12 The BACK Equation of State and Phase Equilibria in Pure Fluids and Mixtures J. J. SIMNICK, H. M. LIN, and K. CHU CHAO
Downloaded by UNIV OF ARIZONA on December 6, 2012 | http://pubs.acs.org Publication Date: December 1, 1979 | doi: 10.1021/ba-1979-0182.ch012
School of Chemical Engineering, Purdue University, West Lafayette, IN 47907
The Boublik-Alder-Chen-Kreglewski augmented hard-core equation is applied to pure fluids and mixtures with special attention to the representation of phase equilibria. Equation constants are determined for twelve substances, and the three constants which are required of nonpolar, nonquantum fluids are correlated with the critical properties and acentric factor. The equation describes mixture-phase equilibria with the introduction of mixing rules and the use of up to two interaction constants for each binary system. V f a n y equations of state h a v e b e e n p r o p o s e d f o r t h e r e p r e s e n t a t i o n of t h e r m o d y n a m i c p r o p e r t i e s of p u r e fluids a n d m i x t u r e s . T h e success of s e v e r a l equations i n t h e q u a n t i t a t i v e d e s c r i p t i o n of some fluid m i x t u r e systems has a d d e d i n c e n t i v e t o t h e f u r t h e r d e v e l o p m e n t of equations of state i n recent years.
T h e n e w equation of K r e g l e w s k i a n d C h e n
(I)
appears p a r t i c u l a r l y a t t r a c t i v e f o r several reasons. I t is h i g h l y a c c u r a t e i n fitting
the PVT b e h a v i o r of a n u m b e r of substances. O n l y a f e w e q u a t i o n
constants a r e r e q u i r e d f o r e a c h substance, a n d these are p r o p e r t i e s of t h e m o l e c u l e s ( or v e r y c l o s e l y r e l a t e d to t h e m ) a b o u t w h i c h m u c h is a l r e a d y k n o w n . I n this w o r k w e a p p l y t h e e q u a t i o n t o p u r e fluids a n d m i x t u r e s of some c o m m o n substances.
S p e c i a l a t t e n t i o n is p a i d t o t h e r e p r e s e n t a -
t i o n of p h a s e e q u i l i b r i a . The
BACK
Equation
T h e B o u b l i k - A l d e r - C h e n - K r e g l e w s k i ( B A C K ) E q u a t i o n is a n a u g m e n t e d h a r d - c o r e e q u a t i o n of t h e f o r m
j f f - z - z
h
+ *
0-8412-0500-0/79/33-182-209$06.25/l © 1979 American Chemical Society
In Equations of State in Engineering and Research; Chao, K., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
(1)
210
EQUATIONS O F
STATE
E q u a t i o n 1 expresses t h a t t h e c o m p r e s s i b i l i t y f a c t o r of a r e a l fluid is the s u m of a r e p u l s i v e t e r m a n d a n a t t r a c t i v e t e r m . C h e n a n d K r e g l e w s k i ( 1 ) suggested u s i n g B o u b l i k ' s h a r d - c o r e e q u a t i o n z
for the repulsive t e r m
h
(2)
a n d to use the p o l y n o m i a l of A l d e r et a l . ( 3 ) f o r t h e a t t r a c t i v e t e r m
z . Thus a
1 + (3« - 2) j + (3α - 3a + l)e
4
Downloaded by UNIV OF ARIZONA on December 6, 2012 | http://pubs.acs.org Publication Date: December 1, 1979 | doi: 10.1021/ba-1979-0182.ch012
-
2
9 h
/ V \
9
N
/V°\
α
2
ξ
3
(
.
M
* - Ç Ç * D « ( è ) (τ)
3
T h e d e n s i t y of the fluid enters i n E q u a t i o n 2 i n the f o r m of ξ d e f i n e d by É=
0.74048 V°/V
(4)
w h e r e V ° is the c l o s e - p a c k e d v o l u m e of t h e m o l e c u l a r h a r d cores.
The
shape of a h a r d c o r e is expressed b y a, w h i c h is d e f i n e d to b e the surface i n t e g r a l of the r a d i u s of c u r v a t u r e d i v i d e d b y three times the m o l e c u l a r volume.
I t is a constant for e a c h m o l e c u l e a n d is e q u a l to u n i t y f o r
spheres b u t greater t h a n one for other c o n v e x bodies. E q u a t i o n 2 reduces to t h e C a r n a h a n - S t a r l i n g (4) T h e constants D
NM
A l d e r et a l . ( 3 )
hard-sphere equation for a =
1.
i n E q u a t i o n 3 originally were determined
by
to fit t h e i r c o m p u t e r - g e n e r a t e d d a t a . C h e n a n d K r e g -
l e w s k i ( I ) r e d e t e r m i n e d the constants b a s e d o n d a t a o n a r g o n . T h e latter set o f constants is u s e d i n this c h a p t e r .
S i n c e t h e i r values h a v e
been
r e p o r t e d i n Réf. 1, t h e y w i l l n o t b e r e p e a t e d here. T h e best d e s c r i p t i o n of l i q u i d s a n d c o m p r e s s e d gases r e q u i r e s the m o l e c u l a r h a r d - c o r e v o l u m e to b e a d e c r e a s i n g f u n c t i o n of t e m p e r a t u r e . T h u s C h e n a n d K r e g l e w s k i express V ° b y means of f ° -= V°°
[1 -
C exp (Su°/kT)]
3
(5)
T h e c h a r a c t e r i s t i c energy u i n E q u a t i o n 3 is i n d e p e n d e n t of t e m p e r a ture for spherical molecules.
H o w e v e r , for nonspherical molecules
u
d e p e n d s o n t e m p e r a t u r e a n d C h e n a n d K r e g l e w s k i use
È-T('+*) in which η =
0 f o r spheres, a n d η > 0 f o r a c e n t r i c m o l e c u l e s .
In Equations of State in Engineering and Research; Chao, K., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
12.
SIMNICK E T A L .
The BACK
Equation
211
of State
F i v e constants m u s t b e k n o w n for e a c h s u b s t a n c e : V°°, a n d C . O f these five o n l y three m u s t b e d e t e r m i n e d f r o m m e n t a l d a t a , a n d these are V ° ° , a, a n d u°/k.
a, w ° / k , fitting
η/k,
experi
Chen and Kreglewski
suggested a s s i g n i n g values to the other t w o constants: C w a s g i v e n t h e same v a l u e , 0.12, f o r a l l n o n p o l a r substances a n d η/k =
0.6 ω T .
Chen
c
a n d K r e g l e w s k i r e p o r t e d v a l u e s of the constants for 11 substances
(I).
T h e a c c u r a c y of the B A C K e q u a t i o n for t h e r e p r e s e n t a t i o n of d a t a is tested w i t h a r g o n . t h a t is o b t a i n e d .
PVT
F i g u r e 1 shows the q u a n t i t a t i v e a g r e e m e n t
C o m p a r i s o n w i t h e x p e r i m e n t a l d a t a s u c h as i n F i g u r e
1, h o w e v e r a c c u r a t e , is nevertheless f r a g m e n t a r y o n a c c o u n t of the l i m i t e d Downloaded by UNIV OF ARIZONA on December 6, 2012 | http://pubs.acs.org Publication Date: December 1, 1979 | doi: 10.1021/ba-1979-0182.ch012
a m o u n t of d a t a o n a n y one substance. I n o r d e r to r e v e a l the b e h a v i o r of the e q u a t i o n o v e r a w i d e r a n g e of c o n d i t i o n s , w e c o m p a r e t h e c o m p u t e d c o m p r e s s i b i l i t y of a r g o n w i t h P i t z e r s g e n e r a l i z e d c o r r e l a t i o n f o r s i m p l e
Figure
1. BACK equation and P V T data for argon: (O), Michels (31); (+), Gibbons Correlation (32); ( ), BACK Equation.
In Equations of State in Engineering and Research; Chao, K., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
data
212 fluids
EQUATIONS O F
of w h i c h a r g o n is one.
F i g u r e 2 shows t h e c o m p a r i s o n .
STATE
I n the
s m a l l i n s e r t i n t h e figure w e s h o w t h e l i m i t i n g b e h a v i o r of t h e gas as Ρ -»
0.
C l e a r l y the s e c o n d
v i r i a l coefficient
is r e p r e s e n t e d
by
the
Downloaded by UNIV OF ARIZONA on December 6, 2012 | http://pubs.acs.org Publication Date: December 1, 1979 | doi: 10.1021/ba-1979-0182.ch012
equation.
Determining
Equation
Constants
E q u a t i o n constants are d e t e r m i n e d for 12 substances i n t h i s c h a p t e r a n d the results are s h o w n i n T a b l e I. T o d e t e r m i n e t h e three constants V ° ° , a, a n d w ° / k f o r a substance, w e use the c r i t i c a l constants, v a p o r pressure, a n d l i q u i d - d e n s i t y d a t a . A n objective f u n c t i o n is d e f i n e d as the s u m of squares of the r e l a t i v e d e v i a tions of those c a l c u l a t e d f r o m e x p e r i m e n t a l v a l u e s . T h e three e q u a t i o n constants are f o u n d w h e n m i n i m i z i n g the o b j e c t i v e f u n c t i o n . F o r use i n
In Equations of State in Engineering and Research; Chao, K., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
12.
siMNiCK E T A L .
The BACK
T a b l e I.
Downloaded by UNIV OF ARIZONA on December 6, 2012 | http://pubs.acs.org Publication Date: December 1, 1979 | doi: 10.1021/ba-1979-0182.ch012
13.625 65.751 64.958 65.518 67.740 77.228 88.351 96.556 110.72 54.383 67.013 64.772 79.037
213
of State
E q u a t i o n Constants a
u°/fc,K
1.0004 1.0566 1.0565 1.0498 1.075 1.0720 1.0799 1.0981 1.1349 1.0587 1.0621 1.0583 1.0705
39.171 435.83 432.20 409.59 418.74 468.33 491.00 517.52 558.07 532.12 552.43 522.46 563.23
3
Hydrogen n-Pentane i-Pentane neo-Pentane (Kreglewski) n-Hexane n-Heptane n-Octane n-Decane Benzene Toluene Cyclohexane m-Xylene
BACK
BACK
v°°, cm /mol
Compound
the o b j e c t i v e
Equation
C 0.241 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12
0.499 70.72 62.71 51.28 50 90.11 113.77 134.50 181.57 71.50 91.24 70.72 122.54
f u n c t i o n , the c r i t i c a l constants are d e t e r m i n e d f r o m
e q u a t i o n b y s o l v i n g n u m e r i c a l l y the B A C K
the
e q u a t i o n itself a n d
E q u a t i o n s 7 a n d 8,
0
(7)
Τ
T h e v a p o r pressures are c a l c u l a t e d f r o m the B A C K
equation
n u m e r i c a l l y s o l v i n g f o r the v a p o r a n d the l i q u i d densities, p
G
by
and p , L
s i m u l t a n e o u s l y f r o m the t w o f o l l o w i n g equations at a fixed t e m p e r a t u r e = PG
=
(9)
/*L
(10)
PL
w h e r e μ denotes c h e m i c a l p o t e n t i a l a n d Ρ is the pressure. T h e t e m p e r a t u r e r a n g e of the v a p o r - p r e s s u r e a n d l i q u i d - d e n s i t y d a t a u s e d i n the c a l c u l a t i o n s are s h o w n i n T a b l e I I . T h e t e m p e r a t u r e s are c h o s e n to c o v e r the r e d u c e d t e m p e r a t u r e r a n g e of a p p r o x i m a t e l y 0.60 to 1.0 at e v e n intervals. A l s o s h o w n i n T a b l e I I are the r e l a t i v e d e v i a t i o n s of the c a l c u l a t e d v a p o r pressures, a n d saturated l i q u i d a n d v a p o r v o l u m e s . T h e c a l c u l a t e d c r i t i c a l p r o p e r t i e s are g e n e r a l l y i n g o o d with
accepted
experimental values.
a m o u n t s to 1.2%
for T , 3 . 2 % 0
The
average
for P , a n d 4 . 5 % c
absolute
agreement deviation
f o r V . T h e smallest c
In Equations of State in Engineering and Research; Chao, K., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
214
EQUATIONS O F STATE
Table II. Relative
Temperature Deviations'
1
Vapor
Downloaded by UNIV OF ARIZONA on December 6, 2012 | http://pubs.acs.org Publication Date: December 1, 1979 | doi: 10.1021/ba-1979-0182.ch012
Component n-Pentane i-Pentane neo-Pentane n-Hexane n-Heptane n-Octane n-Decane Benzene Toluene ra-Xylene Cyclohexane
309-455 301-420 282-420 303^93 323-523 333-553 373-603 343-543 353-573 373-603 333-533
AAD°
2.9 0.9 1.5 3.2 3.1 3.3 4.9 1.0
2.6 0.8 1.3 2.8 2.8 3.1 4.5 0.9 1.6 2.4 1.1
1.8
2.7 1.2
(%)
Pressure
rms
b
Range
BIAS
4
-1.6 -0.2 -0.4 -2.1 -1.7 -1.6 -2.3 -0.3 -0.5 -0.5 -0.1
Relative deviations = dev = (experimental value — calculated value)/experi mental value ; N O B = number of observations. The abbreviation r m s = (Σ dev /NOB) 1 /2. β
b
2
deviations are observed for cyclohexane, 0 . 5 % for T , 0 . 6 % for P , a n d c
c
1.3% f o r V . T h e largest d e v i a t i o n s are o b s e r v e d f o r n-decane, 2 . 6 % f o r c
T , 9 . 2 % f o r P , a n d 1 3 . 6 % f o r V . T h e r e is a t e n d e n c y f o r t h e n o r m a l c
c
c
paraffins to s h o w greater d e v i a t i o n s as the c h a i n l e n g t h is i n c r e a s e d . A s a c h e c k o f o u r p r o c e d u r e f o r d e t e r m i n i n g e q u a t i o n constants w e i n c l u d e neo-pentane i n this w o r k f o r w h i c h e q u a t i o n constants h a v e b e e n r e p o r t e d b y C h e n a n d K r e g l e w s k i . T h e set of constants f r o m this w o r k as w e l l as the set b y C h e n a n d K r e g l e w s k i are b o t h p r e s e n t e d i n T a b l e I , a n d t h e y are i n close agreement. b y t h e different d a t a u s e d .
S l i g h t differences a p p e a r to b e c a u s e d
Kreglewski a n d C h e n used A P I Research
P r o j e c t 44 tables w h i l e w e u s e d the recent d a t a of D a s ( 6 ) . W e are interested i n u s i n g the B A C K e q u a t i o n f o r h y d r o g e n m i x t u r e s . T h e r e f o r e w e h a v e d e t e r m i n e d e q u a t i o n constants f o r h y d r o g e n , a n d these are i n c l u d e d i n T a b l e I . PVT d a t a ( 7 ) at t e m p e r a t u r e s of 111-2778 Κ a n d pressures u p t o 1020 a t m are u s e d i n this d e t e r m i n a t i o n . N e i t h e r vapor-pressure n o r critical-point data are used to avoid complications o w i n g to q u a n t u m effects.
I t is f o u n d necessary t o a d o p t a n u n u s u a l
v a l u e of the constant C of 0.241. W i t h this C v a l u e the c a l c u l a t e d pressure shows a r e l a t i v e r o o t - m e a n - s q u a r e d d e v i a t i o n of 0 . 5 % a n d a r e l a t i v e bias of less t h a n 0 . 1 % . A s e n s i t i v i t y analysis has b e e n m a d e of the c a l c u l a t e d results to the. values of the e q u a t i o n constants u s i n g b e n z e n e d a t a . T h e most sensitive constant is ( w ° / k ) .
A v a r i a t i o n o f 1 % f r o m its o p t i m a l v a l u e increases
the error of c a l c u l a t e d v a p o r pressures b y 6 % , a n d o f c a l c u l a t e d l i q u i d
In Equations of State in Engineering and Research; Chao, K., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
12.
siMNiCK E T A L .
The BACK
Equation
215
of State
a n d F i t t i n g of P u r e F l u i d D a t a Relative
Downloaded by UNIV OF ARIZONA on December 6, 2012 | http://pubs.acs.org Publication Date: December 1, 1979 | doi: 10.1021/ba-1979-0182.ch012
Liquid
Deviations'
(%)
1
Volume
Vapor
Volume
rms
AAD
BIAS
rms
AAD
0.3 0.8 1.3 0.7 2.2 6.1 13.7 0.3 1.1 1.3 1.2
0.2 0.8 1.3 0.6 2.0 6.0 13.7 0.2 1.0 1.1 1.1
0.05 0.8 1.3 0.6 2.0 6.0 13.7 -0.1 -0.3 -0.8 1.1
3.7 2.1 1.6 4.6 5.4 7.9
3.0 1.5 1.3 3.5 4.0 5.7
-0.5 -1.1 -0.7 -1.3 -1.1 -1.4
2.4
1.9
-0.2
— — — —
° A A D = Σ Idevll / N O B . "BIAS = 2 dev/NOB.
v o l u m e s b y 1.0%.
Refs.
BIAS
— — — —
8 9 6 10 10 10 11 10 11-16 11,12,16,17 11
— — — —
S u b s e q u e n t l y a is next i n i m p o r t a n c e .
A 1% variation
i n its v a l u e p r o d u c e s a response of a b o u t 3 % i n c a l c u l a t e d v a p o r pressures a n d 1.4%
i n calculated l i q u i d volumes. A 1 % variation i n V ° °
produces
a n a p p r o x i m a t e l y e q u a l p e r c e n t response i n l i q u i d v o l u m e s , b u t o n l y one t e n t h as m u c h r e l a t i v e c h a n g e i n v a p o r pressure. A 1 % c h a n g e i n (77/k) makes a difference of a b o u t 1.5% l i q u i d volumes.
i n v a p o r pressures, b u t o n l y . 3 % i n
B o t h v a p o r pressure a n d l i q u i d v o l u m e are i n s e n s i t i v e
to C .
Correlation
of
the
Equation
V a l u e s of the B A C K substances.
Constants
e q u a t i o n constants
are n o w a v a i l a b l e for
22
S u i t a b l e correlations of the constants c a n a d d g r e a t l y to t h e
usefulness of the e q u a t i o n . W e h a v e f o u n d V ° ° to b e c o r r e l a t e d w i t h V . F i g u r e 3 shows
the
c
result. V°°
=
A s i m p l e p r o p o r t i o n a l i t y exists for most of the substances 0.21 V .
T h e h i g h e r n o r m a l paraffins s t a r t i n g w i t h C
c
8
with
show
a
t e n d e n c y to d e v i a t e f r o m the l i n e a r r e l a t i o n s h i p . T h e i n t e r a c t i o n e n e r g y u°/k
w a s f o u n d b y K r e g l e w s k i a n d C h e n to
b e e q u a l to t h e c r i t i c a l t e m p e r a t u r e for s m a l l m o l e c u l e s . w e s h o w u°/k
as a f u n c t i o n of T . c
In Figure 4
T h e simple equality holds u p
to
p r o p a n e , a b o v e w h i c h the h y d r o c a r b o n s t e n d to s h o w a c u r v e d o w n w a r d . F i g u r e 5 shows
that t h e shape p a r a m e t e r
a correlates
with
a c e n t r i c factor ω.
In Equations of State in Engineering and Research; Chao, K., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
the
In Equations of State in Engineering and Research; Chao, K., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
Downloaded by UNIV OF ARIZONA on December 6, 2012 | http://pubs.acs.org Publication Date: December 1, 1979 | doi: 10.1021/ba-1979-0182.ch012
I
CO
Ο
CO
1
Η
ι
M
to ι—» σ>
Downloaded by UNIV OF ARIZONA on December 6, 2012 | http://pubs.acs.org Publication Date: December 1, 1979 | doi: 10.1021/ba-1979-0182.ch012
12.
siMNiCK E T AL.
The BACK
Equation
of State
>l '.(>i/n) Figure 4.
Correlation
of u"/k
In Equations of State in Engineering and Research; Chao, K., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
217
In Equations of State in Engineering and Research; Chao, K., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
Downloaded by UNIV OF ARIZONA on December 6, 2012 | http://pubs.acs.org Publication Date: December 1, 1979 | doi: 10.1021/ba-1979-0182.ch012
CO
*1
Ο
CO
S
!
w
00
to t—'
12.
siMNiCK E T A L .
Mixing
The BACK
Equation
of State
219
Rules
T h e B A C K e q u a t i o n is e x t e n d e d to m i x t u r e s w i t h t h e i n t r o d u c t i o n of m i x i n g rules f o r the e q u a t i o n constants.
T h e f o l l o w i n g m i x i n g rules
are u s e d i n this w o r k : «. =
Downloaded by UNIV OF ARIZONA on December 6, 2012 | http://pubs.acs.org Publication Date: December 1, 1979 | doi: 10.1021/ba-1979-0182.ch012
V °
M
Σ ^ i
α
= T , T N N i j I
( i l )
ί
I
V °
I
(12)
I
(Ϊ) w h e r e Ν stands f o r m o l e f r a c t i o n a n d s u b s c r i p t m denotes m i x t u r e s . T h e l i n e a r c o m b i n a t i o n of a b y E q u a t i o n 11 w a s u s e d also b y K r e g lewski and C h e n (5).
T h e m i x i n g of V ° a n d (u/k)
13 e l i m i n a t e s t h e separate m i x i n g of T h e cross i n t e r a c t i o n terms Vy
0
u°/k, and ( w / k )
i ;
b y E q u a t i o n s 12 a n d
C , a n d ». w i t h i =^ / t h a t a p p e a r i n
the m i x i n g rules are r e l a t e d to t h e p u r e fluid q u a n t i t i e s b y
(*?°«+^°«)'
fwi+m)
(14)
and
E q u a t i o n s 14 a n d 15 define
a n d #cy as the dimensionless cross-inter
a c t i o n constants. A t the present stage t h e y h a v e to b e d e t e r m i n e d f r o m fitting
mixture data.
Fugacity
and
K-Yalue
T h e f u g a c i t y f of C o m p o n e n t i i n a fluid m i x t u r e is expressed {
con
v e n i e n t l y i n terms of a f u g a c i t y coefficient φι /i
V
=
i l/iP V
(16) (17)
In Equations of State in Engineering and Research; Chao, K., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
220
EQUATIONS O F S T A T E
Table III. Temperature Range (K)
System
Downloaded by UNIV OF ARIZONA on December 6, 2012 | http://pubs.acs.org Publication Date: December 1, 1979 | doi: 10.1021/ba-1979-0182.ch012
Pressure Range (atm)
Ki
rms°
N
2
+ Ar
140-240
1-26
2.9%
N
a
+ Ci
138-183
6-48
2.6 2.3
Cx + 02
158-283
1.76-68
5.4 4.0
244-394
3-122
9.8 9.5
Ce
310-410
3-17
4.7
ÎIC4
327-394
27-166
5.6 6.4
433-533
19-175
5.6
Ci + nC Ci + H2
n
-j"
4
H 2 -f- CeHe
β
Range of Conditions
The abbreviation rms (root-mean-square deviation) = ( Σ
(
dev /NOB) / , 2
1
2
J^calc — UT P\ ex
) ; N O B = number of observations.
W h e n e q u i l i b r i u m exists b e t w e e n a gas m i x t u r e a n d a l i q u i d s o l u t i o n .
1?-1ff o r a l l i c o m p o n e n t s i n t h e system.
(18)
C o m b i n i n g E q u a t i o n s 1 6 - 1 8 gives
a n expression of t h e K - v a l u e of i,
(19) T h e f u g a c i t y coefficient is d e r i v e d f r o m t h e B A C K e q u a t i o n w i t h t h e use o f t h e m i x i n g rules of E q u a t i o n s 1 1 - 1 5 b y f o l l o w i n g s t a n d a r d p r o c e dures o f c l a s s i c a l t h e r m o d y n a m i c s . T h e r e s u l t is g i v e n b e l o w .
F o r brevity
w e h a v e left o u t t h e s u b s c r i p t m f r o m q u a n t i t i e s t h a t a p p l y to t h e fluid m i x t u r e as a w h o l e ; thus, e.g., ζ =
z. m
In Equations of State in Engineering and Research; Chao, K., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
12.
SIMNICK E T A L .
The BACK
Equation
221
of State
and Fitting of Mixture D a t a K
2
rms
Downloaded by UNIV OF ARIZONA on December 6, 2012 | http://pubs.acs.org Publication Date: December 1, 1979 | doi: 10.1021/ba-1979-0182.ch012
4.8%
Refi - 7 . 8 χ 10"
4
- 6 . 1 Χ 10"
18
3
1.4 0.8
0.02150 0.02949
0 0.0555
m
8.2 8.4
-0.03114 -0.04119
0 -0.1198
19,®
6.8 7.3
-0.09262 -0.09452
0 -0.02367
21-2
4.1
-0.17019
0
27
9.4 5.7
-0.9886 -0.9027
0 0.5116
29
6.4
-1.0907
0.7475
80
RT In φ = RT In φ ί
4
9
/ u \
RTz + N
RT
/V°\
+ «'?Ϊ"»(ΪΡ)(Τ)
u
^
where
( 2 2 )
In Equations of State in Engineering and Research; Chao, K., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
222
EQUATIONS O F
STATE
dV° dN'i
(23)
j
ρ
(24)
Downloaded by UNIV OF ARIZONA on December 6, 2012 | http://pubs.acs.org Publication Date: December 1, 1979 | doi: 10.1021/ba-1979-0182.ch012
Θ
1η φ =
(α
2
-
=
\
^
V°
1) 1η ( ! - £ )
+
( α + 3α)£ 2
(1 Μ
+ Σ Some Binary
(25)
dNij
+
ζ
-3α£
2
-ξ)
2
(26)
— 1 — 1η ζ
Mixtures
U s i n g the B A C K e q u a t i o n , w e h a v e s t u d i e d t h e p h a s e e q u i l i b r i u m of s e v e r a l b i n a r y m i x t u r e s for w h i c h e x p e r i m e n t a l d a t a are a v a i l a b l e o v e r a n e x t e n d e d r a n g e of c o n d i t i o n s .
T a b l e I I I presents the m i x t u r e systems,
the t e m p e r a t u r e a n d pressure ranges of t h e d a t a , t h e o v e r a l l
fitting
of
K - v a l u e s b y the B A C K e q u a t i o n , a n d the i n t e r a c t i o n constants ν a n d κ. The
BACK
equation
constants
for
the p u r e
components
have
been
r e p o r t e d either i n T a b l e I or i n R e f . J . T h e i n t e r a c t i o n constants ν a n d κ i n T a b l e I I I are d e t e r m i n e d f o r e a c h b i n a r y system b y fitting the e x p e r i m e n t a l K-values
of b o t h c o m p o n e n t s i n
t h e least s q u a r e sense for the r e l a t i v e d e v i a t i o n s . T h e s i m p l e s t m i x t u r e s i n T a b l e I I I are the t w o b n i a r y systems nitrogen w i t h argon and w i t h methane.
of
C o m p a r i s o n of c a l c u l a t e d results
w i t h l i t e r a t u r e d a t a are s h o w n i n F i g u r e s 6 a n d 7. T h e m o l e c u l e s are a l l q u i t e s m a l l a n d s i m i l a r i n i n t e r a c t i o n energies. T h e i n t e r a c t i o n p a r a m e t e r s have small values. F o r nitrogen + zero. F o r nitrogen + m a k e s l i t t l e difference
a r g o n , b o t h p a r a m e t e r s are p r a c t i c a l l y
m e t h a n e , κ has a s m a l l b u t s i g n i f i c a n t v a l u e . B u t i t to t h e h i g h a c c u r a c y i f ν is set e q u a l to
F i g u r e 7 shows t h a t q u a n t i t a t i v e a g r e e m e n t
is o b t a i n e d
even
zero.
i n the
retrograde region. F o u r b i n a r y systems of m e t h a n e are i n c l u d e d i n T a b l e I I I . T h e use of a zero v a l u e of ν is tested o n three of t h e m a n d f o u n d to g i v e t h e same results as the best n o n z e r o v a l u e . I t appears t h a t ν =
these systems, a n d o n l y one i n t e r a c t i o n constant, κ, needs to b e
In Equations of State in Engineering and Research; Chao, K., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
about
0 for a l l deter-
12.
SIMNICK E T A L .
The BACK
Equation
223
of State
m i n e d for e a c h of these p a i r s . I n F i g u r e s 8 a n d 9 w e c o m p a r e c a l c u l a t e d K - v a l u e s w i t h e x p e r i m e n t a l d a t a for m e t h a n e +
ethane a n d m e t h a n e
+
η-butane, r e s p e c t i v e l y . T w o b i n a r y m i x t u r e s of h y d r o g e n h a v e b e e n s t u d i e d . A l a r g e p o s i t i v e v a l u e of ν a n d a s u b s t a n t i a l n e g a t i v e v a l u e of κ are o b t a i n e d f o r systems.
Having ν =
0 gives
d e f i n i t e l y i n f e r i o r results.
The
both BACK
e q u a t i o n gives a n excellent r e p r e s e n t a t i o n of t h e t w o systems w i t h t h e
Downloaded by UNIV OF ARIZONA on December 6, 2012 | http://pubs.acs.org Publication Date: December 1, 1979 | doi: 10.1021/ba-1979-0182.ch012
use of b o t h i n t e r a c t i o n constants, as s h o w n i n F i g u r e s 10 a n d 11.
70
80
90
100
110 Τ,
120
130
140
150
Κ
Figure 6. Experimental and BACK-predicted K-values for N + Ar: (O), Wilson et al (IS); ( ), BACK Equation; κ = - 7 . 8 Χ ΙΟ ; ρ = - 6 . 1 X 2
4
JO" . 3
In Equations of State in Engineering and Research; Chao, K., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
EQUATIONS O F
STATE
Downloaded by UNIV OF ARIZONA on December 6, 2012 | http://pubs.acs.org Publication Date: December 1, 1979 | doi: 10.1021/ba-1979-0182.ch012
224
Figure 7. Experimental and BACK-predicted K-values for N + CH : ( O , • , Δ , Ο λ experimental; ( ), BACK Equation; κ = 0.0215; ν = 0. s
In Equations of State in Engineering and Research; Chao, K., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
h
siMNiCK E T A L .
The BACK
Equation
225
of State
Downloaded by UNIV OF ARIZONA on December 6, 2012 | http://pubs.acs.org Publication Date: December 1, 1979 | doi: 10.1021/ba-1979-0182.ch012
12.
0.031
1
I
2
I
3
Figure 8. Expenmental ethane: ( O , • , Δ , Ο »
I
I
4
I
I
I I I
5 6 7 8910
p,atm
and BACK-predicted λ experimental; ( -0.0311; v = 0.
χ
I
20
1
30
1
40
1—ι 60
ι
ι
80
ι
I
100
K-values for methane + ), BACK Equation; κ =
In Equations of State in Engineering and Research; Chao, K., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
EQUATIONS O F
Downloaded by UNIV OF ARIZONA on December 6, 2012 | http://pubs.acs.org Publication Date: December 1, 1979 | doi: 10.1021/ba-1979-0182.ch012
226
In Equations of State in Engineering and Research; Chao, K., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
STATE
Downloaded by UNIV OF ARIZONA on December 6, 2012 | http://pubs.acs.org Publication Date: December 1, 1979 | doi: 10.1021/ba-1979-0182.ch012
12.
The BACK
SIMNICK E T A L .
0.011 10
1
1
20
30
1
Equation
1—
50
227
of State
:—I
1
70
100
p, atm
200
300
1
1
500
Figure 10a. Comparison of K-values of hydrogen in H + η-butane with BACK equation: (O, • , Δ , < 0 > +), experimental; ( ), BACK Equa tion; κ = -0.9027; ν = 0.5116. 2
In Equations of State in Engineering and Research; Chao, K., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
Downloaded by UNIV OF ARIZONA on December 6, 2012 | http://pubs.acs.org Publication Date: December 1, 1979 | doi: 10.1021/ba-1979-0182.ch012
228
EQUATIONS
1 I
10
ι
20
ι
30
ι
ι
50
ι
i i i i
70
100
p, atm
1
1
200
1
OF STATE
1—ι
400
600
Figure 10b. Comparison of K-values of η-butane in H + η-butane with BACK equation: (O, • , Δ , Ο λ experimental; ( ), BACK Equation; κ = ^0.9027; v = 0.5116. 2
In Equations of State in Engineering and Research; Chao, K., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
SIMNICK E T A L .
The BACK
Equation
of State
Downloaded by UNIV OF ARIZONA on December 6, 2012 | http://pubs.acs.org Publication Date: December 1, 1979 | doi: 10.1021/ba-1979-0182.ch012
12.
In Equations of State in Engineering and Research; Chao, K., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
229
In Equations of State in Engineering and Research; Chao, K., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
Downloaded by UNIV OF ARIZONA on December 6, 2012 | http://pubs.acs.org Publication Date: December 1, 1979 | doi: 10.1021/ba-1979-0182.ch012
to
CO
CO
*1
Ο
co
H Ο
>
M
fO
ο
12.
siMNiCK E T A L .
Discussion
and
The BACK
Equation
231
of State
Conclusion
E v e n t h o u g h the B A C K e q u a t i o n constants are m o l e c u l a r p r o p e r t i e s a n d are k n o w n f o r some m o l e c u l e s , w e p r e f e r to treat t h e m as e m p i r i c a l constants d e t e r m i n e d for the best
fitting
of t h e r m o d y n a m i c d a t a .
We
d o so because m o l e c u l a r p r o p e r t i e s g e n e r a l l y are n o t k n o w n w i t h a c c u r a c y . T h e constants thus o b t a i n e d correlate w i t h p r o p e r t i e s of t h e
fluid
t h a t are r e l a t e d c l o s e l y to m o l e c u l a r p r o p e r t i e s . T h e B A C K e q u a t i o n is c a p a b l e of a c c u r a t e l y d e s c r i b i n g t h e p h a s e e q u i l i b r i a of some p u r e fluids a n d m i x t u r e s . T h e a c c u r a c y appears t h e Downloaded by UNIV OF ARIZONA on December 6, 2012 | http://pubs.acs.org Publication Date: December 1, 1979 | doi: 10.1021/ba-1979-0182.ch012
best for fluids of g l o b u l a r m o l e c u l e s , b u t not q u i t e as g o o d for l o n g - c h a i n molecules.
N o r m a l octane seems to be s i g n i f i c a n t l y less w e l l fitted t h a n
the shorter chains a n d n - d e c a n e is e v e n w o r s e .
However,
even
the
r e l a t i v e l y p o o r a c c u r a c y here appears to b e s u p e r i o r to t h a t a t t a i n e d b y a n y other equations of state w h e n a p p l i e d to m i x t u r e s . Glossary
of
Symbols
c
= constant i n E q u a t i o n 5
K
= e q u i l i b r i u m ratio =
M
= i n d e x for E q u a t i o n 3
u n i v e r s a l constants i n E q u a t i o n 3 y/x
N
= index for E q u a t i o n 3
N
= mole fraction
R
= u n i v e r s a l gas constant
T
= absolute t e m p e r a t u r e
= volume fugacity fk — B o l t z m a n n ' s constant
V
P
= pressure
u
= interaction energy
χ = liquid-phase mole fraction y ζ
= vapor-phase mole fraction = compressibility
Greek Letters a =
s p h e r o c y l i n d e r constant i n E q u a t i o n 2
η =
constant f o r i n t e r a c t i o n energy t e m p e r a t u r e d e p e n d e n c e , Equation 6
κ=
interaction energy m i x i n g parameter
μ=
chemical potential
ν=
interaction volume-mixing parameter
φ=
f u g a c i t y coefficient
In Equations of State in Engineering and Research; Chao, K., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
232
EQUATIONS O F
£=
reduced volume, Equation 4
ρ=
density
ω
=
STATE
acentric factor
Subscripts c =
Downloaded by UNIV OF ARIZONA on December 6, 2012 | http://pubs.acs.org Publication Date: December 1, 1979 | doi: 10.1021/ba-1979-0182.ch012
j\ =
critical property component indices
G =
gas- or v a p o r - p h a s e p r o p e r t y
L =
liquid-phase property
m =
mixture property
r =
reduced property
Superscripts V = v a p o r - or gas-phase p r o p e r t y L = liquid-phase property h =
h a r d sphere
a == a t t r a c t i v e ° =
m o l e c u l a r p r o p e r t y , as i n V ° ,
u°/k
Acknowledgment F u n d s for this r e s e a r c h w e r e s u p p l i e d b y the E l e c t r i c P o w e r R e s e a r c h Institute t h r o u g h r e s e a r c h project R P - 3 6 7 .
Literature Cited 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12.
Chen, S. S.; Kreglewski, A. Ber. Bunsenges. 1977, 81(10), 1048. Boublik, T. J. Chem. Phys. 1975, 63(9), 4048. Alder, B. J.; Young, D. Α.; Mark, M. A. J. Chem. Phys. 1972, 56(6), 3013. Carnahan, N . F.; Starling, Κ. E. J. Chem. Phys. 1969, 51(6), 1184. Kreglewski, Α.; Chen, S. S. J. Chim. Phys. 1978, 75(4), 347. Das, T. R.; Reed, C. O.; Eubank, P. T. J. Chem. Eng. Data 1977, 22(1), 16. McCarty, R. D. "Hydrogen Technological Survey—Thermophysical Prop erties"; NASA Spec. Publ. 1975, 3089. Das, T. R.; Reed, C. O., Jr.; Eubank, P. T. J. Chem. Eng. Data, 1977, 22(1), 3. Ibid, p. 9. Young, S., "Pysico-Chemical Constants of Pure Organic Compounds," 2nd ed.; Timmermanns, J., Ed.; Elsevier: Amsterdam, 1950. Zwolinski, B. J., Ed. "Selected Values of Physical and Thermodynamic Properties of Hydrocarbons"; 1953-1977 API Research Project 44, Texas A&M University. Francis, A. Ind. Eng. Chem. 1957, 49(10), 1779.
In Equations of State in Engineering and Research; Chao, K., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
Downloaded by UNIV OF ARIZONA on December 6, 2012 | http://pubs.acs.org Publication Date: December 1, 1979 | doi: 10.1021/ba-1979-0182.ch012
12. SIMNICK ET AL.
The BACK Equation of State
233
13. Krase, N. W.; Goodman, J. B. Ind. Eng. Chem. 1930, 22(13), 13. 14. Zmaczynski, M . A. "Physico-Chemical Constants of Pure Organic Com pounds," 2nd ed.; Timmermanns, J., Ed.; Elsevier: Amsterdam, 1950; p. 151. 15. Griswold, J.; Andrea, D.; Klein, V. A. "Physico-Chemical Constants of Pure Organic Compounds," 2nd ed.; Timmermanns, J., Ed.; Elsevier: Amster dam, 1965; Vol. 2, p. 99. 16. School of Chemical Engineering, Purdue University, IN, unpublished data. 17. Glaser, F.; Ruland, H. Chem. Ing. Tech. 1957, 29, 772. 18. Wilson, G. M.; Silverberg, P. M.; Zellner, M . G. Adv. Cryog. Eng. 1965, 10, 192. 19. Wichterle, I.; Kobayashi, R. J. Chem. Eng. Data 1972, 17(1), 9. 20. Price, R. Α.; Kobayashi, R. J. Chem. Eng. Data 1959, 4(1), 40. 21. Elliot, D. G.; Chen, R. J. J.; Chappelear, P. S.; Kobayashi, R. J. Chem. Eng. Data 1974, 19(1), 71. 22. Karhre, L. C. J. Chem. Eng. Data 1974, 19(1), 67. 23. Sage, Β. H.; Hicks, B. L.; Lacey, W. N . Ind. Eng. Chem. 1940, 32(3), 1085. 24. Weise, H. C.; Jacobs, J.; Sage, Β. H. J. Chem. Eng. Data 1970, 15(1), 1970. 25. Roberts, L. R.; Wang, R. H.; Azarnoosh, Α.; McKetta, J. J. J. Chem. Eng. Data 1962, 7(4), 484. 26. Sage, B. H.; Budenholzer, R. Α.; Lacey, W. N . Ind. Eng. Chem. 1940, 32(9), 1262. 27. Gunn, D. D.; McKetta, J. J.; Ata, N. AIChE J. 1974, 20(2), 347. 28. GPA Tech. Publ. TP-4, "Low Temperature Data from Rice University for Vapor-Liquid and P-V-T Behavior," April, 1974. 29. Klink, A. E.; Cheh, H. Y.; Amick, Ε. H. AIChE J. 1975, 21 (6), 1142. 30. Connolly, J. F. J. Chem. Phys. 1962, 36(11), 2897. 31. Michels,A.;Levelt, J. M.; DeGraff, W. Physica 1958, XXIV, 659. 32. Gibbons, R. M.; Kuebler, G. P. "Research on Materials Essential to Cryocooler Technology—Thermophysical and Transport Properties of Argon, Neon, Nitrogen, and Helium-4"; 1968, AFML-TR-68-370. RECEIVED September 5, 1978.
In Equations of State in Engineering and Research; Chao, K., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.