Studies on the Synthesis of Serologically Active Glycolipids - ACS

Jun 1, 1977 - The presence of an antigen in guinea pig organs which would induce ... capable of lysing sheep erythrocytes was demonstrated by Forssman...
0 downloads 0 Views 2MB Size
15 Studies on the Synthesis of Serologically Active Glycolipids

Downloaded via TUFTS UNIV on July 7, 2018 at 10:33:30 (UTC). See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles.

ROY GIGG Laboratory of Lipid and General Chemistry, National Institute for Medical Research, Mill Hill, London NW7 1AA.

Many of the g l y c o l i p i d s present in mammalian t i s s u e s and in microorganisms are " f o r e i g n " to the human and are thus capable of inducing the formation of antibodies i.e. they are a n t i g e n i c . The immunochemical a c t i v i t y of the g l y c o l i p i d s resides in the o l i g o s a c c h a r i d e p o r t i o n and most of t h i s a c t i v i t y (as in other a n t i g e n i c o l i g o s a c c h a r i d e s ) is e x h i b i t e d by the terminal two or three sugars of the molecule(1). As i s o l a t e d 'homogenous' molecules, these r e l a t i v e l y low molecular weight compounds e x h i b i t low a n t i g e n i c a c t i v i t y whereas they are h i g h l y a c t i v e as components of the t i s s u e s to which they belong. The g l y c o l i p i d s e x i s t in the n a t i v e s t a t e as components of the membranes (2) of c e l l s i . e . as part of a macromolecular aggregate, and t h i s macromolecular form is required f o r the ex­ h i b i t i o n of immunochemical a c t i v i t y in g l y c o l i p i d s ( 3 ) . The presence of an antigen in guinea p i g organs which would induce an antibody capable of l y s i n g sheep erythrocytes was dem­ onstrated by Forssman (4) in 1911 and subsequently i t was shown that s i m i l a r antigens ("Forssman antigens") were present in the lipid f r a c t i o n s of many other mammalian t i s s u e s although i t was not u n t i l 1971 ( 5 , 6) that the s t r u c t u r e of the Forssman antigen (1) was e s t a b l i s h e d and the a n t i g e n i c a c t i v i t y was a s s o c i a t e d with the terminal α-NAcgal (l->3)β-NAcgal (1->3)Gal - p o r t i o n of the molecule.

253

El Khadem; Synthetic Methods for Carbohydrates ACS Symposium Series; American Chemical Society: Washington, DC, 1977.

254

SYNTHETIC

(Vl)a-Gluc(l-»2)a-G1uc(H2)a-Gluc(l^3)

METHODS

FOR

CARBOHYDRATES

1,2-Di-o-acyl-L-g1ycerol

T h e b l o o d g r o u p s u b s t a n c e s o f human e r y t h r o c y t e s a r e g l y c o l i p i d s w i t h perhaps a small c o n t r i b u t i o n from g l y c o p r o t e i n s (Z>8) . T h e c l a s s i c a l w o r k (9 J 0 ) on t h e s t r u c t u r e o f t h e immunoc h e m i c a l l y a c t i v e p o r t i o n s o f t h e b l o o d g r o u p s u b s t a n c e s was c a r r i e d o u t on g l y c o p r o t e i n b l o o d g r o u p a c t i v e s u b s t a n c e s w h i c h w e r e r e a d i l y i s o l a t e d and p u r i f i e d f r o m body f l u i d s . However t h e g l y c o l i p i d type blood group substances present in the e r y t h r o cytes (e.g. I I , I I I S- I V ) h a v e b e e n s h o w n ( 8 ) t o p o s s e s s i d e n t i c a l terminal o l i g o s a c c h a r i d e p o r t i o n s to those of the g l y c o p r o t e i n s a n d some o f t h e s e t e r m i n a l d i - a n d t r i s a c c h a r i d e s h a v e b e e n synthesised (JJ) . The s t r u c t u r e s of s e v e r a l g l y c o l i p i d s from microorganisms h a v e been e s t a b l i s h e d ( 1 2 - 1 4 ) and t h e s e r o l o g i c a l a c t i v i t i e s o f some o f t h e s e h a v e been d e m o n s t r a t e d . The r e a l i s a t i o n of the v a r i e t y of s t r u c t u r a l (and t h e r e f o r e a n t i g e n i c ) i n f o r m a t i o n t h a t can be i n c o r p o r a t e d i n t o a t r i s a c c h a r i d e u n i t and o f t h e t e n d e n c y o f g l y c o l i p i d s t o a s s o c i a t e w i t h o t h e r membranous s t r u c t u r e s l e d t h e a u t h o r (15) t o f o r m u l a t e a h y p o t h e s i s , r e l a t i n g t h e g l y c o l i p i d s of microorganisms w i t h p o s s i b l e îmmunopathologîcal p h e n o m e n a , w h i c h may b e s t a t e d b r i e f l y a s f o l l o w s . G l y c o l i p i d s o r i g i n a t i n g from microorganisms i n v a d i n g the h o s t may b e c o m e i n s e r t e d i n t o t h e c e l l u l a r m e m b r a n e s o f host tissues. A n t i b o d i e s , r a i s e d against these " f o r e i g n " g l y c o l i p i d s present in the macromolecular environment of the microorganism, may t h e n a t t a c k t h e h o s t t i s s u e c o n t a i n i n g t h e " f o r e i g n " g l y c o l i p i d l e a d i n g ( i n the p r e s e n c e of complement) t o "immune l y s i s " (16) o f t h e h o s t c e l l s i . e . t o a t y p e o f a u t o i m m u n e a t t a c k on t h e host t i s s u e s . One o f t h e m i c r o o r g a n i s m s f o r w h i c h t h e p r e s e n c e o f serol o g i c a l l y a c t i v e g l y c o l i p i d s has been e s t a b l i s h e d ( 1 7 - 2 0 ) is Mycoplasma pneumoniae, the c a u s a t i v e agent of primary a t y p i c a l pneumonia. The s t r u c t u r e s of t h e a c t i v e g l y c o l i p i d s have been t e n t a t i v e l y r e l a t e d (19) by s e r o l o g i c a l r e a c t i o n s t o t h e g a l a c t o s y l d i g l y c e r i d e s o f p l a n t l i p i d s t h e s t r u c t u r e s ( e . g . V) o f w h i c h have been e s t a b l i s h e d (21-25) . The s t r u c t u r e s ( e . g . V I ) of g l y c o l i p i d s i s o l a t e d f r o m S t r e p t o c o c c i have been fully d e t e r m i n e d (26-28) and the s e r o l o g i c a l a c t i v i t i e s of t h e s e have been e s t a b l i s h e d ( 2 9 , 3 0 ) . W i t h some o f t h e s e g l y c o l i p i d s t r u c t u r e s e s t a b l i s h e d we c o n s i d e r e d i t p e r t i n e n t t o a t t e m p t t h e i r s y n t h e s i s , f i r s t l y to prove that these s t r u c t u r e s were in f a c t t h e a c t i v e components and s e c o n d l y t o make t h e m a t e r i a l s more r e a d i l y a v a i l a b l e for t e s t i n g our h y p o t h e s i s . A t t h e o u t s e t i t was r e a l i s e d t h a t t h e s y n t h e t i c m e t h o d s to prepare the types of g l y c o s i d i c linkages present in these molec u l e s were not f u l l y e s t a b l i s h e d . In p a r t i c u l a r r o u t e s t o 1,2c i s - 1 i n k e d n e u t r a l and 2 - a m i n o s u g a r s were not a v a i l a b l e w i t h any degree of c e r t a i n t y ( a l t h o u g h the methods f o r the p r e p a r a t i o n of 1 . 2 - t r a n s - l i n k e d n e u t r a l and 2 - a m i n o - 2 - d e o x y s u g a r s were w e l l

El Khadem; Synthetic Methods for Carbohydrates ACS Symposium Series; American Chemical Society: Washington, DC, 1977.

15.

GiGG

Serologically

Active

255

Glycolipids

documented) and moreover t h e p r o b l e m o f t h e p r o t e c t i o n o f h y d r o x y l g r o u p s had a l s o t o be c o n s i d e r e d . We had p r e v i o u s l y i n t r o d u c e d (31-35) t h e a11 y1 e t h e r p r o ­ t e c t i n g group i n t o c a r b o h y d r a t e c h e m i s t r y and had shown i t s p a r t i c u l a r v a l u e in the p r e p a r a t i o n o f benzyl ethers o f carbo­ h y d r a t e s . Awareness o f e a r l i e r work (36-38) on t h e p r e v a l e n c e o f 1 , 2 - c j _ s - g l y c o s i d e f o r m a t i o n when n o n - p a r t i c i p a t i n g g r o u p s w e r e p r e s e n t on t h e 2 - h y d r o x y l g r o u p , l e d u s t o c o n s i d e r (39) a general type of o l i g o s a c c h a r i d e s y n t h e s i s using benzyl ethers f o r ' p e r s i s t e n t ' p r o t e c t i o n and a 11 y1 e t h e r s f o r ' t e m p o r a r y ' p r o t e c t i o n f hydroxyl groups. It is therefore relevant at this s t a g e t o r e v i e w o u r d e v e l o p m e n t o f t h e a l l y l e t h e r s as p r o t e c t ­ ing groups. Q

Allyl

E t h e r s a s P r o t e c t i n g Groups

In t h e c o u r s e o f s t u d i e s on t h e c h e m i c a l s y n t h e s i s (40-42) o f t h e p h o s p h o l i p i d s known a s t h e p l a s m a l o g e n s ( e . g . V I I ) i t was n e c e s s a r y t o i n v e s t i g a t e new methods f o r t h e s y n t h e s i s o f v i n y l ethers. P r i o r t o t h i s w o r k , two p a p e r s (42»Μ) appeared d e s c r i b i n g the rearrangement of a l l y l ethers ( V I I I ) t o c i s - p r o p 1-enyl e t h e r s ( I X ) u n d e r b a s i c c o n d i t i o n s and t h e r e a r r a n g e m e n t was shown (44) t o be p a r t i c u l a r l y r a p i d and q u a n t i t a t i v e w i t h p o t a s s i u m t , - b u t o x i d e i n d i m e t h y l s u l p h o x i d e . For o u r work on t h e p l a s m a l o g e n s we a t t e m p t e d a s i m i l a r r e a r r a n g e m e n t w i t h a y - s u b s t i t u t e d a l l y l e t h e r and a s a model compound we c h o s e t h e hept a d e c - 2 - e n y l e t h e r ( X ) . We f o u n d h o w e v e r , t h a t w i t h p o t a s s i u m ' t . - b u t o x i d e i n d i m e t h y l s u l p h o x i d e , t h i s compound was r a p i d l y de­ graded t o heptadecadiene (XI) and i t s isomers. A t t h i s t i m e we w e r e a l s o i n t e r e s t e d i n t h e s y n t h e s e s o f t h e p h o s p h o l i p i d known as p h o s p h a t i d y l i n o s i t o l (45) and o f t h e l o n g - c h a i n s p i n g o l i p i d b a s e s , p h y t o s p h i n g o s i n e (46.47) and sphingosine (48,4^) ^ carbo­ h y d r a t e p r e c u r s o r s and t h i s work r e q u i r e d t h e e x t e n s i v e u s e o f carbohydrate p r o t e c t i n g groups. I t o c c u r r e d t o us t h a t t h e ready e l i m i n a t i o n o f d i e n e s f r o m γ-substituted a l l y l e t h e r s c o u l d f o r m t h e b a s i s o f a new p r o t e c t i n g g r o u p and we f o u n d (33) f o r e x a m p l e , t h a t t h e r e a d i l y p r e p a r e d b u t - 2 - e n y l e t h e r o f 1,2:5, 6-di-0-isopropylîdene-D" g l u c o f u r a n o s e was r a p i d l y c o n v e r t e d i n t o 1,2:5,6-di-0-isopropylidene-D-glucofuranose by p o t a s s i u m _ t - b u t o x i d e i n d i m e t h y l s u l p h o x i d e a t room t e m p e r a t u r e . A t t h e same t i m e we r e a l i s e d t h a t t h e a l l y l e t h e r i t s e l f was p e r h a p s a p o t e n t i a l l y more u s e f u l p r o t e c t i n g g r o u p i n t h e c a r b o h y d r a t e s e r i e s than t h e b u t - 2 - e n y l g r o u p . The a l l y l g r o u p was s t a b l e t o aqueous a c i d and b a s e and was r a p i d l y i s o m e r i s e d t o t h e p r o p - l - e n y l g r o u p w i t h p o t a s s i u m t,-butoxide i n dimethyl s u l p h o x i d e w i t h o u t a f f e c t i n g o t h e r conv e n t i o n a l base-stable p r o t e c t i n g groups. The p r o p - l - e n y l g r o u p was s t a b l e t o b a s e but was v e r y a c i d l a b i l e and c o u l d a l s o be removed by o x i d a t i o n w i t h a l k a l i n e p e r m a n g a n a t e , by o z o n o l y s i s n

a

d

r

El Khadem; Synthetic Methods for Carbohydrates ACS Symposium Series; American Chemical Society: Washington, DC, 1977.

o

m

256

SYNTHETIC METHODS FOR CARBOHYDRATES

l

H H ο

CH, Ο Ρ Ο C t t - C H i

1

|

2

Ro c = c - M e (\x)

ΝΗ, .

*

·

H

H

ÔW

cwxo

00

/

CMe, (XI|)R = C H ^ C H z C V l ^

CW^CU-CHcCH

C 2)ij. eCH

M

(kill) £ = CHftr.CHiCH^

CH=CH-Mt

1

*o

OCH=CH-Me.

Ο ( X V II)

R =

(XVhO

R=

Ν CH -CH=CH t

L

CH-CH-Me.

OH

Ofc

C>R oR

OR

OR OR,

( x x i ) i U cWjPk

^

;

(XXVV/)

R-= CH^Pk

El Khadem; Synthetic Methods for Carbohydrates ACS Symposium Series; American Chemical Society: Washington, DC, 1977.

15.

GiGG

Serologically

Active

Glycolipids

257

f o l l o w e d by a l k a l i n e h y d r o l y s i s (31 .32) o r by t h e a c t i o n o f m e r c u r i c c h l o r i d e (33) . T h u s , b o t h t h e a l l y l and p r o p - 1 - e n y l groups c o u l d be u s e d u n d e r t h e a p p r o p r i a t e c o n d i t i o n s as p r o t e c t i n g groups. T h e i n s t a n t a n e o u s h y d r o l y s i s o f t h e p r o p - l - e n y l g r o u p by m e r c u r i c c h l o r i d e (33) was p a r t i c u l a r l y u s e f u l s i n c e by t h e a d d i t i o n of m e r c u r i c o x i d e t o t h e r e a c t i o n m i x t u r e the h y d r o l y s i s c o u l d be c a r r i e d o u t u n d e r n e u t r a l c o n d i t i o n s t h u s p r e s e r v i n g other a c i d - l a b i l e p r o t e c t i n g groups in the m o l e c u l e . Moreover m e r c u r i c c h l o r i d e was f o u n d t o r e a c t o n l y v e r y s l o w l y w i t h a l l y l e t h e r s and t h u s p r o p - l - e n y l g r o u p s c o u l d be removed i n t h e p r e s e n c e o f a l l y l g r o u p s by t h i s m e t h o d . Amido groups were a l s o s t a b l e (33)to t h e a c t i o n o f p o t a s s i u m _ t - b u t o x i d e i n d i m e t h y l s u l p h o x i d e and t h u s t h e a l l y l e t h e r s c o u l d be u s e d f o r t h e p r o t e c t i o n of 2-acylamino sugars. Mono p r o p - l - e n y l e t h e r s o f v i c i n a l g l y c o l s a r e a l s o c o n v e r t ed i n t o p r o p y l i d e n e a c e t a l s (33) by a c i d c a t a l y s t s a n d t h u s t h e a l l y l e t h e r s c o u l d be u s e d f o r t h e p r e p a r a t i o n o f t h i s t y p e o f protecting group. S u b s e q u e n t work by o t h e r g r o u p s has shown t h a t a l l y l e t h e r s can be removed by o x i d a t i o n w i t h s e l e n i u m d i o x i d e (50) and t h a t t h e a l l y l g r o u p c a n be i s o m e r i s e d t o t h e p r o p - l - e n y l g r o u p by t r i s t r i p h e n y l p h o s p h i n e r h o d i u m c h l o r i d e u n d e r c o n d i t i o n s suff i c e n t l y m i l d t o p r e s e r v e a l k a l î - 1 a b i 1 e g r o u p s s u c h as e s t e r s (51). A l s o in the presence of d i e t h y l d i a z o d i c a r b o x y l a t e the a l l y l e t h e r g i v e s an a d d i t i o n p r o d u c t w h i c h i s a v i n y l e t h e r and i s t h u s r e a d i l y h y d r o l y s e d (j>2, jj£) · We h a v e a l s o shown (54) t h a t t h e a c t i o n o f N - b r o m o s u c c i n î m i d e on a l l y l e t h e r s ( e . g . XII) g i v e s a m i x t u r e o f t h e bromo e t h e r (XI I l ) and t h e s u c c i n i m i d e d e r i v a t i v e (XIV) b o t h o f w h i c h can be h y d r o l y s e d by aqueous b a s e r e s u l t i n g i n t h e removal o f t h e a l l y l g r o u p . Thus v a r i o u s o t h e r methods f o r t h e removal o f t h e a l l y l g r o u p a r e a v a i l a b l e f o r u s e i n c i r c u m s t a n c e s where t h e v e r y b a s i c c o n d i t i o n s of p o t a s s i u m t _ - b u t o x i d e i n d i m e t h y l s u l p h o x i d e a r e not acceptable. Some o f t h e s e o t h e r methods f o r t h e removal o f t h e a l l y l g r o u p s u f f e r from d i s a d v a n t a g e s e . g . t h e r h o d i u m c a t a l y s t i s e x p e n s i v e , has t o be s e p a r a t e d f r o m t h e p r o d u c t and does n o t e f f e c t complete i s o m e r i s a t i o n of the a l l y l g r o u p . We h a v e f o u n d o n l y a few c a s e s w h e r e t h e s t r o n g l y b a s i c c o n d i t i o n s of potassium t - b u t o x i d e in dimethyl s u l p h o x i d e cause other rearrangements in the carbohydrate m o l e c u l e . The r e a c t i o n w i t h t h e p h e n y l o x a z o l î n e (XV) l e d r a p i d l y (33) to the f o r m a t i o n o f t h e o x a z o l e (XVI) a l t h o u g h t h e p h e n y l o x a z o l î n e g r o u p i n c o m pound (XVI I ) was c o n s i d e r a b l y more s t a b l e t o t h e s e c o n d i t i o n s and compound ( X V I l ) was r e a d i l y c o n v e r t e d (49) i n t o the p r o p - l e n y l g l y c o s i d e ( X V I l l ) u n d e r m i l d c o n d i t i o n s a l t h o u g h i t was d e g r a d e d t o o t h e r p r o d u c t s ( e . g . XIX) u n d e r more v i g o r o u s c o n d i t i o n s (55) . T h e o x a z o l i n e g r o u p i s however s t a b l e i n t h e

El Khadem; Synthetic Methods for Carbohydrates ACS Symposium Series; American Chemical Society: Washington, DC, 1977.

258

SYNTHETIC METHODS FOR CARBOHYDRATES

OCH CH=CH-M«.

OH

2

(XXVl)

(xxvn) n-.ctjw

RcC^PK

(_*XVMl)

4 ' (X* *)

CHopR

CH^oR

Cxxx 0

oft Cxxxn)

^—f °* CXXXV)

v

R= C H j P k

Cxxx)

o

\

fttCR^Pk

R

CXKXUO

\L_/oert=CH.Me. OR ) C

x

x

x

w

El Khadem; Synthetic Methods for Carbohydrates ACS Symposium Series; American Chemical Society: Washington, DC, 1977.

15.

GiGG

Serologically

Active

Glycolipids

259

p r e s e n c e o f t h e r h o d i u m c a t a l y s t (56) . The a l l y l d e r i v a t i v e (XX) o f 1 . 2 - 0 - i s o p r o p y l i d e n e - m y o i n o s i t o l was a l s o d e g r a d e d by t h e a c t i o n o f p o t a s s i u m _ t - b u t o x i d e in dimethyl s u l p h o x i d e t o g i v e t h e h y d r o x y h y d r o q u i n o n e d e r i v a t i v e (XXIII) . T h i s b e h a v i o u r was a l s o shown by t h e b e n z y l e t h e r (XXI). Compound ( X X I l ) was i s o l a t e d as an i n t e r m e d i a t e i n t h e c o n v e r s i o n o f t h e b e n z y l e t h e r (XXI) i n t o t h e a r o m a t i c e t h e r (XXIV) (57) . I s o p r o p y l i d e n e groups i n p y r a n o s i d e s and f u r a n o s i d e s a r e however, s t a b l e t o these c o n d i t i o n s . We have r e c e n t l y (58) observed that the v i c i n a l b i s p r o p - l e n y l e t h e r (XXV) i s f u r t h e r d e g r a d e d by t h e a c t i o n o f p o t a s s i u m t . - b u t o x î d e i n d i m e t h y l s u l p h o x i d e and t h e n a t u r e o f t h e p r o d u c t s is being i n v e s t i g a t e d . Having thus e s t a b l i s h e d t h e a l l y l and p r c p - l - e n y l groups as u s e f u l p r o t e c t i n g g r o u p s i n t h e c a r b o h y d r a t e s e r i e s , we t h e n i n v e s t i g a t e d (34) the potential of the but-2-enyl group. It i s removed much more r a p i d l y t h a n t h e a l l y l g r o u p i s i s o m e r i s e d and i t i s t h e r e f o r e p o s s i b l e t o remove a b u t - 2 - e n y l g r o u p w i t h o n l y p a r t i a l î s o m e r i s a t i o n o f an a l l y l g r o u p when b o t h a r e p r e s e n t i n t h e same m o l e c u l e (34). Thus t h e a l l y l e t h e r (XXVII) was o b t a i n e d (59) f r o m t h e b u t - 2 - e n y l e t h e r (XXVI) i n a b o u t 40% y i e l d by t h i s p r o c e d u r e . One o f t h e main u s e s t h a t we h a v e f o u n d f o r t h e b u t - 2 e n y l g r o u p i s as a t e m p o r a r y p r o t e c t i n g g r o u p d u r i n g t h e p r e paration of other a l l y l ethers. Thus t h e a l l y l glycoside (XXVIII) g a v e (£2) t h e p r o p - 1 - e n y 1 g l y c o s i d e (XXIX) on t r e a t m e n t with potassiurn Jt-butoxide in dimethyl s u l p h o x i d e . A l l y l a t i o n of compound (XXIX) t o g i v e (XXX) and s u b s e q u e n t h y d r o l y s i s o f t h e p r o p - 1 - e n y î group gave 2 - 0 - a l l y l - 3 , 4 , 6 - t r i - 0 - b e n z y l - D - g l u c o p y r a n o s e (XXXI ) . A f u r t h e r e x t e n s i o n o f t h e u s e o f a l l y l e t h e r s came when we i n v e s t i g a t e d t h e c o m p a r a t i v e r a t e s o f i s o m e r i s a t ion o f o t h e r methyl s u b s t i t u t e d a l l y l e t h e r s . Both 1-methyl-(34) a n d 2 m e t h y l a l l y l (33.35) e t h e r s were i s o m e r i s e d a t a c o n s i d e r a b l y lower r a t e t h a n t h e a l l y l e t h e r s by p o t a s s i u m _ t - b u t o x i d e i n d i m e t h y l s u l p h o x i d e and t h e 2 - m e t h y l a l 1 y l e t h e r s (35) w h i c h a r e r e a d i l y prepared a r e convenient p r o t e c t i n g groups i n the presence o f b u t - 2 - e n y l g r o u p s s i n c e t h e l a t t e r c a n be removed c o m p l e t e l y (35) w i t h o u t i s o m e r i s a t i o n o f 2-methy1 a l 1yl g r o u p . We a l s o showed t h a t t h e b u t - 2 - e n y l g r o u p i s i s o m e r i s e d much more s l o w l y t h a n t h e a l l y l g r o u p by t h e r h o d i u m c a t a l y s t and t h i s a l l o w e d (£6, 60) t h e removal o f t h e a l l y l g r o u p i n t h e presence of the but-2-enyl group. Thus t h e a l l y l g a l a c t o p y r a n o s i d e d e r i v a t i v e (XXXIl) gave p r e d o m i n a n t l y t h e p r o p - l - e n y l g l y c o s i d e (XXXIV) on t r e a t m e n t w i t h t h e r h o d i u m c a t a l y s t a n d compound (XXXIV) was t h e n h y d r o l y s e d t o t h e f r e e s u g a r (XXXV) (60). T h i s t r a n s f o r m a t i o n o f compound (XXXI I) i n t o t h e p r o p - l e n y l g l y c o s i d e (XXXIV) was however a c c o m p l i s h e d i n h i g h e r y i e l d and w i t h fewer b y p r o d u c t s by f i r s t t r e a t i n g compound (XXXI I) w i t h

El Khadem; Synthetic Methods for Carbohydrates ACS Symposium Series; American Chemical Society: Washington, DC, 1977.

SYNTHETIC

260

fafya

METHODS

FOR CARBOHYDRATES

C * « * 0

« » g OR

(XXXVII)

0

R

/

on (χχχιχ) ClVjOR

CAtjoR

RoJ-o OR oR (xxxvin) c^ocH^cHictt-Me R?>-q

Ro J — ο

0«-l)

(XLVM)

El Khadem; Synthetic Methods for Carbohydrates ACS Symposium Series; American Chemical Society: Washington, DC, 1977.

15.

GiGG

Serologically Active

Glycolipids

261

butoxide, to isomerîse the a l l y l group and remove the b u t - 2 - e n y l group, g i v i n g the p r o p - l - e n y l g l y c o s i d e (XXXI Il) which was then treated with ' c r o t y l bromide and sodium hydride to give the but2-enyl ether (XXXIV) (6l_) . In a l l of our e a r l y work on the use of potassium Jt-butoxide in dimethyl sulphoxide f o r the rearrangement of a l l y l ethers we used laboratory prepared potassium _t-butoxide. Recently t h i s material has become commercially a v a i l a b l e in the U.K. and the commercial material i s considerably more a c t i v e than our own p r e p a r a t i o n . A l l y l ethers are r a p i d l y isomerised at 20 by the commercial material whereas we r o u t i n e l y used higher temperatures in our e a r l y work. Many other groups (62-75) have found the a l l y l ethers useful as p r o t e c t i n g groups in the preparation of carbohydrate d e r i v a t i v e s and other compounds. 1

1 , 2 - C i s - G l y c o s i d e Synthesis The long standing problem of 1.2-ci s - q l y c o s i d e synthesis has been f u l l y reviewed (36-38) and at the outset of our work on the synthesis of the g l y c o l i p i d s t h i s was our major concern s i n c e many of these compounds contained t h i s g l y c o s i d i c l i n k a g e . When considering our projected general o l i g o s a c c h a r i d e synthesis using benzyl ethers f o r ' p e r s i s t e n t ' p r o t e c t i o n and a l l y l ethers f o r 'temporary' p r o t e c t i o n we were encouraged by e a r l i e r work which showed higher y i e l d s of 1 . 2 - c i s - q l y c o s i d e s when n o n - p a r t i c i p a t i n g groups were present on the 2 - p o s i t i o n (36-38) and by the work of Ishikawa and F l e t c h e r (76).on the r e l a t i v e rates of reaction of f u l l y benzylated a - and β - glycosyl h a l i d e s . We adopted these ideas in our i n i t i a l work and developed (39) simultaneously, a s i m i l a r route to 1.2-ci s-g1ycosi des as that used by Lemieux and his co-workers (11.77.78) and termed by him " h a l i d e c a t a l y s e d g l y c o s i d a t i o n r e a c t i o n s " . However, s i n c e we intended to use a l l y l ethers as p r o t e c t i n g groups in the glycosyl h a l i d e s , we decided to avoid using the g l y c o s y l bromides s i n c e t h e i r preparation could lead to problems with the unsaturated centres of the a l l y l groups and we therefore concentrated on the reactions of the g l y c o s y l chlorides. Our other concern at t h i s stage was the f e a s i b i l i t y of using perbenzylated intermediates; the degree of s t e r i c hindrance that might r e s u l t from t h e i r use and a l s o the physical p r o p e r t i e s of the p r o d u c t s . Our i n i t i a l experiments (39) were c a r r i e d out with f u l l y benzylated glucosyl c h l o r i d e s and some of the t r i - 0 benzyl ethers of benzyl α - D - g a l a c t o p y r a n o s i d e . Using d i c h l o r o methane as a s o l v e n t , tetraethylammonium c h l o r i d e as a c h l o r i d e source and t r i e t h y l ami ne as a base, to remove the hydrogen c h l o r i d e l i b e r a t e d , we showed that the f u l l y benzylated glucosyl c h l o r i d e (XXXVI) gave high y i e l d s of g l y c o s i d e s when condensed with benzyl 2 , 3 , 4 - t r i - 0 - b e n z y l - α - D - g a l a c t o p y r a n o s i d e (XXXVIl) and the product was moreover c r y s t a l l i n e . N.m.r. spectroscopy of the crude d i s a c c h a r i d e d e r i v a t i v e a l s o showed a high proportion of the

El Khadem; Synthetic Methods for Carbohydrates ACS Symposium Series; American Chemical Society: Washington, DC, 1977.

262

SYNTHETIC METHODS

^

.to. oft

CHjOH