1 The Catalytic Muffler
Downloaded via 5.8.47.215 on July 22, 2018 at 10:11:52 (UTC). See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles.
JAMES W E I Department of Chemical Engineering, University of Delaware, Newark, D e l . 19711
The catalytic
muffler represents
needs and research only effective cannot catalytic many
alternative
solutions
engine changes till the 1980's. This first
generation
muffler
pellet
by
has not been optimized
of experience Pioneering
our understanding
fail-safe
shallow
is the
challenged
effectively
improvements. and
society
pollution
years
further
solution
union of
This new technology
to automotive
be
through
a delightful
opportunity.
reliability,
and
of
(b)
is particularly
transport
beds and monoliths,
and reactors
for negative
transient
behavior
reactors.
and
through needed
to
design
modeling
(c) optimum order
and
tremendous
in (a) maintenance-free
catalysts
of
in design
is capable
research
today,
kinetics,
of
design
of
and
(d)
Τ η the f a l l of 1974 m i l l i o n s of cars t h a t w e n t o n sale w e r e e q u i p p e d A
w i t h o x i d i z i n g c a t a l y t i c converters to r e d u c e the emissions of c a r b o n
m o n o x i d e a n d h y d r o c a r b o n s ( 1 ). A r e d u c i n g c a t a l y t i c c o n v e r t e r f o r N O * m a y f o l l o w i n a f e w years. T h e terms " c a t a l y t i c m u f f l e r " a n d " c a t a l y t i c c o n v e r t e r " are sometimes u s e d i n t e r c h a n g e a b l y , w h i c h are s h o r t e n e d v e r sions for the m o r e c o m p r e h e n s i v e t e r m " K r a f t f a h r z e u g a b g a s e n t g i f t u n g s k a t a l y s a t o r . " H o w e v e r , the c a t a l y t i c muffler does n o t muffle engine noise a n d is l o c a t e d m u c h closer to the e n g i n e exhaust m a n i f o l d t h a n a r e g u l a r muffler. T h e r e are r e c e n t c o m p r e h e n s i v e r e v i e w s of t h e c a t a l y t i c muffler, c o v e r i n g b a c k g r o u n d , present t e c h n o l o g y , t h e r m o d y n a m i c s a n d k i n e t i c s , p h y s i c a l t r a n s p o r t processes, a n d d u r a b i l i t y (2, 3 ) .
T h e p u r p o s e of t h e
present r e v i e w is to concentrate o n the r e a c t i o n e n g i n e e r i n g a s p e c t s — a f e w past a c h i e v e m e n t s a n d a great m a n y u n s o l v e d p r o b l e m s . T h e C l e a n A i r A c t as a m e n d e d i n 1970 is the d r i v i n g force b e h i n d a n e w c h e m i c a l r e a c t i o n t e c h n o l o g y a n d the d e b u t of t h e c a t a l y t i c c o n v e r t e r as a n i t e m for mass c o n s u m p t i o n (4,5).
T h e conventional recipro-
1 Hulburt; Chemical Reaction Engineering Reviews Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
2
CHEMICAL
REACTION ENGINEERING
REVIEWS
e a t i n g s p a r k - i g n i t i o n gasoline e n g i n e c a n n o t m e e t t h e r e l a x e d f e d e r a l standards for 1975 m o d e l a u t o m o b i l e s i n C a l i f o r n i a w i t h o u t the use of the o x i d i z i n g c a t a l y t i c converter.
I n fact, the c a t a l y t i c c o n v e r t e r
l e a d to m o r e l e e w a y i n e n g i n e d e s i g n , w h i c h means u p to 2 0 %
will
improve-
m e n t i n v e h i c l e m i l e a g e p e r g a l l o n of gasoline a n d i n d r i v e a b i l i t y ( s u p p r e s s i o n of s t a l l i n g , h e s i t a t i o n , backfire, a n d other e n g i n e m a l f u n c t i o n s ) . T h e r e f o r e , the c a t a l y t i c c o n v e r t e r w a s i n s t a l l e d o n most 1975 m o d e l cars to m e e t the m o r e r e l a x e d f e d e r a l standards for the other 49 states. T h e d e b u t of the c a t a l y t i c converter is m a r r e d b y t w o controversies. G a s o l i n e n o r m a l l y contains 0 . 0 3 % less t h a n 1 %
sulfur b y weight, w h i c h contributes
of m a n - m a d e sources of s u l f u r i n the a i r . T h i s s u l f u r is
e m i t t e d as s u l f u r d i o x i d e i n t o the a t m o s p h e r e a n d is f u r t h e r o x i d i z e d to s u l f u r t r i o x i d e b y the c a t a l y t i c a c t i o n of m e t a l ions i n aerosols a n d b y sunlight (6).
T h e r e s u l t i n g s u l f u r i c a c i d a n d sulfates are
greater h e a l t h h a z a r d s t h a n s u l f u r d i o x i d e .
considered
T h e present a m b i e n t a i r
s t a n d a r d f o r s u l f u r d i o x i d e is 365 / x g / m , b u t the p r o p o s e d s t a n d a r d for 3
sulfates is 10 / x g / m . 3
input S 0
2
T h e catalytic converter oxidizes 1 0 - 3 0 %
of
the
to S 0 , w h i c h is o n l y a s m a l l a d d i t i o n a l b u r d e n w h e n p r o p e r l y 3
d i s p e r s e d ( 7 ) , b u t i t m a y give rise to h i g h l o c a l concentrations of sulfates a l o n g h e a v y traffic lanes. M u c h m o r e d e f i n i t i v e investigations are n e e d e d to d e t e r m i n e w h e t h e r the benefits of r e d u c i n g C O emission f r o m 30 to 3.4 g / m i l e , a n d h y d r o c a r b o n s f r o m 3.4 to 0.41 g / m i l e , is greater t h a n t h e h a r m of i n c r e a s i n g sulfate e m i s s i o n f r o m 0.001 to a p p r o x i m a t e l y 0.03 g / m i l e w h i l e r e c o g n i z i n g t h a t m u c h of the 0.16 g / m i l e e m i s s i o n of S 0
2
w o u l d o x i d i z e to sulfates i n the atmosphere later. T h e E n v i r o n m e n t a l P r o t e c t i o n A g e n c y is c o n t e m p l a t i n g a c o n t r o v e r s i a l v e h i c l e e m i s s i o n s t a n d a r d of sulfates at no m o r e t h a n 0.001 to 0.01 g / m i l e , w h i c h c o u l d l e a d to the d e m i s e of the c a t a l y t i c converter.
T h i s p r o p o s a l is c h a l l e n g e d b y t h e
F e d e r a l E n e r g y A d m i n i s t r a t i o n a n d the State of
California.
Existing
t e c h n o l o g y c a n save the c a t a l y t i c converter b y r e d u c i n g the s u l f u r c o n tent of gasoline, b y i m p r o v i n g the a b s o r p t i o n of sulfates i n the converter, a n d b y r e d u c i n g the excess a i r i n the converter to suppress S 0
3
forma-
t i o n , w i t h a cost increase. A n o t h e r source of c o n c e r n is the o u t s i d e s k i n t e m p e r a t u r e of the c a t a l y t i c converters, w h i c h m a y r e a c h 900° F after a h i l l c l i m b at f u l l t h r o t t l e . T h i s c o n v e r t e r t e m p e r a t u r e is o n l y
somewhat
h i g h e r t h a n a c o n v e n t i o n a l muffler at t h e same l o c a t i o n , a n d 400 degrees l o w e r t h a n t h a t r e a c h e d b y the exhaust m a n i f o l d of t h e engine, b u t t h e c o n v e r t e r is l o c a t e d closer to the g r o u n d a n d m a y cause fire a n d e x p l o s i o n o v e r t a l l grass a n d c o m b u s t i b l e s .
T h i s has l e d to the b a n n i n g of c a t a l y t i c
converters b y some o i l refineries a n d c h e m i c a l p l a n t s . A n e n g i n e c h a n g e is the o t h e r a p p r o a c h to m e e t the F e d e r a l s t a n d ards o n c a r b o n m o n o x i d e a n d h y d r o c a r b o n s
(8).
I t is f a r m o r e difficult
to m e e t the standards o n N O * . T h e d i e s e l engine emits smoke a n d o d o r
Hulburt; Chemical Reaction Engineering Reviews Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
1.
The Catalytic
WEI
a n d is 5 0 %
Muffler
3
l a r g e r a n d h e a v i e r t h a n the gasoline e n g i n e .
The rotary
e n g i n e is a l r e a d y i n mass p r o d u c t i o n f o r the s u b c o m p a c t M a z d a , w h i c h requires a thermal afterburner a n d provides a disappointing
gasoline
m i l e a g e . T h e stratified c h a r g e e n g i n e of H o n d a M o t o r s has s h o w n great p r o m i s e b u t needs p r o o f of d u r a b i l i t y . T h e r e are m a n y other i n t e r e s t i n g n e w engines i n the research a n d e a r l y d e v e l o p m e n t phase, i n c l u d i n g t h e steam engine, the S t i r l i n g e n g i n e , the R a n k i n engine, the gas t u r b i n e , t h e f u e l c e l l , a n d the storage b a t t e r y e l e c t r i c engines.
A l l have strong
p o i n t s , a n d a l l h a v e great weaknesses t h a t m u s t b e o v e r c o m e .
Experts
i n m a n u f a c t u r i n g e n g i n e e r i n g a n d i n customer service, w i t h i n a n d o u t side of the a u t o m o t i v e i n d u s t r y , b e l i e v e t h a t these engines cannot c a p t u r e a large p e r c e n t a g e of the t o t a l m a r k e t b e f o r e the 1980's. I n the r e m a i n d e r of this d e c a d e , the c h o i c e is a m o n g the c o n v e n t i o n a l e n g i n e w i t h t h e c a t a l y t i c converter, a n e n f o r c e d r e d u c t i o n of p e r m i s s i b l e v e h i c l e - m i l e a g e i n u r b a n areas, a n d a f u r t h e r r e d u c t i o n i n the standards of a m b i e n t a i r q u a l i t y . F o r the next d e c a d e , the best s o l u t i o n is the g o a l of a v i g o r o u s c o m p e t i t i o n b e t w e e n the investigators of n e w engines a n d the researchers of the c a t a l y t i c converter. P l a t i n u m a n d p a l l a d i u m are the a c t i v e i n g r e d i e n t s u s e d i n the first g e n e r a t i o n of c a t a l y t i c converters. I n one d e s i g n , these n o b l e metals are d e p o s i t e d o n 1 / 1 6 - to 1 / 8 - i n c h pellets of h i g h surface area a l u m i n a a n d placed i n a very shallow bed.
I n a n o t h e r d e s i g n , the n o b l e metals are
d e p o s i t e d o n a t h i n " w a s h c o a t " of a l u m i n a , w h i c h adheres to the w a l l s of c e r a m i c h o n e y c o m b m o n o l i t h s .
S i n c e space is at a p r e m i u m i n a n
a u t o m o b i l e , the r e a c t o r v o l u m e s h o u l d b e k e p t to a m i n i m u m so t h a t i t w i l l b e c o m p a c t e n o u g h to fit i n s i d e the a l r e a d y c r a m m e d e n g i n e h o o d , o r i t s h o u l d b e flat e n o u g h to fit u n d e r t h e f r o n t passenger's
seat.
T h e stated g o a l of the l a w is to m i n i m i z e emissions f r o m e a c h n e w c a r o v e r 50,000 m i l e s of use, subject to cost a n d r e l i a b i l i t y constraints. S i n c e u r b a n p o l l u t i o n is t h e m a i n target, the a u t h o r i z e d test c y c l e s i m u lates a n u r b a n c a r s t a r t i n g i n the m o r n i n g w i t h a c o l d e n g i n e a n d g o i n g t h r o u g h stop-and-go
traffic.
The
certification procedure
specifies
m a x i m u m p e r m i s s i b l e grams e m i s s i o n p e r m i l e t r a v e l e d , regardless
the of
a u t o m o b i l e w e i g h t or engine size.
(1) w h e r e m is the m o l e c u l a r w e i g h t of t h e p o l l u t a n t i n g / m o l e , F is
flow
r a t e of exhaust gas i n m o l e s / m i n , c is p o l l u t a n t c o n c e n t r a t i o n i n m o l e f r a c t i o n , a n d V is v e h i c l e s p e e d i n m i l e s / m i n . T h e c u r r e n t l y official C V S - C H p r o c e d u r e ( F e d e r a l C y c l e ) calls f o r a c y c l e f r o m a c o l d start, w i t h a r i g i d l y specified s c h e d u l e of v e h i c l e s p e e d as a f u n c t i o n of t i m e ,
Hulburt; Chemical Reaction Engineering Reviews Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
4
CHEMICAL
REACTION
ENGINEERING
REVIEWS
c o v e r i n g 7.5 m i l e s i n 22.9 m i n u t e s . T h i s is f o l l o w e d b y a s h u t d o w n for 10 m i n u t e s a n d a re-start a n d r e p e a t of the first 8.4 m i n u t e s of the c y c l e . T h e d y n a m i c r a n g e of the i n p u t v a r i a b l e s to the c a t a l y t i c c o n v e r t e r is i m p r e s s i v e . T h e t o p s p e e d a t t a i n e d i n the F e d e r a l C y c l e is 56.7 m p h a n d c a n b e c o n s i d e r a b l y h i g h e r i n r o a d use. T h e i n l e t gas t e m p e r a t u r e varies f r o m a m b i e n t to 1 2 0 0 ° F i n the C y c l e a n d m a y go u p to 1 8 0 0 ° F i n r o a d use.
T h e c h e m i c a l heat c o n t a i n e d i n t h e exhaust gas c a n
c o n s i d e r a b l e since e a c h m o l e p e r c e n t of C O y i e l d s 140° F
be
temperature
rise u p o n o x i d a t i o n . T h e flow rate of gases v a r y f r o m 10 S C F M d u r i n g e n g i n e i d l e to 100 S C F M d u r i n g r a p i d a c c e l e r a t i o n i n the C y c l e a n d m a y g o u p t o 200 S C F M i n r o a d use. T h e gaseous c o m p o s i t i o n c a n v a r y f r o m a n o x i d i z i n g c o n d i t i o n w i t h a l e a n a i r - t o - f u e l r a t i o to a r e d u c i n g c o n d i t i o n w i t h a r i c h r a t i o . A s e c o n d a r y a i r p u m p is often n e e d e d w i t h e n o u g h c a p a c i t y to ensure a net o x i d i z i n g atmosphere. c a n v a r y f r o m b e l o w 0 . 1 % to a b o v e 8 % .
The C O
concentration
U n d e r these c o n d i t i o n s , t h e
gas has a reactor residence t i m e of 10 to 200 msec, a n d a c o n v e r s i o n l e v e l of 8 0 - 9 0 %
is n e e d e d .
M a n y c o m b i n a t i o n s of catalyst f o r m u l a t i o n s a n d reactor c o n f i g u r a tions are a d e q u a t e
w h e n t h e y are n e w l y i n s t a l l e d . T h e
performance
deteriorates w i t h use, m a i n l y b e c a u s e of h i g h t e m p e r a t u r e a n d poisons. I n s t e a d of today's gasoline w i t h 3.0 g of l e a d p e r g a l l o n , s p e c i a l gasoline w i t h less t h a n 0.05 g of l e a d w o u l d b e n e e d e d to a v o i d e a r l y d e a c t i v a t i o n . T h i s " l e a d - f r e e " gasoline r e q u i r e s m o r e r e f i n i n g a n d a n a d d i t i o n a l cost of a b o u t 0 . 1 0 / g a l ( 9 ) a c c o r d i n g t o a n i n d e p e n d e n t s t u d y , b u t o i l i n d u s t r y estimates are h i g h e r t h a n 1 0 / g a l .
T h e c a t a l y t i c converter
occasionally
fails f r o m p h y s i c a l a t t r i t i o n of the catalyst s u p p o r t a n d m e c h a n i c a l f a i l u r e of the a u x i l i a r y e q u i p m e n t s . I n a f e w years the d o l l a r sale of a u t o m o t i v e catalysts m a y e x c e e d the c o m b i n e d sale of catalysts to the c h e m i c a l a n d p e t r o l e u m i n d u s t r i e s (10).
T h e a p p l i c a t i o n of r e a c t i o n e n g i n e e r i n g p r i n c i p l e s to this e m e r g i n g
t e c h n o l o g y is s t i l l i n its i n f a n c y .
T h e o p t i m u m d e s i g n of a n i n d u s t r i a l
r e a c t o r evolves after m a n y years of experience.
T h e r e is v i r t u a l l y n o
experience w i t h the c a t a l y t i c muffler, a n d there is t r e m e n d o u s r o o m f o r improvement.
T h e c a t a l y t i c c o n v e r t e r also presents f o u r n e w challenges
to the art a n d science of r e a c t i o n e n g i n e e r i n g , w h i c h calls for p i o n e e r i n g research: ( a ) I t is mass p r o d u c e d a n d p l a c e d d i r e c t l y i n the h a n d s of t h e c o n s u m i n g p u b l i c , w h o c a n n o t a n d p e r h a p s h a v e n o i n c e n t i v e to p r o v i d e m o n i t o r i n g a n d m a i n t e n a n c e . A m a i n t e n a n c e - f r e e d e s i g n w i t h fail-safe r e l i a b i l i t y is n e e d e d . ( b ) Pressure d r o p across the c a t a l y t i c c o n v e r t e r m u s t b e severely l i m i t e d , r e q u i r i n g the u n f a m i l i a r s h a l l o w p e l l e t b e d , the c e r a m i c m o n o l i t h , a n d the m e t a l l i c screens. T h e t r a n s p o r t p r o p e r t i e s a n d m o d e l i n g of these reactors n e e d i n t e n s i v e s t u d y .
Hulburt; Chemical Reaction Engineering Reviews Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
1.
WEI
The Catalytic
5
Muffler
( c ) T h e o x i d a t i o n of c a r b o n m o n o x i d e a n d h y d r o c a r b o n s o v e r p l a t i n u m a n d p a l l a d i u m exhibits a negative order kinetics. T h e o p t i m a l design of catalysts a n d reactors for s u c h k i n e t i c s s h o u l d be i n v e s t i g a t e d . ( d ) T h e p e r f o r m a n c e of the c a t a l y t i c converter is d e f i n e d o v e r a w i d e d y n a m i c r a n g e of i n p u t v a r i a b l e s a n d is d o m i n a t e d b y the first t w o m i n u t e s of transience f r o m a c o l d start of the engine. T h e t r a n s i e n t b e h a v i o r of converters s h o u l d b e better u n d e r s t o o d . T h e c a t a l y t i c muffler represents a d e l i g h t f u l u n i o n of society needs a n d research o p p o r t u n i t y . It deserves the a t t e n t i o n of some of the best talents i n our profession. Optimum
Policy
T h e o v e r a l l g o a l of the F e d e r a l C l e a n A i r A c t s h o u l d b e the best tradeoff b e t w e e n the benefits f r o m a decrease i n a i r p o l l u t i o n a n d the costs to the p u b l i c . L a w m a k e r s n e e d to h a v e t h e i r v i e w s b r o a d e n e d b y a r a n g e of p r o p o s e d p o l i c y alternatives, a n d t h e y n e e d to k n o w the p o s i t i v e a n d n e g a t i v e consequences of e a c h a l t e r n a t i v e . W i t h o u t the i n p u t s f r o m m a n y w e l l - i n f o r m e d , u n b i a s e d , a n d a b l y a r g u e d p o s i t i o n papers r e p r e s e n t i n g the t e c h n i c a l p o i n t of v i e w , the p u b l i c l a w s e n a c t e d m a y t u r n o u t to b e
w a s t e f u l , o b s t r u c t i v e , or c o u n t e r - p r o d u c t i v e .
The
optimal
d e s i g n of a set of p u b l i c l a w s , a i m e d at r e d u c i n g p o l l u t i o n at m i n i m u m cost to the n a t i o n , s h o u l d b e a h i g h o r d e r of business. R e a c t i o n engineers w h o s e l d o m v e n t u r e i n t o the c a l c u l u s of costs a n d benefits a n d i n t o the f o r m u l a t i o n of the o p t i m u m p o l i c y c o u l d p e r f o r m a n o t h e r
important
d u t y as experts a n d c o n c e r n e d citizens. A m b i e n t a i r q u a l i t y d e p e n d s o n the average e m i s s i o n p e r car a n d t h e t o t a l v e h i c l e m i l e a g e . I t does not seem reasonable to f o r b i d the sale of a v e h i c l e t h a t emits m o r e t h a n 9.0 g / m i l e of C O a n d to a c c e p t w i t h e q u a l pleasure t w o v e h i c l e s e m i t t i n g 1.0 a n d 8.9 g / m i l e . S u c h a l a w w i l l l e a d to the f o l l o w i n g d i s t o r t i o n s : e n c o u r a g i n g a d e s i g n for 8.9
g/mile,
w i t h a l l o w a n c e s f o r the v a r i a b i l i t y i n m a n u f a c t u r i n g q u a l i t y c o n t r o l a n d i n v e h i c l e testing e x p e r i m e n t a l scatter; c o n d e m n i n g to a j u n k y a r d a n automobile
t h a t emits 9.1 g / m i l e ; g i v i n g n o i n c e n t i v e to
l e a d i n g to v e r y l o w e m i s s i o n cars.
innovations
I n s t e a d , a l a w t h a t sets a p e n a l t y
t h a t is a c o n t i n u o u s a n d r a p i d l y i n c r e a s i n g f u n c t i o n of e m i s s i o n , c o u p l e d w i t h a p o s i t i v e r e w a r d for v e r y l o w e m i s s i o n , w o u l d i n d u c e the m a n u facturers to p r o d u c e better cars. I n a r e m a r k a b l e a r t i c l e , S h i n n a r a r g u e d t h a t to o b t a i n the h i g h e s t a i r q u a l i t y , the e m i s s i o n standards m u s t n o t b e set too l o w ( l i ) .
An
e m i s s i o n s t a n d a r d t h a t is too stringent w o u l d b e self-defeating since i t r e q u i r e s a n elaborate e n g i n e d e s i g n t h a t is m o r e p r o n e to f a i l u r e .
A
converter f a i l u r e m a y b r i n g a n e m i s s i o n t h a t is 1 0 - 2 0 times the a l l o w e d l i m i t . I f 5 % of the a u t o m o b i l e s o n the r o a d h a v e f a i l e d converters t h a t are not y e t d e t e c t e d a n d c o r r e c t e d , t h e n t h e a m b i e n t a i r q u a l i t y is d o m i -
Hulburt; Chemical Reaction Engineering Reviews Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
6
CHEMICAL
REACTION ENGINEERING
REVIEWS
n a t e d b y t h e f a i l u r e rate. A m o r e s t r i n g e n t s t a n d a r d w o u l d l e a d to a h i g h e r f a i l u r e rate a n d d i r t i e r a i r . T h e r e are also m a n y r e l a t e d areas w h e r e r e a c t i o n engineers offer t h e i r t i m e a n d t a l e n t as c o n c e r n e d
citizens.
could
F o r instance,
why
s h o u l d the a i r q u a l i t y s t a n d a r d f o r C O s p e c i f y t h a t a n y w h e r e i n the U n i t e d States a n 8-hr average c o n c e n t r a t i o n of 9 p p m b y v o l u m e s h o u l d n o t o c c u r m o r e t h a n o n c e a year?
W h y s h o u l d the s t a n d a r d of
auto-
m o b i l e emissions, t a i l o r e d to c u r e u r b a n i l l s , b e i m p o s e d o n r u r a l d r i v e r s ? S i n c e 15 p p m is g o o d e n o u g h for h e a l t h y persons, w o u l d i t not b e sensible t o relocate h e a r t disease patients a w a y f r o m center c i t y ? T h e task of c u r b i n g a u t o m o b i l e
pollutants cannot
be
ended
by
r e g u l a t i n g o n l y the a u t o m o b i l e m a n u f a c t u r e r s . T h e r e is no c u r r e n t f e d e r a l l a w to r e q u i r e the p e r i o d i c i n s p e c t i o n a n d m a i n t e n a n c e of v e h i c l e s i n use.
I n the c h e m i c a l i n d u s t r y , a c a t a l y t i c reactor is often a m u l t i -
m i l l i o n d o l l a r i n v e s t m e n t t h a t is d e s i g n e d a n d c o n s t r u c t e d w i t h the exp e n d i t u r e of
many
engineering
man-hours.
To
m a x i m i z e profit,
an
i n d u s t r i a l r e a c t o r is m o n i t o r e d b y m a n y m e a s u r i n g a n d r e c o r d i n g i n s t r u m e n t s , u n d e r the w a t c h f u l eyes of p l a n t engineers r e a d y to m a k e c o r r e c t i v e measures.
I n contrast, the c a t a l y t i c muffler w i t h its accessories
has
a r e t a i l v a l u e of p e r h a p s $150 a n d is d e s i g n e d a n d c o n s t r u c t e d for the d a i l y use of the g e n e r a l p u b l i c .
T h e continued performance
of
the
c a t a l y t i c c o n v e r t e r m a y b e a m a t t e r of indifference to the average m o t o r i s t , w h o i n a n y case has n e i t h e r the i n s t r u m e n t a t i o n n o r the s k i l l to i n s p e c t a n d to m a i n t a i n .
T h e c a t a l y t i c muffler needs to b e f a i l u r e - p r o o f for 3
to 5 years w i t h o u t a t t e n t i o n — a feature n o t s h a r e d b y a n y
automobile
accessory. I t has b e e n p r o p o s e d t h a t the l a c k of m o t i v a t i o n to r e p a i r a m a l f u n c t i o n i n g c a t a l y t i c muffler m a y b e a u g m e n t e d b y the i n s t a l l a t i o n of a d e v i c e that emits l o u d noises w h i c h c a n n o t b e s i l e n c e d t i l l the c a t a l y t i c muffler is r e p a i r e d .
T h i s s o l u t i o n is s t i l l i n a d e q u a t e since the r e p a i r
service i n d u s t r y has n o t y e t b e e n o r g a n i z e d .
T h o u s a n d s of
mechanics
m u s t b e t r a i n e d to diagnose a n d to r e p a i r the v a r i o u s types of c a t a l y t i c mufflers, thousands of d i a g n o s t i c i n s t r u m e n t s m u s t b e mass
produced
a n d d i s t r i b u t e d , m i l l i o n s of spare parts m u s t b e p r o d u c e d a n d s t o c k p i l e d i n n u m e r o u s warehouses
(12).
T h e s e tasks h a v e n o t yet b e g u n .
Public
l a w is too serious a business to b e left to the l a w y e r s alone. Unusual
Catalytic
Beds
B e c a u s e of the concerns for engine p e r f o r m a n c e a n d f u e l e c o n o m y , the pressure d r o p across the c a t a l y t i c muffler m u s t b e k e p t to the m i n i mum.
T h e h i g h e s t pressure d r o p occurs o n w i d e - o p e n throttle e n g i n e
operations w h e n the exhaust gas flow rate a n d t e m p e r a t u r e are at the maximum.
A pressure d r o p of 5 - 8 inches of w a t e r is r e g a r d e d as the
Hulburt; Chemical Reaction Engineering Reviews Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
1.
WEI
The Catalytic
7
Muffler
u p p e r l i m i t of a c c e p t a b i l i t y . T h i s r e q u i r e m e n t has l e d to the d e v e l o p m e n t of v e r y s h a l l o w p a c k e d b e d s a n d m o n o l i t h s . Shallow Packed Beds.
T h e c u r r e n t d e s i g n of p a c k e d b e d s
have
" p a n c a k e " aspect ratios, t y p i c a l l y 1-2 inches d e e p w i t h a cross-sectional a r e a of some 100 square inches.
S i n c e the pellets h a v e a d i a m e t e r of
1/16 to 1 / 8 i n c h , this means a b e d of 10 to 20 layers of p a r t i c l e s , w h i c h is a r a d i c a l d e p a r t u r e f r o m i n d u s t r i a l b e d s of h u n d r e d s or thousands of layers.
Pressure d r o p r e q u i r e m e n t s h a v e also l e d to t h e
development
of a n u m b e r of r a d i a l - f l o w reactors, w h e r e the catalysts are p l a c e d i n the a n n u l u s of t w o c o n c e n t r i c c y l i n d e r s a n d w h e r e the gas flows i n a d i r e c t i o n p a r a l l e l to the r a d i u s a n d transverse to the axis of the c y l i n d e r s Figure 1).
S i n c e b o t h a x i a l - f l o w a n d r a d i a l - f l o w reactors w i l l b e
(see con-
s i d e r e d , the t w o d i r e c t i o n s i n the reactor w i l l b e r e f e r r e d to as the " l o n g i t u d i n a l " a n d the " t r a n s v e r s e " d i r e c t i o n s to a v o i d c o n f u s i o n .
Figure
I.
Shallow pellet beds and
monoliths
W h e n a p a c k e d b e d is less t h a n 50 p a r t i c l e s d e e p , a step s i g n a l c r e a t e d b y a s u d d e n c h a n g e i n i n l e t c o n c e n t r a t i o n spreads as i t travels t h r o u g h the b e d
(13).
T h e l o n g i t u d i n a l s p r e a d i n g of a
s i g n a l is c o n s i d e r a b l y stronger (14, 15).
temperature
T h e s e m o d i f i c a t i o n s to the c o n -
c e n t r a t i o n a n d t e m p e r a t u r e profiles h a v e a s t r o n g effect o n the r e a c t o r performance.
D i s p e r s i o n of mass i n the transverse d i r e c t i o n is u n i m p o r -
tant i n a c a t a l y t i c muffler since the side w a l l s are i m p e r v i o u s a n d n o n c a t a l y t i c . T r a n s v e r s e d i s p e r s i o n of heat is i n s i g n i f i c a n t for the short a n d fat " p a n c a k e " reactors w h i c h a p p r o a c h a d i a b a t i c c o n d i t i o n s b u t is m o r e i m p o r t a n t f o r the l o n g a n d s l i m " c i g a r s " reactors.
Theories and experi-
Hulburt; Chemical Reaction Engineering Reviews Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
8
CHEMICAL
REACTION ENGINEERING
REVIEWS
merits o n the m o d e l i n g of s u c h s h a l l o w p a c k e d b e d s u n d e r d y n a m i c c o n d i t i o n s are not w e l l
developed.
U s i n g the t e r m i n o l o g y of F r o m e n t , the m i n i m u m m o d e l to use is the
Pseudo-Homogeneous
Α.
II, where
i m p o s e d o n a p i s t o n flow r e a c t o r
l o n g i t u d i n a l dispersions
are
(16):
(2) λ -7-2 -
u{ c ) P
p
gas -τ-
+ Η · R =
0
T h e gases flow t h r o u g h a n exhaust p i p e of 2 to 3 inches i n d i a m e t e r i n a p u l s a t i n g flow, w i t h a f r e q u e n c y e q u a l to h a l f of the r p m of the e n g i n e , m u l t i p l i e d b y the n u m b e r of c y l i n d e r s a n d d i v i d e d b y the n u m b e r of converters. A r a p i d l y e x p a n d i n g cone connects the exhaust p i p e w i t h the c a t a l y t i c b e d of some 100 square inches i n cross-sectional area, a n d a s i m i l a r c o n t r a c t i o n cone gathers the exit gas i n t o a n exhaust p i p e . exhaust gas
flow
The
is t u r b u l e n t i n the exhaust p i p e u p s t r e a m f r o m
c a t a l y t i c b e d , w i t h a R e y n o l d s n u m b e r of 5000-80,000.
the
The Danckwerts
b o u n d a r y c o n d i t i o n s m a y b e i n a p p r o p r i a t e since l o n g i t u d i n a l dispersions of mass a n d heat o c c u r o u t s i d e of the reactor i n a n u n k n o w n m a n n e r . I n s i d e the p a c k e d b e d the R e y n o l d s n u m b e r of the gaseous
flow
i n the F e d e r a l C y c l e is f r o m 10 to 200, a n d the l o n g i t u d i n a l P e c l e t n u m b e r , w d p / D , f o r mass is almost constant at the v a l u e of 2 ( 1 3 ) .
T h i s is
v e r y f o r t u n a t e since one c a n t h e n use the same fixed P e c l e t n u m b e r at a l l flow rates. O n the other h a n d , the l o n g i t u d i n a l P e c l e t n u m b e r for heat, w d p ( p c ) g a s / A , is a p p r o x i m a t e l y constant w i t h a v a l u e of 0.3 p
(15).
T h i s s e v e n f o l d difference i n the values of mass a n d heat l o n g i t u d i n a l d i s p e r s i o n c o m p l i c a t e s the c o m p u t a t i o n s . The
Pseudo-Homogeneous
Cascade
model
is a g o o d d e a l
more
a m e n a b l e to n u m e r i c a l c o m p u t a t i o n . u ( C i _ i — Ci) — R = ( p c ) , u ( T . i - r ) + Rp
4
4
0
i = ο to Ν
H = 0
W h e n the n u m b e r of cells i n the C a s c a d e is chosen to b e Ν =
(3)
wL/2D,
the d i s t r i b u t i o n of gaseous r e s i d e n c e times is v e r y s i m i l a r b e t w e e n the t w o m o d e l s p r o v i d e d t h a t Ν is greater t h a n 10. T h e r e f o r e to s i m u l a t e mass d i s p e r s i o n w h e n the l o n g i t u d i n a l P e c l e t n u m b e r is 2, Ν s h o u l d b e chosen to e q u a l L/dp, or e a c h c e l l s h o u l d consist of one l a y e r of catalyst i n the b e d . O n the other h a n d , to s i m u l a t e t e m p e r a t u r e d i s p e r s i o n w h e n the l o n g i t u d i n a l P e c l e t n u m b e r f o r heat is 0.3, Ν s h o u l d b e c h o s e n to e q u a l L/7d
p>
or e a c h c e l l s h o u l d consist of seven layers. F o r t y p i c a l
Hulburt; Chemical Reaction Engineering Reviews Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
1.
WEI
The Catalytic
b e d s w h e r e L/d
9
Muffler
is a b o u t 15, Ν s h o u l d b e e q u a l to 15 o r 2, d e p e n d i n g
p
o n w h e t h e r mass d i s p e r s i o n o r heat d i s p e r s i o n s h o u l d b e e m p h a s i z e d . W i t h s u c h a s m a l l v a l u e of N, t h e a n a l o g y b e t w e e n t h e D i s p e r s e d P l u g F l o w a n d C a s c a d e m o d e l breaks d o w n . C a u g h t b e t w e e n these t w o r e q u i r e m e n t s , o n e m i g h t a r g u e t h a t a n a c c u r a t e e v a l u a t i o n o f h e a t d i s p e r s i o n is m o r e i m p o r t a n t t h a n a n a c c u r a t e e v a l u a t e o f mass d i s p e r s i o n b e c a u s e o f t h e A r r h e n i u s expression f o r r e a c t i o n rate. T o b e m o r e precise, w e c a n define t h e r e l a t i v e s e n s i t i v i t y o f the r e a c t i o n rate to a p e r c e n t a g e change i n t e m p e r a t u r e c o m p a r e d w i t h a percentage change i n concentration as: ~
dR
. dR
d\nT when
dine
7
(4)
R = f(c)e-* '
/R T
_Q_ RT g
din/ dine
1
I f t h e r e a c t i o n rate is a s i m p l e n - t h o r d e r , din/ dine so t h a t S =
Q/R T g
= η
· 1 / n a n d has a v a l u e of a b o u t 20 f o r η < 1. I t is
justified to choose Ν a c c o r d i n g to t h e needs f o r t h e r m a l d i s p e r s i o n . T h e best v a l u e f o r iV w a s d e t e r m i n e d b y a set of transient e x p e r i m e n t s t o b e 2V =
( L / d p ) x ( 1 / 3 ) , o r e a c h c e l l s h o u l d consist of three layers of c a t a
lysts (17, 18).
E x p e r i m e n t a l values of t h e l o n g i t u d i n a l d i s p e r s i o n i n a
r a d i a l - f l o w reactor w e r e p u b l i s h e d b y H l a v a c e k et al. (19, 20). T h e Heterogeneous
C a s c a d e m o d e l is also u s e d f o r this p r o b l e m ,
w h e r e t h e t e m p e r a t u r e a n d c o n c e n t r a t i o n of t h e s o l i d a n d gas phases are a l l o w e d to b e different.
D i s p e r s i o n is r e l a t e d t o t h e gas t o s o l i d
transfer coefficients as w e l l as to N. ^(Ti.^
— Tf) = ha(Ti
g
— Ti ) +H
(5)
·R
s
H o w e v e r , t h e rates of mass a n d h e a t transfer b e t w e e n t h e s o l i d a n d t h e gas a r e n o t p r o p o r t i o n a l to gaseous flow rates. T h e j
H
and j
D
factors v a r y
a p p r o x i m a t e l y as —0.5 p o w e r of the R e y n o l d s n u m b e r so t h a t N u a n d S h v a r y as 0.5 p o w e r o f R e y n o l d s n u m b e r , l e a d i n g t o transference u n i t s t h a t v a r y w i t h —0.5 p o w e r o f R e y n o l d s n u m b e r .
Hulburt; Chemical Reaction Engineering Reviews Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
10
CHEMICAL
REACTION ENGINEERING
REVIEWS
A l l the a b o v e t h e o r e t i c a l m o d e l s assume u n i f o r m flow d i s t r i b u t i o n s . I n p r a c t i c e , c h a n n e l i n g c o u l d b e a p r o b l e m i n v i e w of the s u d d e n e x p a n s i o n a n d c o n t r a c t i o n i n gas
flow.
I t c o u l d b e r e m e d i e d b y j u d i c i o u s use of
baffles a n d deflectors, at t h e expense of i n c r e a s e d pressure d r o p . T h e r m a l r a d i a t i o n effects are v e r y i m p o r t a n t for the " p a n c a k e " d e s i g n . Monolithic Catalytic Beds. A b u n d l e of p a r a l l e l tubes offers m u c h less resistance to a i r flow t h a n a r a n d o m p a c k e d b e d of spheres since the flow
does n o t h a v e to c h a n g e d i r e c t i o n r e p e a t e d l y a n d to s p l i t u p a n d
r e j o i n a r o u n d e a c h sphere.
T h e c e r a m i c m o n o l i t h is a n i n t e g r a l b u n d l e
of tubes w i t h a v a r i e t y of cross-sectional shapes i n c l u d i n g the c i r c l e , the h e x a g o n , t h e square, the e q u i l a t e r a l t r i a n g l e , a n d the s i n u s o i d . I n one process a m i x t u r e of fibers a n d c e r a m i c m a t e r i a l is e x t r u d e d f r o m a d i e a n d t h e n fired i n a k i l n . I n a n o t h e r process the m a t e r i a l is f o r m e d i n t o a l t e r n a t i n g sheets of flat a n d c o r r u g a t e d layers, a r r a n g e d i n t o a stack, a n d t h e n fired i n a k i l n .
S i n c e these c e r a m i c p r o d u c t s h a v e too
little
surface area to s u p p o r t a n d to disperse catalysts, a h i g h surface area a l u m i n a is d e p o s i t e d o n the t u b e surface as a " w a s h coat." A n u m b e r of o p e n m e t a l l i c catalyst s u p p o r t s h a v e also b e e n d e v e l o p e d i n the f o r m of o p e n - m e s h a n d r e i n f o r c e d w i r e structures a n d staggered layers of t a l l i c screens or saddles.
me-
T h e pressure d r o p t h r o u g h the m o n o l i t h s a n d
m e t a l l i c screens tends to b e l o w e r so t h a t these c a t a l y t i c b e d s m a y h a v e " c i g a r " aspect ratios, t y p i c a l l y 3 - 5 inches i n d i a m e t e r a n d 2 - 9 i n c h e s i n length. A t y p i c a l m o n o l i t h u s e d i n c a t a l y t i c mufflers has a c h a n n e l d i a m e t e r of 0.05 i n c h , a w a l l thickness of 0.01 i n c h , a n d a w a s h c o a t thickness of 0.001 i n c h w h e r e the a c t i v e p r e c i o u s metals are d e p o s i t e d . It is c o n t a i n e d i n a stainless steel c y l i n d e r 5 inches i n d i a m e t e r a n d 5 inches l o n g , c o n n e c t e d to the 2 % - i n c h exhaust p i p e s b y short cones.
Gas
flow
rates
g e n e r a t e d d u r i n g the F e d e r a l C y c l e w o u l d give R e y n o l d s n u m b e r r a n g i n g f r o m 20 to 400, w h i c h leads to a s t r e a m l i n e flow at a l l times e x c e p t p e r haps at the f r o n t o p e n i n g of the c h a n n e l w h e r e the gas m a y s t i l l
be
t u r b u l e n t . A great d e a l of c h a n n e l i n g takes p l a c e i n the m o n o l i t h , i n d u c e d b y the r a p i d l y e x p a n d i n g a n d c o n t r a c t i n g cones. T h e flow rate is m a n y times greater at the center of the axis, c a u s i n g faster w a r m u p f r o m a c o l d start, faster a g i n g , a n d l o w e r c o n v e r s i o n efficiency.
This channeling can
b e r e d u c e d b y u s i n g flow deflectors u p s t r e a m i n the e x p a n s i o n cone, w i t h a s i m u l t a n e o u s increase i n pressure d r o p . b e e n t r i e d a n d r e p o r t e d i n the l i t e r a t u r e (21,
A n u m b e r of devices
have
22).
T h e rates of mass a n d h e a t transfer f r o m gases i n s t r e a m l i n e
flow
to the w a l l s h a v e b e e n i n v e s t i g a t e d b y m a n y p e o p l e b e g i n n i n g w i t h G r a e t z a n d N u s s e l t , often i n c o n n e c t i o n w i t h the d e s i g n a n d o p e r a t i o n of c o m p a c t h e a t exchangers (23).
T h e rate of h e a t transfer is i m p o r t a n t
d u r i n g the w a r m u p , a n d also d u r i n g d e s t r u c t i v e o v e r h e a t i n g of the m o n o -
Hulburt; Chemical Reaction Engineering Reviews Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
1.
WEI
The Catalytic
Muffler
11
l i t h at h i g h t e m p e r a t u r e operations. T h e e a r l y t h e o r e t i c a l solutions c o n sider c i r c u l a r c h a n n e l s w i t h f u l l y d e v e l o p e d v e l o c i t y profiles, n e g l e c t i n g l o n g i t u d i n a l d i s p e r s i o n i n the gas phase a n d r a d i a l c o n d u c t i o n i n the s o l i d phase.
(7) u(r)
=2m(1
-r7r
0
2
)
T h e s o l u t i o n is (8)
w h e r e the eigenvalues are β
0
=
2.705, β
χ
=
6.667, β
2
=
10.67, etc. a n d
the e i g e n f u n c t i o n ψ has i zeros a c c o r d i n g to the S t u r m i a n o s c i l l a t i o n {
t h e o r e m . W h e n χ is sufficiently large, a l l the terms i n the series b e c o m e insignificant c o m p a r e d w i t h the first t e r m , a n d the r a d i a l t e m p e r a t u r e profile reaches constant shape. It is c u s t o m a r y to define a heat transfer coefficient, h, i n terms of the m i x i n g c u p average t e m p e r a t u r e of gas a n d to c o m p u t e the N u s s e l t n u m b e r N u =
hd/λ.
the
A t the e n t r a n c e
of the c h a n n e l , the h i g h e r terms c o n t r i b u t e to a v e r y large v a l u e of N u ; w h e n the v a l u e of x/d · R e · P r > 0.05, N u reaches the a s y m p t o t i c v a l u e g o v e r n e d b y the e i g e n f u n c t i o n ψ alone. T h e s e solutions w e r e e x t e n d e d 0
to channels w i t h a p l u g flow e n t r a n c e a n d a d e v e l o p i n g v e l o c i t y profile. T h e t w o b o u n d a r y c o n d i t i o n s often u s e d are constant w a l l t e m p e r a t u r e a n d constant w a l l flux. T h e v a l u e of N u for d e v e l o p i n g flow a n d constant heat flux is greater t h a n N u for d e v e l o p i n g flow a n d constant w a l l t e m p e r a t u r e , w h i c h is i n t u r n greater t h a n N u for d e v e l o p e d flow a n d c o n stant w a l l t e m p e r a t u r e . T h e a s y m p t o t i c N u s s e l t n u m b e r s are i n d e p e n d e n t of the c h a n n e l d i a m e t e r or the R e y n o l d s n u m b e r .
W h e n the R e y n o l d s
n u m b e r is i n c r e a s e d , the o n l y effect is to l e n g t h e n the entrance r e g i o n of e n h a n c e d N u s s e l t n u m b e r . I n the c a t a l y t i c muffler, the l e n g t h of the e n h a n c e d r e g i o n is at most 0.7 i n c h vs. the c h a n n e l l e n g t h of 3 - 5 i n c h e s . T h e c o m p u t a t i o n of the G r a e t z - N u s s e l t p r o b l e m w a s e x t e n d e d
to
i n c l u d e a large v a r i e t y of c h a n n e l geometries, u s u a l l y r e q u i r i n g n u m e r i c a l t e c h n i q u e s . T h e a s y m p t o t i c N u s s e l t n u m b e r s w e r e the goals, a n d v e l o c i t y profiles w e r e sometimes o b t a i n e d . T h e d i a m e t e r , d, u s e d i n the d e f i n i t i o n of the N u s s e l t n u m b e r b e c o m e s the h y d r a u l i c d i a m e t e r , or f o u r times c h a n n e l cross-sectional area d i v i d e d b y the w e t t e d p e r i m e t e r . solutions are s u m m a r i z e d b y K a y s a n d L o n d o n (24) L o n d o n (25).
These
and by Shah and
T h e y r a n g e f r o m 2.5 for s i n u s o i d a l c h a n n e l s to 7.5 f o r
p a r a l l e l plates. T h e f u l l y d e v e l o p e d v e l o c i t y field i n sinusoids w a s s o l v e d b y S h e r o n y a n d S o l b r i g (26).
S c h o e n h e r r et al. h a v e s h o w n t h a t t r i -
Hulburt; Chemical Reaction Engineering Reviews Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
12
CHEMICAL
REACTION ENGINEERING
REVIEWS
a n g u l a r a n d s i n u s o i d a l c h a n n e l s h a v e stagnant corners w h e r e the l o c a l heat transfer coefficient a l m o s t drops to z e r o
(27).
T h e r e is l i t t l e e x p e r i m e n t a l c o n f i r m a t i o n of these i n the l i t e r a t u r e . F o r the c a t a l y t i c muffler, the c o n d i t i o n s of these c a l c u l a t i o n s are n o t f u l f i l l e d : there is t u r b u l e n c e at the entrance of the c h a n n e l , a n d the w a l l is n e i t h e r at constant t e m p e r a t u r e n o r possesses constant h e a t flux. H e c k et al. h a v e a p a p e r i n this s y m p o s i u m , m e a s u r i n g the e x p e r i m e n t a l t e m p e r a t u r e profiles of a m o n o l i t h u n d e r w a r m u p c o n d i t i o n s (28).
They
f o u n d that the average N u s s e l t n u m b e r is a m i l d l y i n c r e a s i n g f u n c t i o n of the R e y n o l d s n u m b e r a n d falls b e t w e e n the a s y m p t o t i c values for constant w a l l t e m p e r a t u r e a n d for constant w a l l
flux.
The radial tem-
p e r a t u r e g r a d i e n t is n e g l i g i b l e . T h e entrance r e g i o n of d e v e l o p i n g t h e r m a l b o u n d a r y l a y e r is l o n g e r t h a n e x p e c t e d , p o s s i b l y because of entrance t u r b u l e n c e . K o c h s t u d i e d mass t r a n s p o r t i n m o n o l i t h s of v a r i o u s lengths b y e t h y l e n e o x i d a t i o n (29).
H e f o u n d g o o d agreement b e t w e e n his d a t a
a n d t h e f u l l y d e v e l o p e d l a m i n a r flow t h e o r y w h e n the t e m p e r a t u r e is sufficiently h i g h a n d mass t r a n s p o r t is rate l i m i t i n g . T h e m o n o l i t h u n d e r present muffler d e s i g n is v e r y s e l d o m u n d e r mass transfer l i m i t i n g c o n d i t i o n s , except for t u r n p i k e d r i v i n g c o n d i t i o n s w i t h v e r y h i g h s p e e d gas flow a n d f u l l y w a r m e d catalysts. A s s u m i n g a n i n f i n i t e l y fast k i n e t i c s , the exit c o n c e n t r a t i o n f r o m a m o n o l i t h is g i v e n b y
(9)
W h e n 9 0 % c o n v e r s i o n is d e s i r e d , the v a l u e n e e d e d for T U is 2.3.
The
v a l u e of the S h e r w o o d n u m b e r m a y b e a s s u m e d e q u a l to the N u s s e l t number.
U n d e r r e a c t i o n c o n d i t i o n s , the S c h m i d t n u m b e r is 0.23
h y d r o g e n , 0.81 for C O , a n d 1.60 for b e n z e n e .
for
A typical monolith with
0.05-inch c h a n n e l d i a m e t e r a n d 5 - i n c h l e n g t h has a v a l u e of 260 for T h u s e v e n w i t h the m o s t u n f a v o r a b l e c h a n n e l g e o m e t r y a n d S h = w e w o u l d b e mass t r a n s p o r t l i m i t e d o n l y w h e n R e =
ah. 2.5,
180, at the u p p e r
e n d r e a c h e d i n the F e d e r a l C y c l e . H o w e v e r , g o o d h e a t transfer is n e e d e d i n the w a r m u p p e r i o d f r o m a c o l d start. T h e m o d e l i n g of s i m u l t a n e o u s mass a n d heat t r a n s p o r t a n d c h e m i c a l r e a c t i o n o n c a t a l y t i c w a l l s m a y b e a p p r o x i m a t e d b y the
Heterogeneous
B . I m o d e l of F r o m e n t . T h e p r o b l e m is q u i t e c o m p l e x a n d c a n b e s o l v e d o n l y b y n u m e r i c a l t e c h n i q u e s e v e n i f the N u s s e l t n u m b e r is a s s u m e d constant t h r o u g h o u t the c h a n n e l l e n g t h . W h e n the r a d i a l g r a d i e n t i n the gas phase is also t a k e n i n t o account, w e a r r i v e at a m o d e l t h a t is n o t i n the classification scheme of F r o m e n t .
U n d e r isothermal conditions,
this p r o b l e m was t a c k l e d b y K a t z , b y S o l o m o n a n d H u d s o n , a n d b y L u p a a n d D r a n o f f , u s i n g e i g e n f u n c t i o n e x p a n s i o n (30, 31, 32).
These methods
Hulburt; Chemical Reaction Engineering Reviews Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
1.
WEI
The Catalytic
13
Muffler
are n o t w i d e l y u s e d since the c a t a l y t i c muffler channels are not i s o Y o u n g a n d F i n l a y s o n s o l v e d this p r o b l e m b y u s i n g n u m e r i c a l i n t e g r a t i o n , and b y orthogonal collocation methods
(33).
T h e y discovered that a
spot m a y d e v e l o p o n the w a l l to i g n i t e the r e a c t i o n , a n d to rejuvenate the N u s s e l t n u m b e r for a short l e n g t h . I f the w a l l flux s u d d e n l y switches f r o m n e g a t i v e to p o s i t i v e , the N u s s e l t n u m b e r c a n d e c l i n e r a p i d l y to n e g a t i v e infinity a n d r e t u r n to the p o s i t i v e a s y m p t o t i c v a l u e b y of p o s i t i v e infinity.
This curious phenomenon
arises w h e n the
way
average
t e m p e r a t u r e of the gas is h i g h e r t h a n w a l l t e m p e r a t u r e , w h i c h is i n t u r n h i g h e r t h a n the gas t e m p e r a t u r e i m m e d i a t e l y adjacent to the w a l l ; this gives rise to a p o s i t i v e v a l u e for gaseous t e m p e r a t u r e g r a d i e n t at the w a l l b u t a n e g a t i v e v a l u e for T -T . s
E x p e r i m e n t a l investigations are
g
n e e d e d to evaluate the p r a c t i c a l significance of these
phenomena.
A n a p p r o x i m a t e e q u i v a l e n c e b e t w e e n the H e t e r o g e n e o u s D i s p e r s i o n B . I I m o d e l a n d the P s e u d o - H o m o g e n e o u s g i v e n b y V o r t m e y e r a n d Schaefer ( 3 4 ) . d /dx 2
2
(T -T ) s
g
Dispersion A . I I model
was
T h e y demonstrated that w h e n
= 0, m o d e l B . I I is e q u i v a l e n t to m o d e l A . I I w h e n
one
assigns A = A + ^ (pC )/Aa A
2
B
(10)
p
T h i s a s s u m p t i o n is v a l i d u n d e r m i l d c o n d i t i o n s b u t breaks d o w n u n d e r light-off c o n d i t i o n s . A f t e r t r a n s f o r m i n g the g a s - s o l i d heat transfer coeffi c i e n t i n t o a l o n g i t u d i n a l d i s p e r s i o n coefficient, one c a n take one m o r e step a n d t r a n s f o r m this A . I I m o d e l i n t o a C a s c a d e m o d e l . W h e n λ
Β
=0,
let
A
ud( c ) —λ P
en =
p
=
Α
dha r = (UpCp)
-,
iNU
a« — u
and, ^
Pe
r
2
n
L
d - ha
d ~~ 2upc
p
L d
U n f o r t u n a t e l y , h is p r a c t i c a l l y i n d e p e n d e n t of R e y n o l d s n u m b e r i n s t e a d of b e i n g p r o p o r t i o n a l to i t . T h u s , u n d e r l o w R e y n o l d s n u m b e r the m o n o l i t h m a y b e c o n s i d e r e d to be 60 cells i n series, b u t u n d e r h i g h R e y n o l d s n u m b e r the m o n o l i t h m u s t b e c o n s i d e r e d to b e six cells i n series, w h i c h makes c o m p u t a t i o n difficult. T h e best c h a n n e l cross-sectional shape, the best c h a n n e l d i a m e t e r , a n d the best c h a n n e l l e n g t h are the subjects of several i n v e s t i g a t i o n s . Sufficient g e o m e t r i c surface area m u s t be p r o v i d e d to disperse the a l u m i n a washcoat and platinum.
B e y o n d t h a t p o i n t , m o r e surface area w o u l d
Hulburt; Chemical Reaction Engineering Reviews Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
14
CHEMICAL
REACTION
ENGINEERING
REVIEWS
m e a n a h e a v i e r m o n o l i t h a n d is n o t d e s i r a b l e . A s m a l l c h a n n e l d i a m e t e r w o u l d s i m u l t a n e o u s l y increase h e a t transfer coefficient h, a n d surface to v o l u m e r a t i o a since t h e N u s s e l t n u m b e r is p r a c t i c a l l y i n d e p e n d e n t of c h a n n e l d i a m e t e r ; i t w o u l d also l e a d to a m u c h h i g h e r pressure d r o p . T h e best d i a m e t e r is t h e r e s u l t o f a c o m p r o m i s e .
T h e optimum channel
shape is m o r e c o n t r o v e r s i a l since there is n o g e n e r a l l y a c c e p t e d set o f v a r i a b l e s to b e h e l d constant d u r i n g a c o m p a r i s o n . C i r c u l a r c h a n n e l s are not seriously c o n s i d e r e d since t h e y i n v o l v e t h i c k a n d h e a v y w a l l s . F o r fast w a r m u p , a set of i n f i n i t e l y w i d e p a r a l l e l plates w o u l d b e t h e best since i t w o u l d give t h e h i g h e s t transfer coefficient to t h e surface f o r the same gas f l o w rate a n d pressure d r o p . r u l e d o u t f o r its s t r u c t u r a l weaknesses.
This configuration must b e
T h e next best shape is a n e l o n
g a t e d rectangle, w h i c h is s t i l l difficult to m a k e a n d to protect.
Hegedus
m a d e a c o m p a r i s o n f o r v a r i o u s p r a c t i c a l shapes, b a s e d o n t h e same h y d r a u l i c d i a m e t e r a n d average gaseous v e l o c i t y ( 3 5 ) . H e s h o w e d t h a t f r o m t h e p o i n t o f v i e w of l o w e r surface area r e q u i r e m e n t a n d l o w e r pressure d r o p , t h e c i r c l e a n d h e x a g o n a r e s u p e r i o r to t h e s q u a r e , w h i c h is s u p e r i o r to t h e t r i a n g l e a n d s i n u s o i d . H i s results are g i v e n i n T a b l e I .
Table I.
Comparison of Monolith Geometries with the Same H y d r a u l i c Radius ° Circle
V o l u m e of w a l l needed, i n . Pressure d r o p , inch water
Hexagon
Square
Triangle
Sinusoid
10.2
10.2
12.9
15.7
15.7
4.1
3.9
4.5
5.1
5.0
3
Surface needed for 99% conversion under mass transfer limited conditions. A l l geometries have the same hydraulic radius of 0.062 cm, mass flow rate of 0.75 g / c m sec, wall thickness of 0.0305 cm, and temperature at 600°C. Hegedus defines the hydraulic radius as one-half of hydraulic diameter. α
2
Table II.
Comparison of Monolith Geometries with the Same Cross-Sectional A r e a a
Length, in. W a l l volume, i n . Δ Ρ , inch H 0 2
3
Circle
Hexagon
4.4 12.8 4.5
4.4 9.2 4.7
Square 4.1 9.8 5.0
Triangle 4.1 10.4 5.7
Sinusoid 3.7-4.0 11.6 5.5
° Length and surface area needed for 99% conversion under mass transfer limited conditions, with open area of 0.02 c m . 2
On
t h e other h a n d , J o h n s o n a n d C h a n g m a d e a c o m p a r i s o n b a s e d o n
the a s s u m p t i o n of e q u a l c h a n n e l o p e n
cross-sectional area
s i n u s o i d , i n c o m p a r i s o n w i t h a h e x a g o n w i t h t h e same
(36). A
cross-sectional
Hulburt; Chemical Reaction Engineering Reviews Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
1.
WEI
The Catalytic
Muffler
15
area, has a s m a l l e r h y d r a u l i c d i a m e t e r a n d l a r g e r pressure d r o p b u t c a n be m a d e m o r e c o m p a c t .
T h e i r results are s h o w n i n T a b l e I I .
T h e s e differences are significant for the r e q u i r e m e n t of fast w a r m u p . D u r i n g the m a n u f a c t u r e of the c e r a m i c m o n o l i t h , s l u m p i n g of the w e t m a t e r i a l w i l l distort the exact g e o m e t r i c shapes; h o w e v e r , t h i c k coatings of washcoats w i l l r o u n d out t h e s h a r p corners a n d i m p r o v e
the
performance. Negative
Order
Kinetics
F o r m o s t reactions u n d e r i s o t h e r m a l c o n d i t i o n s , t h e r e a c t i o n rate is a n i n c r e a s i n g f u n c t i o n of the c o n c e n t r a t i o n of e a c h r e a c t a n t c o n s u m e d . M o s t of o u r r e a c t i o n e n g i n e e r i n g l i t e r a t u r e is r o o t e d o n the G u l d b e r g W a a g e mass a c t i o n l a w , o n reactions of p o s i t i v e f r a c t i o n a l o r d e r , o n rates i n v o l v i n g a quotients of p o l y n o m i a l s , a l l o b e y i n g the r e l a t i o n dR/dC w h e r e C is the c o n c e n t r a t i o n of a reactant c o n s u m e d .
^
0
M a n y of the r e a c -
t i o n e n g i n e e r i n g rules t h a t h a v e b e e n w o r k e d out a n d a p p l i e d w i d e l y are b a s e d o n the p o s i t i v e o r d e r k i n e t i c s , s u c h as the e c o n o m y of the p i s t o n flow reactor over the s t i r r e d t a n k reactor i n reactor v o l u m e r e q u i r e m e n t s , the s u p e r i o r i t y of the o n c e - t h r o u g h reactor over the r e c y c l e reactor, a n d the d e c l i n e of the effectiveness
of porous
diffusion effects are e n c o u n t e r e d .
catalysts w h e n i s o t h e r m a l
T h e s e rules are r e v e r s e d w h e n
one
encounters n e g a t i v e o r d e r k i n e t i c s . N e g a t i v e o r d e r k i n e t i c s are rare b u t are i n d u s t r i a l l y i m p o r t a n t . A u t o c a t a l y t i c a n d free r a d i c a l reactions are often c i t e d b u t are i m p r o p e r examples since a d e c l i n e i n r e a c t a n t c o n c e n t r a t i o n is n o t a l w a y s assoc i a t e d w i t h a n increase i n c a t a l y t i c or r a d i c a l concentrations.
Hydro-
genolysis, o r the s p l i t t i n g of a s a t u r a t e d h y d r o c a r b o n i n t o t w o s a t u r a t e d hydrocarbons
by
hydrogen,
exhibits negative
order
with
respect
to
h y d r o g e n concentrations over m a n y s u p p o r t e d metals. AB + H , = A H + B H M o r i k a w a , B e n e d i c t , a n d T a y l o r h a v e f o u n d the r e a c t i o n to b e —1.2 to —2.5 o r d e r d e p e n d e n t o n c o n c e n t r a t i o n ( 3 7 ) .
S i n f e l t gave t h e r e a c t i o n
orders of ethane h y d r o g e n o l y s i s o v e r the t r a n s i t i o n metals as —0.8 to -2.5
(38).
T h e k i n e t i c s of C O o x i d a t i o n o v e r p l a t i n u m a n d p a l l a d i u m h a v e b e e n i n v e s t i g a t e d b y n u m e r o u s scientists, b e g i n n i n g w i t h the p i o n e e r i n g w o r k of I r v i n g L a n g m u i r ( 3 9 ) .
H e showed that the kinetics can be repre-
sented b y the expression rate =
/c(0 )/(CO) 2
Hulburt; Chemical Reaction Engineering Reviews Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
(11)
16
CHEMICAL REACTION ENGINEERING
REVIEWS
H e s p e c u l a t e d t h a t the r a t e - c o n t r o l l i n g m e c h a n i s m is t h e c o m b i n a t i o n of the a d s o r b e d o x y g e n atoms a n d a d s o r b e d C O . T h e p l a t i n u m surface is i n t e n s i v e l y c o v e r e d w i t h a d s o r b e d C O so that a n increase o f C O c o n c e n t r a t i o n w o u l d decrease t h e a d s o r b e d
concentration of oxygen
and
the rate o f r e a c t i o n . T h i s k i n e t i c p h e n o m e n o n has b e e n c o n f i r m e d m a n y times b y v a r i o u s investigators (40, 41, 42, 43,44).
Baddour and Cochran
s t u d i e d C O o x i d a t i o n over p a l l a d i u m a n d p l a t i n u m w i t h s i m u l t a n e o u s i n f r a r e d measurements
T h e y d i s c o v e r e d t h a t the k i n e t i c s are d i
(45).
v i d e d i n t o t w o r e g i m e s : a " n o r m a l r e g i m e " w h e r e the C O c o n c e n t r a t i o n is a b o v e a c r i t i c a l v a l u e , w h e r e the k i n e t i c s has a n e g a t i v e d e p e n d e n c e o n CO
c o n c e n t r a t i o n , a n d w h e r e there is significant i n f r a r e d a b s o r p t i o n
at 2100 c m " ; a n d a " l o w surface c o v e r a g e r e g i m e " w h e r e the C O c o n 1
c e n t r a t i o n is b e l o w a c r i t i c a l v a l u e , w h e r e the k i n e t i c s is first o r d e r t o C O c o n c e n t r a t i o n , a n d w h e r e the i n f r a r e d a b s o r p t i o n p e a k is absent. ι ι
1
1
i oo (NEGATIVE \ ORDER)
/io\ \
1 FIRST
\ \
ε-
k
2
c
0
/SNA
/
^ ζ = 0 ι
Figure
2.
(FIRST ORDER)
1
The himolecular netics
1
1
Langmuir
ki
A c a r e f u l e x p e r i m e n t a n d q u a n t i t a v e analysis o f t h e k i n e t i c d a t a w a s p e r f o r m e d b y V o l t z et al. (46). T h e i r e x p e r i m e n t w a s d o n e over i m p r e g n a t e d p l a t i n u m catalysts o n pellets, w i t h t e m p e r a t u r e s a n d gaseous c o m positions s i m u l a t i n g exhaust gases.
T o m i n i m i z e d i f f u s i o n effects,
Hulburt; Chemical Reaction Engineering Reviews Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
most
1.
WEI
The Catalytic
17
Muffler
of the p l a t i n u m w a s d e p o s i t e d i n t h e outer p o r t i o n s o f the p a r t i c l e . T h e y f o u n d that t h e i r C O o x i d a t i o n d a t a c a n b e fitted b y fei(CO) [l +
rate =
(Q ) fc (CO)]
(12)
2
2
2
where ( C O ) a n d ( 0 ) are i n mole % - a t m a n d fci — 1.83 X 1 0 e x p ( - 2 2 , 5 0 0 / 7 ) , (secKMOo)" k = 6.55 X 1 0 " e x p ( + l , 7 3 0 / D , (CO)" Τ = t e m p e r a t u r e , degrees R a n k i n . 2
7
1 2
1
2
1
1
T h e d e n o m i n a t o r t e r m i n E q u a t i o n 12 contains c o n t r i b u t i o n s f r o m N O a n d h y d r o c a r b o n s w h e n t h e y a r e present.
T h e propylene oxidation
rate has t h e same f o r m as E q u a t i o n 12. T h e f o r m of these k i n e t i c s is g i v e n i n F i g u r e 2 w h i c h is s t r i k i n g l y different f r o m t h e f o r m of a firsto r d e r k i n e t i c s . H e r e , C is t h e c o n c e n t r a t i o n o f C O . T h e m a x i m u m rate is a t t a i n e d at C =
l/k . 2
M a n y peculiar properties result from t h e bimolar L a n g m u i r kinetics of E q u a t i o n 12. F o r instance, t h e c o n c e n t r a t i o n profile of a
first-order
k i n e t i c s i n a n i s o t h e r m a l p i s t o n flow reactor f o l l o w s a n e x p o n e n t i a l c u r v e s h o w n i n F i g u r e 3. T h i s c o n v e x f u n c t i o n i n d i c a t e s t h a t a n y b a c k m i x i n g w o u l d h a r m t h e p e r f o r m a n c e so t h a t a constant s t i r r e d t a n k reactor o r a r e c y c l e reactor of the same v o l u m e w o u l d b e f a r less efficient t h a n a p i s t o n flow reactor.
H o w e v e r f o r a b i m o l e c u l a r L a n g m u i r k i n e t i c s i n t h e same
reactor, t h e c o n c e n t r a t i o n profile is g i v e n b y i n t e g r a t i o n of E q u a t i o n 12 to y i e l d : M0 )r 2
- I n y + 2ζ(1 -
y) + ζ\1 -
y )/2 2
(13)
ζ=ο (FIRST ORDER)
0.0
20
40
60 k,(0 ÎT 2
Figure 3.
Conversion
in piston flow reactor
Hulburt; Chemical Reaction Engineering Reviews Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
100
18
CHEMICAL
REACTION ENGINEERING
where τ is the residence t i m e , y is the r a t i o ^Ciniet-
REVIEWS
( C O ) / ( C O ) i t , a n d ζ is i n
e
T h e c o n c e n t r a t i o n profiles g i v e n i n F i g u r e 3 a r e c o n c a v e so t h a t backmixing w o u l d be beneficial ( 3 ) . W h e n the bimolecular L a n g m u i r k i n e t i c s o c c u r i n a n i s o t h e r m a l C S T R , t h e reactor p e r f o r m a n c e
is de
scribed b y Μ0 )τ=(1-ν)(1
(14)
+ ζν) /ν 2
2
A b o v e a c r i t i c a l v a l u e o f ξ = 8, t h e r e w i l l b e three steady-state s o l u tions f o r e a c h v a l u e of & ι ( 0 ) τ . T h u s i n a n e x p e r i m e n t w h e r e t h e v a l u e 2
of & ι ( 0 ) τ is v a r i e d b y c h a n g i n g t h e flow rate o f gases or b y c h a n g i n g 2
t h e flow rate o f gases o r b y c h a n g i n g t h e reactor t e m p e r a t u r e , t h e d e g r e e of c o n v e r s i o n w o u l d t a k e s u d d e n leaps a n d w o u l d e x h i b i t hysteresis
(see
F i g u r e 4 ) . F o r t h e r e c y c l e reactor w i t h a r e c y c l e r a t i o of R , t h e reactor equation i s : M 0
2
) T =
(l+fl){lnz+2ft/(*-l) +£V(2 -D/2} 2
where 2 = (1 + Ry)/(1
+
(15)
R)y
S i m i l a r i n s t a b i l i t i e s c a n b e o b s e r v e d i n F i g u r e 5. T h u s , t h e C S T R a n d t h e r e c y c l e reactors are s u p e r i o r i n p e r f o r m a n c e to t h e p i s t o n flow r e a c t o r w h e n t h e k i n e t i c s are of t h e b i m o l e c u l a r L a n g m u i r t y p e . G r e a t care m u s t b e t a k e n t o a v o i d t h e i n s t a b i l i t i e s w h i c h c a n arise d u r i n g t h e a c c e l e r a t i o n o f a n a u t o m o b i l e w h e n t h e residence t i m e c a n rise b y a f a c t o r of 20, w h e n t h e C O i n l e t c o n c e n t r a t i o n m a y v a r y f r o m 8 to 0 . 1 % , a n d w h e n t h e t e m p e r a t u r e m a y v a r y f r o m 900° to 1800°F ( 3 ) . A n e v e n m o r e i n t e r e s t i n g p h e n o m e n o n arises w h e n t h e b i m o l e c u l a r L a n g m u i r k i n e t i c s t a k e p l a c e w i t h s i m u l t a n e o u s d i f f u s i o n across a porous catalyst. T h e c l a s s i c a l T h i e l e analysis s h o w e d t h a t a d r o p of c o n c e n t r a t i o n i n t h e i n t e r i o r o f a catalyst w o u l d l e a d t o a decrease i n o v e r a l l r e a c t i o n rate—as l o n g as there is a p o s i t i v e d e p e n d e n c e o f l o c a l r e a c t i o n rate o n l o c a l c o n c e n t r a t i o n .
F o r the bimolecular L a n g m u i r kinetics the
same c o n c e n t r a t i o n d r o p i n t h e i n t e r i o r w o u l d l e a d t o a n increase i n o v e r a l l r e a c t i o n rate (47, 48).
W e i a n d B e c k e r (49)
i n a n i s o t h e r m a l reactor t h e o v e r a l l effectiveness
showed that even
f a c t o r c a n b e greater
t h a n 1 a n d t h a t m u l t i p l e steady-state solutions c a n b e e x p e c t e d
when
t h e v a l u e o f ζ exceeds 8. T h i s means t h a t f o r a g i v e n q u a n t i t y o f p l a t i n u m i t is better t o s p r e a d i t o v e r a t h i c k e r s u p p o r t l a y e r t h a n to concentrate i t o n a n a r r o w l a y e r n e a r t h e p e l l e t surface.
A n even deeper placement
of p l a t i n u m is advantageous i n a v o i d i n g l e a d a n d p h o s p h o r u s
deposition
o n t h e catalyst pellets, w h i c h t e n d to concentrate o n t h e surface ( 5 0 ) .
Hulburt; Chemical Reaction Engineering Reviews Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
1.
WEI
The Catalytic
19
Muffler
k,(0 )T 2
Figure 4.
Figure 5.
Conversion
Conversion
in CSTR
in recycle reactor
T h e s e t h e o r e t i c a l advantages h a v e b e e n c o n f i r m e d b y t h e e x p e r i m e n t a l d a t a of D o e l p et al. (51)
and by Michalko (52).
T h e s e observations c a n
l e a d to a c o m p l e t e r e v e r s a l of t h e c o n v e n t i o n a l p o l i c y of o p t i m a l c a t a l y s t d e s i g n : d e p o s i t i o n of t h e catalyst o n t h e v e r y e d g e of t h e s u p p o r t to f o r m the s o - c a l l e d " e g g s h e l l " catalyst s h o u l d b e r e p l a c e d b y
deeper
d e p o s i t i o n to f o r m " e g g y o l k " catalysts. A h i g h l y e x o t h e r m i c r e a c t i o n c a n g i v e r i s e to m u l t i p l e steady-state solutions, hysteresis, a n d i n s t a b i l i t y i n a reactor.
Davies and Buben
o b s e r v e d these i n s t a b i l i t i e s i n t h e o x i d a t i o n of h y d r o g e n a n d a m m o n i a
Hulburt; Chemical Reaction Engineering Reviews Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
20
CHEMICAL
on p l a t i n u m wires (53).
REACTION ENGINEERING
REVIEWS
H i g h l y self-poisoned b i m o l e c u l a r L a n g m u i r k i -
netics c a n g i v e rise to a l l these i n s t a b i l i t y p h e n o m e n a e v e n i n a n isot h e r m a l system. C a r d o s o a n d L u s s (43)
h a v e s t u d i e d the o x i d a t i o n of b u t a n e a n d
C O over c o i l e d p l a t i n u m w i r e s . W h e n the t e m p e r a t u r e of the gas w a s r a i s e d a n d t h e n l o w e r e d , t h e t e m p e r a t u r e of the w i r e d e m o n s t r a t e d t w o b r a n c h e s of steady-state solutions w i t h hysteresis. T h e s e i n s t a b i l i t i e s are associated w i t h r e a c t i o n h e a t effects since the t e m p e r a t u r e
difference
b e t w e e n the w i r e a n d t h e gas c a n b e several h u n d r e d degrees. a n d J a k u b i t h (44)
Hugo
o b s e r v e d m u l t i p l e steady-state c o n d i t i o n s a n d h y s -
teresis w i t h C O o x i d a t i o n o n a w i r e m e s h of p l a t i n u m .
They believed
t h e system to be i s o t h e r m a l a n d h y p o t h e s i z e d t h e cause of oscillations as a n a l t e r n a t i o n of a d s o r b e d C O b e t w e e n a l i n e a r a n d b r i d g e f o r m . Luss and Amundson
(54)
h a v e p o i n t e d out t h a t for i s o t h e r m a l
reactions i n s i d e a p o r o u s catalyst, m u l t i p l e steady states c a n n o t t a k e p l a c e i f the m a x i m u m rate occurs at the surface. computed
Luss and Lee
(55)
m u l t i p l e steady states i n a n i s o t h e r m a l catalyst slab w h e n
t h e diffusivities of the t w o reactants are m a r k e d l y different a n d w h e n the r e a c t i o n rate d e p e n d s o n one r e a c t a n t p o s i t i v e l y a n d o n t h e other r e actant negatively.
A
case of i s o t h e r m a l i n s t a b i l i t y w a s
Beusch, Fieguth, and W i c k e
(56)
observed
d e p o s i t e d o n a l u m i n a pellets of 3 - m m d i a m e t e r .
A s the c o n c e n t r a t i o n
of C O i n the gas p h a s e w a s i n c r e a s e d , t h e p r o d u c t i o n rate of C 0 tially
by
w i t h C O oxidation over p l a t i n u m
2
ini-
increases a n d t h e n a b r u p t l y descends to a l o w e r b r a n c h ; w h e n
t h e C O c o n c e n t r a t i o n w a s decreased, the C 0
2
p r o d u c t i o n rate s t a y e d
o n t h e l o w e r b r a n c h f o r a w h i l e , a n d t h e n a b r u p t l y a s c e n d e d to t h e u p p e r branch.
O s c i l l a t i o n s w e r e also o b s e r v e d .
T h e i r data can be explained
q u a l i t a t i v e l y b y the t h e o r y of W e i a n d B e c k e r
(49).
T h e p e c u l i a r i t i e s of t h i s n e g a t i v e o r d e r k i n e t i c s has l e d to
many
r e - e v a l u a t i o n s i n r e a c t i o n e n g i n e e r i n g p r a c t i c e s , a n d t h e y are i m p o r t a n t i n d e s i g n i n g t h e c a t a l y t i c mufflers. T h e i n s t a b i l i t i e s m a y b e r e l a t e d to t h e s u d d e n m o n o l i t h m e l t i n g a n d to t h e p h e n o m e n o n of " b r e a k t h r o u g h " — s u d d e n t r a n s i e n t e m i s s i o n of u n c o n v e r t e d C O a n d h y d r o c a r b o n s i n a a f u l l y w a r m e d - u p converter. Transience
and
Dynamics
M o s t i n d u s t r i a l c a t a l y t i c reactors are d e s i g n e d to operate w i t h i n a v e r y n a r r o w r a n g e of i n l e t t e m p e r a t u r e s , flow rates, a n d concentrations. E x c e p t f o r s t a r t - u p , a c h a n g e i n feedstock, or a n o c c a s i o n a l upset, steadystate c o n d i t i o n s p r e v a i l .
O n the other h a n d , r a p i d transience a n d w i d e
d y n a m i c ranges are t h e r u l e w i t h t h e c a t a l y t i c muffler.
The
proper
e n g i n e e r i n g of the c a t a l y t i c muffler r e q u i r e s a n a c c u r a t e transience a n a l y -
Hulburt; Chemical Reaction Engineering Reviews Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
1.
WEI
The Catalytic
21
Muffler
sis a n d a n o p t i m a l reactor d e s i g n over a w i d e r a n g e of i n p u t v a r i a b l e s w i t h a g i n g catalysts. T h e r e q u i r e d l e v e l of c o n v e r s i o n over the entire F e d e r a l C y c l e is i n t h e r a n g e of 7 0 - 9 0 % .
Since t h e c a t a l y t i c converter is not h o t
enough
d u r i n g the first t w o m i n u t e s to b e effective, the c o n v e r s i o n after the first t w o m i n u t e s m u s t b e m u c h better t h a n the average v a l u e of 9 0 % . converter t h a t effects better t h a n 9 0 %
A
c o n v e r s i o n at a h i g h flow rate
a n d l o w t e m p e r a t u r e w i t h a n a g e d catalyst m u s t b e o v e r d e s i g n e d d u r i n g a l o w flow rate a n d h i g h t e m p e r a t u r e w i t h f r e s h catalyst.
Homogeneous
gas phase o x i d a t i o n m a y b e c o m e i m p o r t a n t at t e m p e r a t u r e s a b o v e 1600 ° F . A n o t h e r area w h e r e transient analysis is sorely n e e d e d is d e s t r u c t i v e m e l t i n g of m o n o l i t h s , w h i c h occurs a b o v e 2 5 0 0 ° F .
These
temperatures
c a n n o t b e a c h i e v e d b y t h e sensible heat of t h e exhaust gases alone a n d must involve combustion exhaust gas.
of
unburned C O
and hydrocarbons
i n the
T h e r m a l r a d i a t i o n m u s t p l a y a c e n t r a l r o l e i n the
b a l a n c e l e a d i n g to s u c h d a m a g e .
I n t h e absence of t r a n s p o r t
heat
effects,
the m a x i m u m t e m p e r a t u r e a t t a i n e d i n a c o m b u s t i b l e m i x t u r e is the a d i a b a t i c flame t e m p e r a t u r e . H o w e v e r , i f the c o m b u s t i o n takes p l a c e e x c l u s i v e l y o n t h e w a l l , t h e m a x i m u m w a l l t e m p e r a t u r e is g o v e r n e d b y the ratio of mass transfer coefficient of the c o m b u s t i b l e to t h e h e a t transfer coefficient.
W h e n the v a l u e of the L e w i s n u m b e r c pD/\ p
is greater t h a n
1, w h i c h is the case for h y d r o g e n , the m a x i m u m w a l l t e m p e r a t u r e m a y exceed t h e a d i a b a t i c flame t e m p e r a t u r e . T h i s p h e n o m e n o n w a s p r e d i c t e d b y H e c k (57)
a n d experimentally confirmed by Hegedus
V a r d i and Biller (59)
(58).
are t h e first to r e a l i z e the c e n t r a l i m p o r t a n c e
of m o d e l i n g the reactor b e d t e m p e r a t u r e d u r i n g a c o l d start. T h e i r m o d e l of t h e reactor is one d i m e n s i o n a l w i t h separate t e m p e r a t u r e s for
gas
a n d solid but w i t h o u t longitudinal dispersion a n d w i t h o u t chemical reaction.
T o p e r f o r m the c o m p u t a t i o n , t h e y r e p l a c e d t h e c o n t i n u u m i n the
longitudinal direction w i t h
finite
i n t e r v a l s w h i c h reduces
the
reactor
to a series of 10 to 30 t i r r e d t a n k s . T h e i r i n p u t c o n d i t i o n s d e r i v e f r o m the seven m o d e C a l i f o r n i a C y c l e of t h e 1960's.
They concluded
that
most of t h e transience takes p l a c e i n the first t w o m i n u t e s a n d t h a t t h e t e m p e r a t u r e b e t w e e n the gas a n d t h e s o l i d is s e l d o m h i g h e r t h a n 50 ° F . T h e first successful m o d e l t h a t describes t h e c o m p l e t e
performance
of a c a t a l y t i c muffler d u r i n g a cold-start F e d e r a l C y c l e w a s g i v e n b y W e i (17)
a n d b y K u o et al
(18).
I t describes a r a d i a l - f l o w p e l l e t b e d
w i t h base m e t a l o x i d e e g g s h e l l catalyst, b y u s i n g a C a s c a d e m o d e l w h e r e e a c h c e l l comprises t h r e e to f o u r r o w s of pellets. A c o m p l e t e h i s t o r y of t h e i n l e t gas flow rates, t e m p e r a t u r e s , a n d gaseous c o m p o s i t i o n s e n t e r i n g the c a t a l y t i c muffler constitutes t h e i n p u t . T h e t e m p e r a t u r e a n d gaseous concentrations i n e a c h c e l l are c o m p u t e d
as f u n c t i o n s of t i m e .
This
m o d e l has b e e n u s e d to p r e d i c t muffler outlet concentrations a n d b e d
Hulburt; Chemical Reaction Engineering Reviews Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
22
CHEMICAL
REACTION ENGINEERING
REVIEWS
t e m p e r a t u r e s w h i c h fit t h e e x p e r i m e n t a l d a t a a c c u r a t e l y . T h i s m o d e l has b e e n extensively u s e d to e x p l o r e t h e r e l a t i v e i m p o r t a n c e of
numerous
v a r i a b l e s of d e s i g n a n d o p e r a t i o n a n d to p o i n t to p r o m i s i n g avenues for n e w design. H a r n e d i n v e s t i g a t e d t h e m o d e l i n g of m o n o l i t h i c beds w i t h m e t a l a n d p r e c i o u s m e t a l catalysts ( 6 0 ) .
base
T h e b e d is a s s u m e d to
be
heterogeneous p i s t o n flow w i t h o u t a x i a l d i s p e r s i o n , a n d the k i n e t i c u s e d is s i m p l e n e g a t i v e first o r d e r .
F i n i t e difference m e t h o d s w e r e u s e d so
that the a x i a l l e n g t h is effectively d i v i d e d i n t o 10 to 40 zones.
This
creates a C a s c a d e m o d e l , w h e r e t h e n u m b e r of cells is a s s u m e d to be i n d e p e n d e n t of a t e n f o l d c h a n g e i n flow rate.
N o attempt w a s
made
to c o m p a r e these c a l c u l a t i o n s w i t h e x p e r i m e n t a l d a t a , a n d the v a l i d i t y of this m o d e l is y e t to b e e s t a b l i s h e d .
Ferguson a n d F i n l a y s o n have
d e m o n s t r a t e d that q u a s i - s t a t i c solutions are close to d y n a m i c solutions (61).
Bauerle and Nobe
piston
flow
firmation
also m o d e l e d
p e l l e t b e d s as heterogeneous
without axial dispersion, again without experimental con-
(62).
Y o u n g a n d F i n l a y s o n c h a l l e n g e d the v a l i d i t y of
these
m o n o l i t h i c m o d e l s for n e g l e c t i n g r a d i a l gaseous t e m p e r a t u r e g r a d i e n t (33).
T h e y s h o w e d that the N u s s e l t a n d S h e r w o o d n u m b e r s c a n n o t b e
c o n s i d e r e d passive p a r a m e t e r s that are assigned a h e a d of t i m e t h e y d e p e n d o n the rate of c h e m i c a l r e a c t i o n .
O u r great n e e d
since today,
as a l w a y s , is a r a p i d , c l o s e d l o o p b e t w e e n t h e o r e t i c a l p r e d i c t i o n s a n d e x p e r i m e n t a l testing. T h e d u r a b i l i t y of the c a t a l y s t is l i m i t e d b y t h e r m a l a g i n g a n d b y p o i s o n i n g ( 6 3 ) . T h e d e p o s i t i o n of l e a d a n d s u l f u r i n a m o n o l i t h is h e a v i l y c o n c e n t r a t e d at t h e reactor i n l e t ( 5 0 ) .
A s i m i l a r t e n d e n c y is u s u a l l y not
o b s e r v e d i n a p a c k e d b e d , p o s s i b l y because of a s l o w catalyst c i r c u l a t i o n d r i v e n b y the p u l s a t i n g gas
flow.
L e a d a n d s u l f u r penetrations i n s i d e a
p o r o u s s u p p o r t are m a i n l y c o n f i n e d to a d e p t h of 0.6 m m . T h e o p t i m a l reactor d e s i g n for s u c h a g i n g characteristics is a f e r t i l e field for i m a g i n a tive optimization.
Conclusion
T h i s r e v i e w has d e s c r i b e d the c a t a l y t i c muffler as: n e w — l o t s of r o o m for i m p r o v e m e n t , b i g — a n n u a l sales of s e v e r a l h u n d r e d m i l l i o n d o l l a r s , h e r e to s t a y — n o effective c o m p e t i t i o n t i l l 1980s. A f e w past achievements are d w a r f e d b y t h e m a n y u n s o l v e d p r o b l e m s w h i c h pose a c h a l l e n g e w e c a n n o t i g n o r e .
Hulburt; Chemical Reaction Engineering Reviews Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
1.
WEI
The Catalytic
23
Muffler
Nomenclature a surface to v o l u m e r a t i o C pollutant concentration c heat c a p a c i t y Ό d i s p e r s i o n coefficient d h y d r a u l i c d i a m e t e r of c h a n n e l dp d i a m e t e r of pellets F flow rate of gas H heat of r e a c t i o n h heat transfer coefficient b e t w e e n gas a n d s o l i d k mass transfer coefficient b e t w e e n gas a n d s o l i d L l e n g t h of b e d m m o l e c u l a r w e i g h t of p o l l u t a n t Ν n u m b e r of cells i n C a s c a d e m o d e l η reaction order Nu N u s s e l t n u m b e r , hd/λ Pe P e c l e t n u m b e r ud/D and udpC /\ Pr P r a n d t l n u m b e r c p./\ Q activation energy R reaction speed R gas constant r distance i n radial direction r r a d i u s of t u b e Re R e y n o l d s n u m b e r dup/λ Sc S c h m i d t n u m b e r , μ/ρΌ Sh S h e r w o o d n u m b e r , kd/D Τ temperature TU transfer units, N u · a L / R e · P r or S h · ah/Re • S c t time u gas v e l o c i t y i n b e d V vehicle speed W g m / m i l e of p o l l u t a n t e m i s s i o n i n F e d e r a l C y c l e χ distance, l o n g i t u d i n a l d i r e c t i o n v
v
v
g
c
a. β λ μ. ζ ρ τ ψ
t h e r m a l d i f f u s i v i t y , \/pc i n gas eigenvalue i n Graetz p r o b l e m heat c o n d u c t i o n coefficient viscosity k C inlet density residence time eigenfunction i n Graetz problem v
2
Literature
Cited
1. "Report of the 65th General Motors Stockholders Meeting," Detroit, Mich., May 25, 1973. 2. "Evaluation of Catalysts as Automotive Exhaust Treatment Devices," Panel Report of the Committee on Motor Vehicle Emission, National Academy of Sciences, March 1973; "Evaluation of Catalytic Converters for Control of Automobile Exhaust Pollutants," Sept. 1974.
Hulburt; Chemical Reaction Engineering Reviews Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
24
C H E M I C A L REACTION ENGINEERING
REVIEWS
3. Wei, James, "Catalysis for Motor Vehicle Emissions," Advan. Catalysis (1975) 24, 57. 4. Federal Register 35 (219) Nov. 10, 1970; 36 (128) July 2, 1971. 5. "Report by the Committee on Motor Vehicle Emissions," National Academy of Sciences, Washington, D.C., Feb. 15, 1973. 6. Williamson, S. J., "Fundamentals of Air Pollution," Chap. 8, Addison -Wesley, 1973. 7. Pierson, W. R., Hammerle, R. H., Kummer, J. T., Soc. Auto. Eng. (1974) paper 740287. 8. "An Evaluation of Alternative Power Sources for Low Emission Auto mobiles," Panel Report of the Committee on Motor Vehicle Emissions, National Academy of Sciences, April 1973. 9. Oil Gas J. (June 10, 1974) p. 105. 10. Burke, D. P., Chem. Week (Nov. 1, 1972) p. 23. 11. Shinnar, R., Science (1972) 175, 1357. 12. "Feasibility of Meeting the 1975-76 Exhaust Emission Standards in Actual Use," Panel Report of the Committee on Motor Vehicle Emission, Na tional Academy of Sciences, June 1973. 13. Kramers, H., Westerterp, K. R., "Elements of Chemical Reactor Design and Operation," Chap. 3, Netherlands University Press, 1963. 14. Yagi, S., Kunii, D., Wakao, N., AIChE J. (1960) 6 (4) 543. 15. Votruba, J., Hlavacek, V., Marek, M., Chem. Eng. Sci. (1972) 27, 1845. 16. Froment, G. F., ADVAN. C H E M . SER. (1972) 109, 1.
17. Wei, J., Chem. Eng. Progr., Monograph Ser. (1969), Ser. 6, No. 65. 18. Kuo, J. C. W., Morgan, C. R., Lassen, H. G., Soc. Auto. Eng. (1971) paper 710289. 19. Votruba, J., Hlavacek, V., Chem. Eng. J. (1972) 4, 9. 20. Hlavacek, V., Kubicek, M., Chem. Eng. Sci. (1972) 27. 21. Lemme, C. D., Givens, W. R., Soc. Auto. Eng. (1974) paper 740243. 22. Howitt, J. S., Sekella, T. C., Soc. Auto. Eng. (1974) paper 740244. 23. Eckert, E. R. G., Drake, R. M., Jr., "Analysis of Heat and Mass Transfer," Chap. 7, McGraw-Hill, New York, 1972. 24. Kays, W. M., London, A. L., "Compact Heat Exchangers," 2nd ed., McGraw-Hill, New York, 1964. 25. Shah, R. K., London, A. L., Technical Report No. 75, Contract 225 (91) for Office of Naval Research, Dept. of Mech. Eng., Stanford University, 1971. 26. Sherony, D. F., Solbrig, C. W., Int. J. Heat Mass Transfer (1970) 13, 145. 27. Schoenherr, R., Woolley, J. Α., Chow, W., presented ACS, April 1974. 28. Heck, R. H., Wei, J., Katzer, J. R., ADVAN. CHEM. SER. (1974) 133, 34. 29. Koch, H., Ph.D. Thesis, Technical University of Munich, 1973. 30. Katz, S., Che.m Eng. Sci. (1959) 10, 202. 31. Solomon, R. L., Hudson, J. L., AIChE J. (1967) 13, 545. 32. Lupa, A. J., Dranoff, J. S., Chem. Eng. Sci. (1966) 21, 861. 33. Young, L. C., Finlayson, Β. Α., ADVAN. CHEM. SER. (1974) 133, 629. 34. Vortmeyer, D., Schaefer, R. J., Chem. Eng. Sci. (1974) 29, 485. 35. Hegedus, L. Louis, "Abstracts of Papers," 166th National Meeting, ACS, Chicago, 1973, PETROL 008. 36. Johnson, W. C., Chang, J. C., Soc. Auto. Eng. (1974) paper 740196. 37. Morikawa, K., Benedict, W. S., Taylor, H. S., J. Am. Chem. Soc. (1936) 58, 1795. 38. Sinfelt, J. H., J. Catalysis (1972) 27, 468. 39. Langmuir, I., Trans. Faraday Soc. (1922) 17, 621. 40. Schwab, G. M., Gossman, Κ., Z. Phys. Chem. (1958) 16, 39. 41. Tajbl, D. G., Simons, J. B., Carberry, J. J., Ind. Eng.Chem.,Fundamentals (1966) 5, 171.
Hulburt; Chemical Reaction Engineering Reviews Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
1.
WEI
The Catalytic
Muffler
25
42. Sklyarov, Α. V., Tretyakov, I. I., Shub, B. R., Roginskii, S. Z.,Dokl.Akad. Nauk. SSSR (1969) 189, 1302. 43. Cardozo, Μ. Α. Α., Luss, D., Chem. Eng. Sci. (1969) 24, 1699. 44. Hugo, P., Jakubith, M., Chem-Ing.-Tech (1972) 44, 383. 45. Cochran, H. D., Ph.D. Thesis, Chemical Engineering, MIT, 1972. 46. Voltz, S. E., Morgan, C. R., Liederman, D., Jacob, S. M., Ind. Eng. Chem., Prod. Res. Develop. (1973) 12, 294. 47. Roberts, G. W., Satterfield, C. N., Ind. Eng. Chem., Fundamentals (1966) 5, 317. 48. Satterfield, C. N., "Mass Transfer in Heterogeneous Catalysis," MIT Press, Cambridge, Mass., 1970. 49. Wei, J., Becker, E. R., ADVAN. C H E M . SER. (1975) 143, 116. 50. MacArthur, D. P., ADVAN. C H E M . SER. (1975) 143, 85.
51. Doelp, L. C., Koester, D. W., Mitchell, M. M. Jr., ADVAN. CHEM. SER. (1975) 143, 133. 52. Michalko, E., U.S. Patent 3,259,589 (July 1966). 53. Frank-Kamenetskii, D. Α., "Diffusion and Heat Exchange in Chemical Kinetics," translated by N. Thon, Chap. 9, Princeton University Press, 1955. 54. Luss, D., Amundson, N. R., AIChE J. (1967) 13 (2), 279. 55. Luss, D., Lee, J. C. M., Chem. Eng. Sci. (1971) 26 (9), 1433. 56. Beusch, H., Fieguth, P., Wicke, E., ADVAN. CHEM. SER. (1972) 109, 615. 57. Heck, R. H., Ph.D. Thesis, Chemical Engineering, University of Delaware, 1974. 58. Hegedus, L. L., "Temperature Excursions in Catalytic Monoliths," AIChE Meeting, Washington, D.C., December 1974. 59. Vardi, J., Biller, W. F., Ind. Eng. Chem., Process Design Develop. (1968) 7, 83. 60. Harned, J. L., Soc. Auto. Eng. (1972) paper 720520. 61. Ferguson, Ν. B., Finlayson, Β. Α., AIChE J. (1974) 20, 539. 62. Bauerle, G. L., Nobe, K., Ind. Eng. Chem., Process Design Develop. (1973) 12 (4), 407. 63. Hegedus, L. L., Ind. Eng. Chem., Fundamentals (1974) 13, 190. RECEIVED December 4, 1974. This review was written with the support of the National Science Foundation grant GK 38189 and the support of the Minnesota Mining and Manufacturing Co.
Hulburt; Chemical Reaction Engineering Reviews Advances in Chemistry; American Chemical Society: Washington, DC, 1975.