r i n c r e a s i n g K^p. Osmotic b u f f e r i n g s t r a t e g i e s f o r recovery of b i o a c t i v e p r o t e i n from d i f f e r e n t s i t e s i n the c e l l . C e l l F r a c t i o n a t i o n S i m u l a t i o n . The w a l l p r o t e i n , c y t o s o l and o r g a n e l l e s o f y e a s t e a c h c o n t a i n enzymes w h i c h a r e found nowhere else i n the c e l l . Some e x a m p l e s o f t h e s e e n z y m e s i n c l u d e i n v e r t a s e i n t h e w a l l s , g l y c o l y t i c pathway enzymes i n t h e c y t o s o l and f u m a r a s e i n t h e m i t o c h o n d r i a (13) . A m o d e l o f r e c o v e r y o f t h e s e enzymes i s offered here. Enzyme a c c u m u l a t i o n . F o r the purpose of s i m u l a t i o n , w a l l - l i n k e d a n d p e r i p l a s m i c e n z y m e s (WE) a r e c o n s i d e r e d t o b e a p a r t o f t h e outer wall protein. C y t o p l a s m i c a n d m i t o c h o n d r i a l e n z y m e s (CE,ME) a r e a s s u m e d t o b e some f r a c t i o n o f t h e c y t o p l a s m i c a n d m i t o c h o n d r i a l mass, r e s p e c t i v e l y . The e q u a t i o n s d e s c r i b i n g t h e i r r e l e a s e and h y d r o l y s i s are e x a c t l y analogous t o equation 6 f o r t o t a l l o n g - c h a i n protein. d(WE) dt
L
ewp
d(CE) dt d (ME) dt Variables
W ^ r m
and parameters
d(WP) dt
(WE) Ρ
Lies)' dt
CE Ρ
PBR
(8)
'PBR
[max(0,0.3-0SM )]'MI - M l x
(9) .PBR
(10)
are included i n Table I I I .
F i g u r e 8 shows a s i m u l a t i o n o f enzyme r e c o v e r y f r o m t h e w a l l , c y t o s o l and m i t o c h o n d r i a . The c o n c e n t r a t i o n s o f r e c o v e r a b l e enzyme a r e n o r m a l i z e d t o t h e i n i t i a l amount o f enzyme p r e s e n t i n t h e c e l l site. The c u r v e s r i s e a s enzyme i s r e l e a s e d f r o m a s i t e , t h e n f a l l as i t i s h y d r o l y z e d . I t may b e s e e n t h a t t h e l y t i c s y s t e m i s u s a b l e even as a crude p r e p a r a t i o n t o r e c o v e r w a l l l i n k e d yeast enz ymes i n 60 t o 8 0 % y i e l d . The y i e l d o f y e a s t w a l l enzyme d e p e n d s on
HUNTER AND ASENJO
Enzymatic Lysis and Disruption of Yeast Cells
Separation, Recovery, and Purification in Biotechnology Downloaded from pubs.acs.org by UNIV LAVAL on 07/13/16. For personal use only.
100
Figure
8
Release o f s i t e
8a 8b
Initial Initial — — ·=
- specific
enzymes - S i m u l a t i o n
y e a s t c o n c e n t r a t i o n , 0.78 g/1 y e a s t c o n c e n t r a t i o n , 36.33 g/1 W a l l enzyme Cytoplasmic M i t o c h o n d r i a l enzyme
enzyme
Separation, Recovery, and Purification in Biotechnology Downloaded from pubs.acs.org by UNIV LAVAL on 07/13/16. For personal use only.
26
SEPARATION, RECOVERY, AND PURIFICATION IN BIOTECHNOLOGY
p r o t e a s e a c t i v i t y and i s t h e r e f o r e d i r e c t l y r e l a t e d t o t h e q u a n t i t y of " d e s t r u c t i v e " protease present i n t h e l y t i c system. The p r o d u c t p u r i t y depends on t h e r e l e a s e o f p r o t e i n s f r o m o t h e r c e l l s i t e s , and hence on o s m o t i c f a c t o r s . A t t h e h i g h e r y e a s t c o n c e n t r a t i o n ( F i g . 8 b ) , few o f t h e p r o t o p l a s t s and none o f t h e m i t o c h o n d r i a r e l e a s e t h e i r enzymes i n t o s o l u t i o n . W h i l e t h e y i e l d o f w a l l enzyme i s n o t as good a s i n F i g u r e 8 a , t h e p u r i t y i s f a r h i g h e r . W i t h p r o p e r o s m o t i c s u p p o r t d u r i n g l y s i s , and b r e a k a g e o f o s m o t i c a l l y s t a b l e p r o t o p l a s t s by m e c h a n i c a l means, t h e w a l l , c y t o p l a s m i c and m i t o c h o n d r i a l f r a c t i o n s c a n be o b t a i n e d s e p a r a t e l y . A s i m u l a t i o n of s i t e - l i n k e d product recovery i s presented i n F i g u r e 9 a n d T a b l e s I V a n d V. The c a l c u l a t i o n s assume t h a t s i t e l i n k e d e n z y m e s WE, C E , a n d ME c o n s t i t u t e 1% o f t h e w a l l p r o t e i n , c y t o s o l and m i t o c h o n d r i a r e s p e c t i v e l y . I n t h e f i r s t l y s i s s t e p , u s i n g 2 0 % l y t i c enzyme b r o t h and o s m o t i c s u p p o r t , 9 3 % o f t h e w a l l p r o t e i n ( a n d w a l l enzyme) i s r e l e a s e d f r o m t h e c e l l w a l l . Some i s h y d r o l y z e d by t h e " d e s t r u c t i v e " p r o t e a s e , b u t 73.8% o f i t s u r v i v e s t o be r e c o v e r e d a t t h e end o f t h e f i r s t h o u r . S i n c e o n l y 3% o f t h e protoplasts burst during t h i s step, l i t t l e cytoplasm i s released. T h e p r o t e i n c o n c e n t r a t i o n i n s o l u t i o n a t t h e e n d o f t h e h o u r i s 3.83 g/1 o f w h i c h a b o u t 1% i s WE. I f t h e c e l l s were broken mechanically, t h e w a l l enzyme w o u l d c o n s t i t u t e o n l y 0.35% o f t h e t o t a l p r o t e i n , even assuming t h a t i t c o u l d be c o m p l e t e l y s o l u b i l i z e d . The s i m u l a t i o n a l s o s h o w s a r a t i o o f WE t o CE o f 7.8 i n t h e m e d i u m a t t h e e n d o f t h e f i r s t s t e p , w h i c h c o m p a r e s t o a r a t i o o f 0.258 o n a t o t a l - c e l l basis. Table IV. First
Process
lysis
c o n d i t i o n s f o r enzyme r e l e a s e s i m u l a t i o n
step:
Yeast Enzyme Buffer T o t a l volume
36.33g 40% 0.3 O s / L 1L
R e a c t i o n m i x t u r e c e n t r i f u g e d ; '5% o f s u p e r n a t a n t a n d 1 0 0 % o f p e l l e t r e t a i n e d and resuspended i n t w i c e t h e i n i t i a l volume of enzyme/buffer s o l u t i o n . Second l y s i s
step:
Digested yeast: Enzyme Buffer T o t a l volume Breakage:
by s t i r r i n g
26.90g 20% 0.3 O s / L 2-L o r p a s s a g e t h r o u g h a pump
Protoplast rupture Mitochondrial rupture
95% 0%
HUNTER AND ASENJO
Enzymatic Lysis and Disruption of Yeast Cells
25
A)
AFTER PROTOPLAST RUPTURE f
CS
CS 60
120
Separation, Recovery, and Purification in Biotechnology Downloaded from pubs.acs.org by UNIV LAVAL on 07/13/16. For personal use only.
TIME-MINUTES B) \WP
\ LYSIS STEP 2 \ \
AFTER 1 PROTOPLAST RUPTURE
\
Ml
\
\
ο
\WG \
LYSIS STEP 1
\
\ Ν
\
«s.
Ml
Ml
< i 60
120
T I M E - M INUTES C)
100 CE
Lu > Ο /WE .*
50
Lu /
WE
f c
! 0
60
120
T I M E - MINUTES Figure 9 9a
Enzyme r e c o v e r y Cell
from s u b c e l l u l a r
s t r u c t u r e breakdown Wall protein Cytosol —
j
9b 9c
structures
- - Wall glucan • —Mitochondria
C e l l s t r u c t u r e : Close-up, showing m i t o c h o n d r i a Enzyme r e l e a s e , p e r c e n t o f o r i g i n a l enzyme i n c e l l W a l l enzyme C y t o p l a s m i c enzyme
28
SEPARATION, RECOVERY, AND PURIFICATION IN BIOTECHNOLOGY
Table Initial
End o f first step
Start of second step
End o f second step
After protoplast rupture
36332 8.1 760.7
26902 3831.5 2135.0
26902 191.6 106.7
21660 966.9 684.9
4766 7307.3 2661.5
655.0
4449.8
222.5
3321.4
8634.7
5268.2 6983.0 20389
371.0 3380.2 19779
371.0 908.9 19779
0.028 908.9 17783
0.028 908.9 889.2
II
2780.1
2696.9
2696.9
2424.7
121.0
II
0
83.2
83.2
355.4
2659.1
mg/1
0
38.6
.97
4.18
4.18
II
0
4.95
.12
15.24
184.2
II
0
0
0
0
0
Separation, Recovery, and Purification in Biotechnology Downloaded from pubs.acs.org by UNIV LAVAL on 07/13/16. For personal use only.
Yeast s o l i d s mg/1 S o l u b l e p r o t e i n It Soluble peptides " Soluble II carbohydrates
Wall protein Wall glucan Cytosol Mitochondria (internal) Mitochondria (released)
W a l l enzyme Cytoplasmic enzyme Mitochondrial enzyme
V. Y i e l d s
II II It
T h e s e c o n d d i g e s t i o n was i n c l u d e d t o d e c r e a s e t h e amount o f s t r u c t u r a l g l u c a n from about 50% t o about 13% o f i t s o r i g i n a l mass, i n o r d e r t o make t h e c e l l s m o r e f r a g i l e , t h u s e a s i e r t o r u p t u r e mechanically. O n l y a s m a l l amount o f c y t o p l a s m i c p r o t e i n i s r e leased from the p r o t o p l a s t s during t h i s time - a d e s i r a b l e r e s u l t , s i n c e p r o t e i n s e q u e s t e r e d i n s i d e t h e p r o t o p l a s t s i s n o t a t t a c k e d by protease. A t t h e end o f t h e second h o u r t h e r e m a i n i n g p r o t o p l a s t s c a n be b r o k e n m e c h a n i c a l l y by s t i r r i n g o r c e n t r i f u g a t i o n . P r o t e a s e a c t i v i t y c a n be m i n i m i z e d by k e e p i n g t h e t e m p e r a t u r e l o w . Assuming t h a t 95% o f t h e p r o t o p l a s t s (and none o f t h e s t u r d i e r mitochondria) a r e b r o k e n b y s t i r r i n g , t h e f i n a l p r o t e i n c o n c e n t r a t i o n i s 7.3 g / 1 , o f w h i c h 2.5% i s c y t o p l a s m i c enzyme. Almost a l l of the mitochondria (95.6%) a r e r e l e a s e d d u r i n g t h e second l y s i s and p r o t o p l a s t r u p t u r e , but they remain whole because t h e b u f f e r o s m o l a l i t y i s kept above 0.3 O s / L . C e n t r i f u g a t i o n o f t h e f i n a l m i x t u r e p r o d u c e s 4.77 g/1 o f a p e l l e t , o f w h i c h 2.66 g o r 5 6 % i s m i t o c h o n d r i a a n d 0.89 g o r 19%, p r o t o p l a s t s . These s i m u l a t i o n s suggest an a d d i t i o n a l t e s t f o r t h e s t r u c t u r e d model: t h a t i s , t o compare i t s p r e d i c t i o n s t o d a t a on r e l e a s e o f s i t e - l i n k e d enzymes i n y e a s t . T e s t s f o r c y t o p l a s m i c and m i t o c h o n d r i a l enzyme r e l e a s e w i l l b e a i d e d by p r e p a r a t i o n o f a l o w - p r o t e a s e l y t i c system.
2.
HUNTER AND
ASENJO
Enzymatic Lysis and Disruption of Yeast Cells
Separation, Recovery, and Purification in Biotechnology Downloaded from pubs.acs.org by UNIV LAVAL on 07/13/16. For personal use only.
Conclusions The s i m p l e m o d e l i s c o n c e p t u a l l y s t r a i g h t f o r w a r d a n d g i v e s a n approximate f i t t o the data over the e n t i r e range o f v a r i a b l e s s t u d i e d : y e a s t c o n c e n t r a t i o n , enzyme c o n c e n t r a t i o n a n d t i m e . The p r o d u c t d i s t r i b u t i o n depends on the r e l a t i v e r a t e s o f l y s i s and proteolysis. U s i n g a s i n g l e enzyme p r e p a r a t i o n , a s was done h e r e , the r e l a t i v e r a t e s change o n l y w i t h y e a s t c o n c e n t r a t i o n . I n prac t i c e , however, i n h i b i t i o n o f the p r o t e a s e a c t i v i t y , supplementation of the l y t i c a c t i v i t y w i t h p u r i f i e d glucanases o r m i x i n g o f l y t i c systems from d i f f e r e n t s o u r c e s can b r i n g about l a r g e changes i n t h e a c t i v i t y r a t i o , w h i c h may b e i n c o r p o r a t e d i n t o t h e s i m p l e m o d e l by a d j u s t i n g and k . The s t r u c t u r e d m o d e l i s c o n s i s t e n t w i t h f e a t u r e s o f l y t i c e n zyme a c t i o n a n d y e a s t s t r u c t u r e r e p o r t e d i n t h e l i t e r a t u r e . T h e s e q u e n t i a l r e m o v a l o f the two w a l l l a y e r s , f o l l o w e d b y p r o t o p l a s t r u p t u r e , a c c u r a t e l y d e s c r i b e s the e a r l y l a g i n p r o t e i n and carbo hydrate release. The p r e s e n c e o f r e s i d u a l s o l i d s a t l o n g r e a c t i o n t i m e s was a c c o u n t e d f o r s t a b i l i z a t i o n o f p r o t o p l a s t s b y s u b s t a n c e s released from l y s e d c e l l s . The s t r u c t u r e d model can be used t o e s t i m a t e t h e e f f e c t s o f s e v e r a l p r o c e s s a l t e r n a t i v e s , a s shown i n a s i m u l a t i o n o f a p r o c e s s f o r r e c o v e r y o f s i t e - l i n k e d enzymes f r o m yeast. r
Acknowledgments T h i s work was s u p p o r t e d b y a g r a n t f r o m the N a t i o n a l S c i e n c e F o u n d a t i o n , (NSF) t o whom t h a n k s a r e d u e . One o f t h e a u t h o r s (JBH) was s u p p o r t e d b y g r a d u a t e f e l l o w s h i p s f r o m NSF a n d t h e J o s e p h i n e de Karman F o u n d a t i o n d u r i n g p a r t o f t h i s work. This support i s a l s o g r a t e f u l l y acknowledged.
Literature Cited 1.
2.
3. 4. 5. 6.
Phaff, H.J., "Enzymatic yeast cell wall degradation", in Food Proteins: Improvement through Chemical and Enzymatic Modification, eds. R.J. Feeney and J.R. Whitaker, Adv. Chem. Series, Vol.60, American Chemical Society, 1977. Asenjo, J . Α . , "Process for the production of yeast-lytic enzymes and the disruption of whole yeast cells", in Advances in Biotechnology, Vol III: Fermentation Products, C. Vezina & K. Singh, ed's., Pergamon, 1981; p. 295. Le Corre, S., B.A. Andrews, and J.A. Asenjo, Enzyme Microb. Technol., 1985, 7, 73-77. Kobayashi, R., T. Miwa, S. Yamamoto, S. Nagasaki, Eur. J. Appl. Microbiol. Biotechnol., 1982, 15, 14-19. Okagbue, R.N. and M.J. Lewis, Biotech. Lett., 1983, 5, 731-736. Jamas, S., C.-K. Rha, A.J. Sinskey, "Directed biosynthesis of yeast glucans with known structure-function properties", paper presented at the ACS 190th Annual Meeting, Chicago, IL, September 9-13, 1985.
29
SEPARATION, RECOVERY, AND PURIFICATION IN BIOTECHNOLOGY
30
7. 8. 9.
Separation, Recovery, and Purification in Biotechnology Downloaded from pubs.acs.org by UNIV LAVAL on 07/13/16. For personal use only.
10. 11. 12. 13. 14. 15. 16.
17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27.
28.
29. 30. 31. 32. 33.
Brake, A.J., J.P. Merryweather, D. Coit, U. Heberlein, F.R. Masiarz, G.T. Mullenbach, Ρ.Valenzuela, and P.J. Barr, Proc. Natl. Acad. Sci. USA, 1984, 81, 4642-46. Schemer, R.G., L.F. Ellis, B.E. Schoner, Bio/Technology, 1985, 3, 151-54. Valenzuela, P., D. Coit, M.A. Medina-Selby, C.H. Kuo, G. Van Nest, R.L. Burke, P.Bull, M.S. Urdea, P.V. Graves, Bio/Technology, 1985, 3, 323-326. D'Souza, S.F., Biotechnol. Bioeng., 1983, 25, 1661-1664. Fish, N.M. and M.D. Lilly, Bio/Technology, 1984, 2, 623-627. Phaff, H.J., "Structure and biosynthesis of the yeast cell envelope", in The Yeasts, Vol II, ed. R. Harrison and A. Rose, Academic Press, 1971. Follows, M., P.J. Hetherington, P.Dunnill, M.D. Lilly, Biotechnol. Bioeng, 1971, 13, 549-560. Marffy, F. and M.-R. Kula, Biotechnol. Bioeng., 1974, 16, 623-634. Shetty, J.and J.Kinsella, Biotechnol. Bioeng., 1978, 20, 755-766 Ballou, C.E., "Yeast cell wall and cell surface", in The molecular biology of the yeast Saccharomyces: Metabolism and gene expression, ed. J.N. Stratton, E.W. Jones, J.R. Broach, Cold Spring Harbor, 1982 ; pp. 335-361. Ballou, C.E., Adv. Microb. Physiol, 1976, 14, 93. Kitamura, Κ., Agric. Biol. Chem., 1982, 46, 963-969. Kitamura, Κ., Agric. Biol. Chem., 1982, 46, 2093-99. Scott, J.H. and R. Schekman, J. Bacteriol., 1980, 142, 414-423. Rombouts, F.M. and H. Phaff, Eur. J. Biochem., 1976, 63, 121-130. Ishida, K., M. Kawai, N. Mukai, U.S. Patent 3, 809,780, May 7, 1974. Asenjo, J.Α., and P.Dunnill, Biotechnol. Bioeng., 1981, 23, 1045. Vrsanska, Μ., P. Biely and Z. Kratky, Z. Allg. Mikrobiol., 1977, 17, 465-480. Jeffries, T.W., and Macmillan, J.D., Carbohydr.Res., 1981, 95, 87-100. Obata, T., H. Iwata, and Y. Namba, Agric. Bio. Chem., 1977, 41, 2387-2394. Andrews, B.A. and J.A. Asenjo, "Continuous Culture Studies of the Synthesis and Regulation of Extracellular β(1-3) Glucanase and Protease Enzymes in Oerskovia xanthineolytica", Biotechnol. Bioeng., 1986. (submitted for publication). Hunter, J.B. and Asenjo, J.Α., "Kinetics of enzymatic lysis and disruption of yeast cells: 1. Evaluation of two lytic systems with different properties." Biotechnol. Bioeng., 1986 (submitted for publication). Jeffries, T.W., Ph.D. Thesis, Rutgers University, 1976. Hunter, J.B. and Asenjo, J . Α . , "Kinetics of enzymatic lysis and disruption of yeast cells: 2. A simple model of lysis kinetics" Biotechnol. Bioeng. 1986 (submitted for publication) Bernath, V.R., and W.R. Vieth, Biotechnol. Bioeng., 1972, 14, 737-745. Chipman, D. Biochemistry, 1971, 10, 1714-22. Asenjo, J . Α . , Biotechnol. Bioeng., 1983, 25, 90.
2.
HUNTER AND ASENJO
34.
Enzymatic Lysis and Disruption of Yeast Cells
31
Lee. Y.-H., and L.T. Fan, Biotechnol. Bioeng. , 1983, 25, 939-966. 35. Hunter, J.B. and Asenjo, J.A., "A structured, mechanistic model of the kinetics of enzymatic lysis and disruption of yeast cells", Biotechnol. Bioeng., 1986 (being submitted). 36. Indge, K.J., J. Gen. Microbiology, 1968, 51, 425-432. 37. Indge, K.J., J. Gen. Microbiology, 1968, 51, 433-440. 38. Fan, L.T., Y.-H. Lee, D.H. Beardmore, Biotechnol. Bioeng.,1980, 22, 177-199.
Separation, Recovery, and Purification in Biotechnology Downloaded from pubs.acs.org by UNIV LAVAL on 07/13/16. For personal use only.
Received March 26, 1986