36 The Optical Approximation, Primary Radiation Chemical Yields, and Structure of the Track of an Ionizing Particle
Downloaded by UNIV LAVAL on July 11, 2016 | http://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0081.ch036
IVAN SANTAR and JAROSLAV BEDNÁŘ The Nuclear Research Institute, Czechoslovak Academy of Sciences, Řež, Czechoslovakia
A survey is given of the theory of the physical stage of radiolysis. Using the optical approximation to cross sections for the interaction between fast electrons and molecules, expressions have been derived for the yield g ° of primary optical activations, and for the total absorbed energy Q It is shown that the total yield g of primary activations is conveniently discussed as a sum g ° + g , where the first term includes the action of fast electrons, while g describes the action of slow electrons (kinetic energy less than about 100 e.v.) on molecules of the medium. This approach is com pared withPlatzman'sconsiderations on primary yields and the differences are pointed out. Finally, theoretical results of the present approach are applied to the analysis of the initial structure of the track of a fast electron, consisting of spurs, blobs, and short tracks. tot.
8
8
>Tphere is no doubt that of all phenomena connected with the interaction of high-energy radiation with matter, the radiation-chemical response of matter is the most complicated one. Between the primary acts by which the radiative energy is transferred to the medium and the resulting chemical changes there lies a complicated interplay of subse quent physicoehemieal and chemical processes. However, the whole present experience of radiation chemistry, brought together in the ubiqui tous term "radiation-chemical yield," suggests a proportionality between the measured effects and the amount of initially absorbed energy of radiation. This fact should stimulate the efforts towards the theoretical description of radiolytic processes. A
523 Hart; Radiation Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
524
RADIATION CHEMISTRY
1
T h e a b s o r p t i o n of energy of r a d i a t i o n passing t h r o u g h a m e d i u m c a n b e t h e o r e t i c a l l y i n v e s t i g a t e d at three levels of i n c r e a s i n g c o m p l e x i t y : ( 1 ) Q u i t e p r a g m a t i c a l l y as a process o c c u r r i n g c o n t i n u o u s l y i n t h e w h o l e i r r a d i a t e d v o l u m e . C o n s e q u e n t l y , w e c h a r a c t e r i z e this process b y a single q u a n t i t y c a l l e d the dose, w h i c h gives t h e a m o u n t of e n e r g y a b s o r b e d i n a v o l u m e or mass u n i t . T h i s w a s t h e p r a g m a t i c basis f o r t h e i n t r o d u c t i o n of t h e e m p i r i c a l n o t i o n of t h e "100 e . v . - y i e l d . " ( 2 ) A s a process o c c u r r i n g c o n t i n u o u s l y a l o n g the paths of i n d i v i d u a l i o n i z i n g particles. T h e n t h e d e c i s i v e q u a n t i t y appears t o b e t h e L E T g i v i n g t h e m e a n e n e r g y loss of t h e p a r t i c l e p e r u n i t p a t h - l e n g t h .
Downloaded by UNIV LAVAL on July 11, 2016 | http://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0081.ch036
( 3 ) A s a n ensemble of i n d i v i d u a l e l e m e n t a r y acts of energy transfer, as i t corresponds to the p h y s i c a l r e a l i t y of this p h e n o m e n o n . E x c e p t f o r t h e w o r k of P l a t z m a n ( 5 , 12, 13) a n d M a g e e (6, 7), t h e t h e o r e t i c a l considerations i n r a d i a t i o n c h e m i s t r y h a v e b e e n l i m i t e d to the first t w o items o n l y . R e c e n t l y , t h e most general p r o c e d u r e ( i t e m 3 ) has b e e n a p p l i e d to b o t h t h e t h e o r y of p r i m a r y r a d i a t i o n c h e m i c a l y i e l d ( J , 14, 16,17,19)
a n d to the t h e o r y of i n i t i a l structure of the t r a c k of a n
i o n i z i n g p a r t i c l e (10,19).
T h e p u r p o s e of this p a p e r is to c o m p a r e these
t w o aspects of a b s o r p t i o n of i o n i z i n g r a d i a t i o n . Primary
Radiation
Chemical
Yield
T h e most characteristic t y p e of p r i m a r y activations are t h e e l e c t r o n i c transitions of m o l e c u l e s w h i c h are m u c h faster t h a n other response of the i r r a d i a t e d m e d i u m .
T h i s enables o n e to c o n s i d e r separately t h e
p h y s i c a l stage of r a d i o l y s i s , at the e n d of w h i c h a c e r t a i n ensemble of e x c i t e d a n d i o n i z e d m o l e c u l e s is f o r m e d i n t h e m e d i u m . E a c h of t h e a c t i v a t e d m o l e c u l e s possesses a p a r t i c u l a r a m o u n t of energy f o r subsequent
processes.
available
T h e i n i t i a l d i s t r i b u t i o n a n d y i e l d s of i n d i
v i d u a l p r i m a r y activations
are dealt w i t h b y t h e t h e o r y o f p r i m a r y
r a d i a t i o n c h e m i c a l y i e l d ( P R C Y ) . W e h a v e s t u d i e d t h e a p p l i c a t i o n of this t h e o r y to t h e r a d i o l y s i s of gases i n d e t a i l d u r i n g t h e last years T h u s , i n t h e f o r m a l expression—see (5),
17, 18, 19, 20). G(X) =
$ g (X) n
n
n
(16,
for the yield
of a p a r t i c u l a r ( f i n a l or i n t e r m e d i a r y ) p r o d u c t X ,
w e are p r i m a r i l y interested i n the p r i m a r y g - v a l u e s f o r t h e i n d i v i d u a l n
types of p r i m a r y activations.
T h e p r o b a b i l i t i e s ; 100 e.v. excite a n d i o n i z e
m o l e c u l e s p r e d o m i n a n t l y i n o p t i c a l collisions i n d u c i n g the same t y p e of transitions of v a l e n c e electrons as does the a b s o r p t i o n of photons.
This
a b u n d a n t t y p e of p r i m a r y activations shows, therefore,
close
c o n n e c t i o n w i t h the o p t i c a l spectra of m o l e c u l e s .
a very
T h u s , f o u n d a t i o n s are
l a i d for the use of the so-called o p t i c a l a p p r o x i m a t i o n i n r a d i a t i o n c h e m istry, as suggested b y P l a t z m a n ( 1 3 ) .
M o r e e x p l i c i t l y , the t h e o r y
cross sections for o p t i c a l collisions leads i n first a p p r o x i m a t i o n to
of the
f o l l o w i n g f o r m u l a f o r the y i e l d of a p a r t i c u l a r electronic t r a n s i t i o n n : g = const X f /E n
Here E
n
n
(1)
n
is the energy of the t r a n s i t i o n a n d f
n
is the c o r r e s p o n d i n g o p t i c a l
oscillator strength, c h a r a c t e r i z i n g the relative c o n t r i b u t i o n of that t r a n s i t i o n to the o p t i c a l s p e c t r u m of the m o l e c u l e . I n a d d i t i o n , sufficiently energetic electrons i n d u c e , i n a s m a l l y i e l d , the o p t i c a l transitions of i n n e r electrons [g
K
b e i n g (1, 11)
of the o r d e r of
Hart; Radiation Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
526
RADIATION CHEMISTRY
T a b l e I.
1
S t r u c t u r e of
diluted PRCY
Downloaded by UNIV LAVAL on July 11, 2016 | http://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0081.ch036
Theory Primary activation
isolated
Development of the activation
isolated
System
ionizing particle + molecule
Statistics
homogeneous (degradation spec trum + ensemble of isolated mole cules)
Space and time element The theory -operates i n stage -extensible to stages
physical ( P ) physicochemical ( P C ) chemical ( C )
0.01 f o r the K - e l e c t r o n s of the elements f r o m the s e c o n d p e r i o d ] . C h a r a c teristic result of these transitions is the A u g e r effect. Its i m p o r t a n c e as a specific m i n o r effect i n r a d i a t i o n c h e m i s t r y stems f r o m the d e e p d e s t r u c t i o n of t h e m o l e c u l e i n t o s m a l l fragments
(11).
F i n a l l y , fast electrons also u n d e r g o i n f r e q u e n t h a r d collisions w i t h m o l e c u l e s , i n w h i c h the latter are i o n i z e d a n d s e c o n d a r y electrons
with
a p p r e c i a b l e k i n e t i c energy of the o r d e r of h u n d r e d s of e.v. are ejected (δ-electrons). g* ^
T h e s e collisions thus c o n t r i b u t e (6,17)
b y a small amount
0.1 to the y i e l d of i o n i z a t i o n s . A d i s t i n c t specific role of t h e m is
a p p a r e n t o n l y i n r a d i o l y s i s of c o n d e n s e d m e d i a , w h e r e they
constitute
a p r o n o u n c e d s t r u c t u r a l track effect a n d m a y c o n t r i b u t e to c e r t a i n m i n o r processes (see
below).
N o c o r r e s p o n d i n g d e t a i l e d theory of the a c t i o n of s l o w exists.
electrons
T h e i r f r a c t i o n i n the d e g r a d a t i o n s p e c t r u m is nevertheless
so
s u b s t a n t i a l that their c o n t r i b u t i o n to t h e r a d i o l y s i s m u s t b e c o n s i d e r e d as v e r y i m p o r t a n t .
T h e reason is that t h e y are f o r m e d a b u n d a n t l y as
s e c o n d a r y electrons f r o m o p t i c a l i o n i z a t i o n s a n d c o n t r i b u t e c o n s i d e r a b l y
Hart; Radiation Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
36.
SANTAR AND BEDNÂR
Track of an Ionizing
527
Particle
Radiation-Chemical Theories M
E
D
I
U
M dense
Magee
Fano
not existing yet
isolated
non-isolated
non-isolated non-isolated
Downloaded by UNIV LAVAL on July 11, 2016 | http://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0081.ch036
non-isolated track of ionizing particle i n isolated molecules
ionizing particle + matrix of mole cules
track of ionizing particle i n matrix of molecules
i n track (individual parti cle + ensemble of isolated molecules)
homogeneous (degradation spec trum + plasma of molecular electrons)
i n track (degradation spec trum + plasma of molecular electrons + ensemble of i n teracting molecules)
+
+
+
Ρ (PC, C ) ?
PC,C - F U T U R E PROGRESS
Î
to the excitations a n d i o n i z a t i o n s of v a l e n c e electrons, the latter u s u a l l y b e i n g precursors of a major p a r t of the c h e m i c a l changes o b s e r v e d . T h e g e n e r a l m e t h o d for the c a l c u l a t i o n of y i e l d s is i n a p p l i c a b l e to s l o w electrons,
therefore
w i l l be r e p l a c e d b y a n a p p r o a c h c o m b i n i n g
the c o n v e n i e n t use of the o p t i c a l a p p r o x i m a t i o n f o r fast electrons
with
the p o s s i b i l i t y of a v o i d i n g a n y n e e d for d e t a i l e d k n o w l e d g e of the d i s t r i b u t i o n a n d the interactions of s l o w electrons.
I n v i e w of the f a c t that
the s m a l l y i e l d s of h a r d collisions a n d i n n e r - s h e l l i o n i z a t i o n s
represent
at most a f e w p e r cent of the t o t a l i o n i z a t i o n , a n d that, m o r e o v e r , the δand
A u g e r electrons p r o d u c e d are fast a n d lose most of t h e i r
energy
a g a i n i n o p t i c a l collisions, s e c o n d a r y electrons f r o m o p t i c a l i o n i z a t i o n s c a u s e d b y fast electrons m a y b e s a i d to p r a c t i c a l l y p r e d o m i n a t e i n the s l o w r e g i o n of the d e g r a d a t i o n s p e c t r u m . t h e o r y of P R C Y is (17,
18)
T h e essential p o i n t of
the
therefore a c o r r e s p o n d i n g s u b d i v i s i o n of the
d e g r a d a t i o n s p e c t r u m i n t o the fast a n d s l o w regions w h o s e c o n t r i b u t i o n s to the t o t a l y i e l d g of p r i m a r y activations are c o n s i d e r e d separately
(see
Figure 1 ) : g = go + gs
Hart; Radiation Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
(2)
528
RADIATION CHEMISTRY
Table II. D F
A
E s
G
R
A
D
S u r v e y of Types A
Downloaded by UNIV LAVAL on July 11, 2016 | http://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0081.ch036
g° —' 4 - 5
g
%
I
O
N
EL
O p t i c a l excitations of
0
T
ECTRONS Τ > 100 e.v.
r
Hard collisions
Process valence electrons (100 e.v. > E > E )
1
inner electrons ( E '—' IK)
g
K
50-60%
( E > 100 e.v.)
— 0.01-0.02
g * — 0.1-0.2
0.1-0.2%
1-2%
Qtot
T h e o p t i c a l y i e l d g ° c a u s e d b y the fast electrons c a n be
expressed
e x p l i c i t l y u s i n g the o p t i c a l a p p r o x i m a t i o n . I n the d i f f e r e n t i a l f o r m c o n c e r n i n g the energy t r a n s f e r r e d b e t w e e n Ε a n d Ε + (16,17,18,
dE
we then obtain
19):
(3)
-(E)dE=™±±*jLdE.
g
Z°eff is the effective n u m b e r of v a l e n c e electrons i n the m o l e c u l e , is the d i f f e r e n t i a l f o r m of the oscillator strength f
n
df/dE
f r o m E q u a t i o n 1.
E s s e n t i a l l y a l l s l o w electrons o r i g i n a t e i n i o n i z i n g o p t i c a l collisions a n d t h e i r k i n e t i c energy, t h o u g h d i s s i p a t e d i n a n u m b e r of
subsequent
interactions, is thus i n t e g r a l l y i n c l u d e d i n the energies Ε of these c o l lisions. T h i s is the reason w h y the t o t a l a b s o r b e d energy m a y b e a p p r o x i m a t e d b y the energy t r a n s f e r r e d i n o p t i c a l collisions of fast electrons. F r o m the o p t i c a l a p p r o x i m a t i o n ( E q u a t i o n 3 ) , it m a y t h e n be s h o w n
(17)
that the t o t a l a b s o r b e d energy vJtot is Qtot = const X Z °
e f {
,
(4)
f r o m w h e r e the i m p o r t a n c e of v a l e n c e electrons i n the p a r t i t i o n of energy
Hart; Radiation Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
36.
SANTAR AND BEDNAR
Track of an Ionizing
529
Particle
of Primary Activations S
P
E
C
T
R
U
M SUBEXCITATION TT> E 0
Excitations optically
Downloaded by UNIV LAVAL on July 11, 2016 | http://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0081.ch036
allowed
r
Other processes (vibrational excitations, electron cap ture, . . . )
forbidden
—3-4
gse varying between 0 and g
important perhaps for low-lying lowest triplets
25-35%
ELECTRONS 0
i o n
10-15%
small fraction?
i n m i x t u r e s c a n c l e a r l y b e seen.
It f u r t h e r f o l l o w s f o r the d i s t r i b u t i o n of
a b s o r b e d energy a m o n g the v a r i o u s o p t i c a l collisions that 1
t{
T h e o p t i c a l s p e c t r u m df/dE, t r u m (l/E)(df/dE)
ÉL
dQ dE
eff
(5)
dE '
a n d the d e r i v e d e x c i t a t i o n (14)
spec
are thus seen to b e the most i m p o r t a n t characteris
tics of a m o l e c u l e e v e n f r o m the p o i n t of v i e w of its r a d i o l y t i c properties. B y i n t e g r a t i n g the d i f f e r e n t i a l y i e l d s g i v e n b y E q u a t i o n 3 o v e r r e l e v a n t parts of m o l e c u l a r spectra w e c a n , of course, o b t a i n the p a r t i a l y i e l d s f o r p a r t i c u l a r types of transitions—e.g., the y i e l d s of a l l excitations, i o n i z a tions, etc., as w e l l as the t o t a l y i e l d of a l l p r i m a r y o p t i c a l transitions :
g
=
100M RZ°
2
where M : 2
J Ε dE spectrum
d t
(6)
-
A n a l o g o u s g e n e r a l p r o c e d u r e f o r the r e m a i n i n g p a r t g
s
( caused b y
collisions of s l o w electrons ) of the t o t a l y i e l d g is not a v a i l a b l e present.
at
W e m u s t therefore content ourselves w i t h a rather c r u d e esti
m a t i o n of g f r o m a n energy b a l a n c e u s i n g a p p r o p r i a t e average values of s
Hart; Radiation Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
530
RADIATION CHEMISTRY
1
energies of s e c o n d a r y excitations a n d i o n i z a t i o n s b y s l o w electrons
to
gether w i t h a n estimate of shape of the e n e r g y s p e c t r u m of these electrons. Results of o u r c a l c u l a t i o n s (20) T a b l e III.
f o r several m o l e c u l e s are s h o w n i n
F o r calculations of o p t i c a l y i e l d s , d a t a o n o p t i c a l spectra of
molecules c a n be u s e d , a b o v e a l l . Besides that, the t o t a l o p t i c a l y i e l d g ° , w h i c h is a n i n t e g r a l over the entire s p e c t r u m , is c o n n e c t e d w i t h a n u m b e r of o p t i c a l p r o p e r t i e s of m o l e c u l e s .
Downloaded by UNIV LAVAL on July 11, 2016 | http://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0081.ch036
m a t i v e f o r m u l a , d e r i v e d b y us (20),
T h u s , for e x a m p l e , a n a p p r o x i
c a n b e u s e d f o r its e s t i m a t i o n :
T h i s f o r m u l a connects the t o t a l o p t i c a l y i e l d w i t h the m o l a r p o l a r i z a t i o n Ρ ε ( i n ce. ) of the m o l e c u l e . Table III. Molecule
Survey of Calculated Yields for Certain Molecules
CH
H0
h
2
2 n
3
6.9-6.4 7.6-5.5 10.0-7.4 - g 4.8 3.7 4.5 4.7 3.3 2.1-1.6 3.9-1.8 5.5-2.9 3.5 3.3-2.8 4.3-2.2 6.2-3.6 1.0 1.2 0.7 1.7 1.6-1.1 3.3-1.2 5.0-2.4 2.8 3.6 3.3 3.8 4.5 3.1 2.7 3.3 4.0 0.6 0.5 0.5 0.5 0.9-0.8 1.3-0.7 1.6-1.2 0.8 0.52 0.39 0.35 0.2 3.3-2.0 4.8-1.7 10.6-5.3 5.6
g g° g*
ëian
y yO
r
The yield g °
i o n
o
(CH )
NH
2
He
Ne
9.2-6.5 —3.7 1.7 2.8 2.0 6.4-3.7 1.0 6.0-3.3 0.2 0.4 0.8 5.6-2.9 3.2 2.7 2.4 1.5 1.2 0.8 0.4 1.8-1.0 0.11 0.18 6.5-3.4 0.7
H
2
—3.4 2.8 0.6 1.0 1.0 0.1 2.4 1.8 0.6 0.4 0.53 0.2
—6.2 5.8 0.4 3.4 3.1 0.2 2.8 2.6
5 5
5
O.I5 1.2 1.19 2.0
c a n b e d e t e r m i n e d f r o m the spectra of p h o t o i o n i z a -
t i o n o r f r o m measurements of m o l e c u l a r i o n i z a t i o n cross sections for fast electrons.
F o r a n u m b e r of c o m p o u n d s the d a t a o n W, the m e a n energy
e x p e n d i t u r e p e r i o n p a i r , are f u r t h e r a v a i l a b l e . T h e y are r e l a t e d to the t o t a l y i e l d of i o n i z a t i o n b y a s i m p l e f o r m u l a g
i o n
=100/W.
(8)
T h e m a i n u n c e r t a i n t y i n the values of g i n T a b l e I I I is i n t r o d u c e d b y the less accurate e s t i m a t i o n of g
s
e x c
f r o m the energy b a l a n c e .
T h e m a i n c o n c l u s i o n w h i c h c a n b e d r a w n f r o m T a b l e I I I is that b o t h the o p t i c a l a n d the t o t a l y i e l d s , as w e l l as the ratios y = excitations
to i o n i z a t i o n s , are m a r k e d l y i n f l u e n c e d b y the
g / g i o n of exc
molecular
Hart; Radiation Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
36.
SANTAR AND BEDNÂR
Track of an Ionizing
n a t u r e of the m e d i u m {20).
Particle
C h a r a c t e r i s t i c values v a r y f r o m 3 to 6 f o r
g ° , f r o m 6 u p to 10 f o r g, f r o m 0.2 to 0.6 for y°, u p to 1.5 f o r y.
531
a n d f r o m 0.5 p o s s i b l y
T h e o p t i c a l y i e l d g ° is d e t e r m i n e d essentially b y
the
o v e r a l l shape of the o p t i c a l s p e c t r u m of a m o l e c u l e , whereas the y i e l d g
s
a n d c o n s e q u e n t l y also the t o t a l p r i m a r y y i e l d g are p r e s u m a b l y m o r e
strongly d e p e n d e n t o n the i n d i v i d u a l m o l e c u l a r nature a n d o n details of the l o w - e n e r g e t i c p a r t of the o p t i c a l s p e c t r u m . b e t w e e n y°
T h e differences
found
a n d y illustrate the necessary c a u t i o n w h i c h s h o u l d b e t a k e n
w h e n a p p l y i n g the o p t i c a l a p p r o x i m a t i o n to p r e d i c t observable
overall
effects i n r a d i o l y s i s .
Downloaded by UNIV LAVAL on July 11, 2016 | http://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0081.ch036
O n e i m p o r t a n t p o i n t remains to be r e s o l v e d , h o w e v e r . P l a t z m a n has r e c e n t l y (14)
s u m m a r i z e d his efforts for i n t r o d u c i n g the o p t i c a l a p p r o x i
m a t i o n i n t o the t h e o r y of r a d i a t i o n c h e m i s t r y a n d suggested a f o r m u l a f o r the o v e r a l l y i e l d goA of p r i m a r y activations :
oAE) E=™
g
( R / E
d
^{
T h i s f o r m u l a c o m b i n e s o p t i c a l d a t a s u c h as df/dE an i n t e g r a l over a l l i o n i z e d states analogous to M e m p i r i c a l r a d i a t i o n - c h e m i c a l d a t a o n W. the f o r m g =
const X
(9)
dE.
/ d E )
and M 2
2
i o n
, w h i c h is
i n E q u a t i o n 6, w i t h
E q u a t i o n 9 is essentially
of
g ° a n d thus represents a n alternative to, a n d
s h o u l d b e c o m p a r e d w i t h our v i e w , g = the o p t i c a l a p p r o x i m a t i o n expressed
g ° + g . It does, i n fact, extend s
b y E q u a t i o n 1 to the t o t a l i t y
of
p r i m a r y activations i n the p h y s i c a l stage a n d y i e l d s , i n p a r t i c u l a r , the approximative conclusion y =
y°.
W i t h o u t g o i n g i n t o details to b e discussed elsewhere W h i l e o u r a p p r o a c h tends to e m p h a s i z e secondary
as f o l l o w s :
the c o n t r i b u t i o n g
electrons to the p r i m a r y y i e l d s , P l a t z m a n ' s
we may
(20),
p o i n t out the m a i n difference b e t w e e n the t w o approaches
of
slow
treatment
puts
s
g e n e r a l l y m o r e emphasis o n the i n t e r n a l energy of the i o n i z e d species t h a n w e d o . C o n s e q u e n t l y , his absolute values of p r i m a r y y i e l d s are, i n general, l o w e r t h a n ours, a n d a significant p a r t of the o b s e r v e d d e c o m p o s i t i o n is i m p l i c i t l y expected to o c c u r i n s u b s e q u e n t p h y s i c o c h e m i c a l a n d c h e m i c a l stages of r a d i o l y s i s . I n contrast, o u r a p p r o a c h explains most of the o b s e r v e d d e c o m p o s i t i o n b y the p r i m a r y processes of the p h y s i c a l stage. A n y d e c i s i v e conclusions a b o u t the p r o b l e m i n the f u t u r e w i l l neces s a r i l y d e v o l v e u p o n a d e t a i l e d k n o w l e d g e of energy d i s t r i b u t i o n of i o n i z a t i o n processes a n d secondary electrons, a n d p o s s i b l y also u p o n a better understanding
of
the
physicochemical
and
chemical
processes
radiolysis.
Hart; Radiation Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
of
532
RADIATION CHEMISTRY
Initial Structure
of the Track
of an Ionizing
1
Particle
I n c o n d e n s e d m e d i a the e l e m e n t a r y acts a c q u i r e m u c h m o r e c o m p l i c a t e d character
(see
Table I)
since the c o n c e p t
o f c o l l i s i o n of a n
e l e c t r o n w i t h a n i s o l a t e d m o l e c u l e loses its m e a n i n g . T h e i o n i z i n g p a r t i cles interact i n a dense m e d i u m m o r e o r less w i t h t h e field
electromagnetic
of a p l a s m a of m o l e c u l a r electrons n o t necessarily b e l o n g i n g t o a
single m o l e c u l e .
C o n s e q u e n t l y , the r e s u l t i n g a c t i v a t i o n m a y b e d e l o c a l -
i z e d at t h e v e r y b e g i n n i n g .
Fano's t h e o r y (2, 3, 4)
of
electromagnetic
interactions i n dense m e d i a suggests that the o p t i c a l s p e c t r u m c a n b e
Downloaded by UNIV LAVAL on July 11, 2016 | http://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0081.ch036
a p p r e c i a b l y m o d i f i e d i n c o m p a r i s o n w i t h that of a n isolated m o l e c u l e . O u r k n o w l e d g e of the s p e c t r a l properties of c o n d e n s e d matter is v e r y p o o r at present,
b u t estimations
of P l a t z m a n (14)
i n d i c a t e that t h e
p i c t u r e d e v e l o p e d f o r the gaseous phase m a y serve as a first a p p r o x i m a t i o n e v e n f o r t h e c o n d e n s e d phase. I n v i e w of the possible d e r e a l i z a t i o n of t h e p r i m a r y activations the space element a l r e a d y enters t h e c o n s i d e r a tions o n the p r i m a r y act. O n t h e m a c r o s c o p i c scale, h o w e v e r , the p i c t u r e remains analogous to t h e d i l u t e gas so that f o r t h e d e s c r i p t i o n of the energetic d i s t r i b u t i o n of p r i m a r y activations t h e homogeneous
statistic
picture could again be used. H o w e v e r , t h e d e n s i t y of t h e m e d i u m affects t h e course of r a d i o l y s i s i n another w e l l - k n o w n , a n d v e r y i m p o r t a n t w a y . L o n g - l i v i n g
reactive
intermediates s u c h as free atoms a n d r a d i c a l s r e m a i n l o c a l i z e d f o r a n a p p r e c i a b l e p e r i o d of t i m e i n t h e close n e i g h b o r h o o d of the p a r e n t a c t i v a tions b e c a u s e of their l i m i t e d m o b i l i t y i n c o n d e n s e d phase.
Hitherto
n e g l e c t e d space a n d t i m e correlations b e t w e e n the i n d i v i d u a l e l e m e n t a r y acts thus b e g i n to influence c o n s i d e r a b l y t h e subsequent processes.
This
f a c t has to b e t a k e n i n t o a c c o u n t i n t h e t h e o r y of p r i m a r y processes. A t u s u a l intensities of i r r a d i a t i o n , t h e tracks of i n d i v i d u a l p r i m a r y electrons
are w e l l isolated.
O n t h e other h a n d , t h e average
distance
b e t w e e n subsequent collisions a l o n g t h e track of a p a r t i c u l a r electron is m u c h r e d u c e d i n the c o n d e n s e d m e d i u m . T h i s enhances t h e p r o b a b i l i t y of m u t u a l i n t e r a c t i o n of the intermediates w i t h i n t h e track.
T h i s fact
has l e d to t h e i d e a of a n i s o l a t e d track o f a n i o n i z i n g p a r t i c l e as a w e b a l o n g w h i c h t h e p h y s i c o c h e m i c a l a n d c h e m i c a l events d e v e l o p i n space a n d time. T h e u s u a l e x t r a p o l a t i o n of e x p e r i m e n t a l k n o w l e d g e b a c k a l o n g t h e t i m e sequence of r a d i o l y t i c processes has p r o v i d e d us w i t h t h e p i c t u r e of a r a d i c a l track w h i c h is f o r m e d at t h e b e g i n n i n g of the c h e m i c a l stage. W h i l e the f u r t h e r d e v e l o p m e n t of this track b y d i f f u s i o n a n d c h e m i c a l reactions
h a d b e e n successfully treated i n great d e t a i l b y the t h e o r y
of d i f f u s i o n k i n e t i c s , t h e i n i t i a l structure of the t r a c k w a s p i c t u r e d o n l y
Hart; Radiation Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
36.
SANTAR AND BEDNÂR
Track of an Ionizing
b y very crude a n d approximate models. p r i n c i p a l i n c a p a b i l i t y of t h e c h e m i c a l
Particle
533
T h e reason f o r this w a s the experience
to y i e l d ,
by
back
extrapolation, physical information. T h e o r i g i n a l i d e a ( 1 5 ) w a s that of a s t r i n g o f i s o l a t e d centers ( s p u r s ) a l o n g t h e track, i n e a c h of w h i c h a n energy of the order of tens of e.v. h a d b e e n d e p o s i t e d i n t h e p r i m a r y act. H o w e v e r , the p h y s i c a l nature of spur f o r m a t i o n r e m a i n e d rather u n i d e n t i f i e d a n d u n e x p l a i n e d i n d e t a i l (6).
O n t h e other h a n d , i t is seen f r o m t h e f o r e g o i n g that t h e track
formation involves a number of both qualitatively a n d quantitatively different processes w h i c h t e n d to c o m p l i c a t e t h e i n i t i a l structure of t h e Downloaded by UNIV LAVAL on July 11, 2016 | http://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0081.ch036
track. Q u i t e r e c e n t l y M a g e e a n d his co-workers (7, 9, J O ) e n d e a v o r i n g t o stimulate f u r t h e r d e v e l o p m e n t of t h e t h e o r y of track took u p a m o r e d e t a i l e d analysis of these p r i m a r y processes o f track f o r m a t i o n
(see
T a b l e I V ) . D e p e n d i n g o n the energy loss Ε of t h e p r i m a r y p a r t i c l e Mozumder and Magee
( 9 ) d i v i d e d t h e c o l l i s i o n a l processes a l o n g t h e
track i n t o the f o l l o w i n g g r o u p s : 1. spurs, 2. b l o b s , 3. short tracks, a n d 4. b r a n c h tracks. T h e b y f a r most f r e q u e n t spurs c o r r e s p o n d i n g to l o w energy losses b e l o w 100 e.v. c a n b e i d e n t i f i e d w i t h t h e o p t i c a l c o l l i s i o n of fast electrons T a b l e I V ) . It is i m p o r t a n t here that t h e secondary electron f r o m
(see
a n o p t i c a l i o n i z a t i o n is so s l o w that it loses its energy v e r y near t o the p o i n t of t h e p r i m a r y c o l l i s i o n . B e c a u s e of this, a l l secondary
excitations
a n d i o n i z a t i o n s i n d u c e d b y this electron o c c u r w i t h i n t h e same single spur.
T h e a c t i o n of s l o w electrons is thus c o m p l e t e l y i n c l u d e d i n t h e
spurs, a n d o n l y fast electrons are c o n s i d e r e d as i o n i z i n g particles f o r m i n g the characteristic entities i n t h e track. T h i s s i t u a t i o n is exactly analogous to t h e s p l i t t i n g of the d e g r a d a t i o n s p e c t r u m i n t o s l o w a n d fast electrons i n t h e t h e o r y of P R C Y : T o t a l y i e l d of spurs is e q u a l to t h e y i e l d g ° of o p t i c a l collisions. I n t h e case of d i l u t e gases there w a s n o n e e d f o r a n y f u r t h e r sub d i v i s i o n of fast electrons since t h e m e a n free p a t h of a l l of t h e m w a s a l w a y s so large that a l l p r i m a r y activations w e r e w e l l separated.
O n the
other h a n d , i n c o n d e n s e d m e d i a t h e free p a t h of electrons h a v i n g a n energy close to the l o w e r l i m i t of the fast r e g i o n is r e d u c e d to t h e extent that t h e spurs f o r m e d b y t h e m t e n d to o v e r l a p f r o m the v e r y b e g i n n i n g . S e c o n d a r y electrons w i t h energies of 100 to 500 e.v. f o r m p e a r - l i k e w i t h a h i g h l o c a l c o n c e n t r a t i o n of o v e r l a p p i n g spurs.
blobs
S t i l l faster δ-elec-
trons w i t h Τ b e t w e e n 500 a n d 5000 e.v. f o r m c y l i n d r i c a l short tracks
with
h i g h L E T , i n w h i c h t h e extent of t h e o v e r l a p o f spurs is s t i l l a p p r e c i a b l e . O n l y t h e electrons of energies h i g h e r t h a n 5000 e.v. are a c t u a l l y c o n s i d e r e d as p r o d u c i n g the b r a n c h tracks c o m p o s e d of isolated spurs, b l o b s ,
Hart; Radiation Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
534
RADIATION CHEMISTRY
Table I V .
1
Survey 100
E,T:
Downloaded by UNIV LAVAL on July 11, 2016 | http://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0081.ch036
SPURS P R O C E S S
optical excitations of valence electrons
C a n be induced by electrons
all fast
Properties of the secondary electron
(
T
slow < 100 e.v.)
Integration limits over Τ - i n theory of P R C Y
-*
g
s
^
- i n track theory etc.
T h e t o t a l y i e l d of a l l b l o b s , short tracks, a n d b r a n c h tracks corre
sponds, of course, to the s m a l l y i e l d s g * of δ-electrons f r o m h a r d c o l l i s i o n s and g
K
of A u g e r electrons f r o m the i n n e r - s h e l l i o n i z a t i o n s .
M a g e e does not r e g a r d the b r a n c h tracks as p a r t i c u l a r entities b u t he develops t h e m i n the same w a y as the track of the p r i m a r y fast electron. T o c o m p a r e his results w i t h the t h e o r y of P R C Y it is, h o w e v e r , necessary (20)
to d e v e l o p e v e n the b l o b s a n d t h e short tracks i n t o t h e i r c o n s t i t u t i n g
spurs. F o r the c o r r e s p o n d i n g p a r t i t i o n of the t o t a l y i e l d of spurs w e t h e n obtain g° = g(spur) + g ( s p u r )
51
+ g(spur) .
T h e results of M a g e e ' s c a l c u l a t i o n s (7, 10)
st
(10)
of t r a c k structure repre
sent either the t e r m g ( s p u r ) for i s o l a t e d spurs o n l y or the s u m g ( s p u r ) +
g (spur)
s t
if the short tracks h a d f u r t h e r b e e n d e v e l o p e d i n t o spurs.
S i m p l y , it matters w h e r e the l i m i t of energy is p u t above w h i c h
the
e l e c t r o n is s t i l l a s c r i b e d the a b i l i t y to generate isolated activations. I n the l a n g u a g e of d e g r a d a t i o n s p e c t r u m this statement
is e q u i v a l e n t to
the
s h i f t i n g of the b o r d e r l i n e b e t w e e n fast a n d s l o w electrons, the latter as if d i s s i p a t i n g t h e i r energy "at the spot"—i.e., w i t h i n a single entity. T h u s ,
Hart; Radiation Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
36,
SANTAR AND BEDNÂR
Track of an Ionizing
535
Particle
of T r a c k E n t i t i e s 500
5000
T MAIN
BLOBS
SHORT
TRACKS
h a r d
TRACK +
BRANCH a)
0
c o l l i s i o n s
TRACKS
(δ-electrons)
b) optical excitations of inner electrons (Auger electrons) K-el. : C Ν Ο
Downloaded by UNIV LAVAL on July 11, 2016 | http://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0081.ch036
t
t
Î
part
of
fast
fast range < 200 A .
T
_ "~g(spur)
b l
100 e.v.)
range > 200 A .
M
"*
( >
(Τ > E)
>-
g 0
g(spur)
-*
mean free path > 100 A .
*·
st
*
g(spur)
>
again, w e meet the necessity of a r e s o l u t i o n i n t o parts of the d e g r a d a t i o n s p e c t r u m , a n d of separate e v a l u a t i o n of c o n t r i b u t i o n s of these parts to the t o t a l y i e l d . A n a p p r o x i m a t e s o l u t i o n of this p r o b l e m ( I I )
is g i v e n i n F i g u r e 1,
w h e r e the r e l a t i v e c o n t r i b u t i o n s of electrons of different energies to t h e t o t a l y i e l d g are s h o w n . T h e p a r t of the c u r v e f o r g ° is b a s e d o n theo r e t i c a l c a l c u l a t i o n s of the d e g r a d a t i o n s p e c t r u m ( 8 ) , the c o n t r i b u t i o n g is extrapolated s c h e m a t i c a l l y .
s
F r o m this F i g u r e w e get as a r o u g h first
a p p r o x i m a t i o n the ratios 6 5 : 2 2 : 1 3 f o r the percentage of the terms o n the r i g h t - h a n d side of E q u a t i o n 10. Since the o p t i c a l a p p r o x i m a t i o n is v a l i d f o r a l l fast electrons,
and
since the latter are a l l able to i n d u c e the entire s p e c t r u m of o p t i c a l transitions, the energy d i s t r i b u t i o n of spurs is the same f o r i s o l a t e d spurs a n d f o r the spurs i n b l o b s or short tracks. T h e average energy p e r s p u r is thus e q u a l i n a l l entities a n d the p a r t i t i o n of energy b e t w e e n
spurs,
b l o b s , a n d short tracks is a p p r o x i m a t e l y g i v e n b y the above ratios, too. T h i s is one of the reasons w h y the y i e l d g
s
c a u s e d b y s l o w electrons is
u n i f o r m l y a d d e d to the w h o l e area of the y i e l d g ° of spurs i n F i g u r e 1.
Hart; Radiation Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
Downloaded by UNIV LAVAL on July 11, 2016 | http://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0081.ch036
536
RADIATION CHEMISTRY
1
Figure 1. Subdivision of the degradation spectrum and contributions of its various regions to the total yield of primary activations O u r conclusions are c o r r o b o r a t e d b y a n analysis of M a g e e ' s results. H i s a p p r o a c h (10)
is to s i m u l a t e the t r a c k b y a M o n t e C a r l o m e t h o d .
T h e c o m p u t e r generates pairs of r a n d o m n u m b e r s w i t h w h i c h the free paths of the electrons before p a r t i c u l a r collisions, a n d the energy losses i n these collisions, are u n i v o c a l l y associated o n t h e basis of a p a r t i c u l a r f o r m of the cross sections. T h e result of this a l g o r i t h m is the d i s t r i b u t i o n of n u m b e r s a n d ener gies of i s o l a t e d spurs, b l o b s , a n d short tracks f o r m e d d u r i n g the c o m p l e t e a b s o r p t i o n of a p r i m a r y 1 M e v . electron. that the histograms (JO)
It c a n b e seen f r o m F i g u r e 2
f o r w a t e r agree i n shape v e r y w e l l w i t h the
s p e c t r u m of oscillator strength a n d w i t h the d e r i v e d excitation s p e c t r u m ( 1 / E ) ( df/dE
), w h i c h M a g e e u s e d . T h i s is i n f u l l agreement w i t h o u r
c o n c e p t i o n of the o p t i c a l a p p r o x i m a t i o n (see
Equations 3 and 5).
On
the other h a n d , the absolute values are different since M a g e e u s e d a sub s t a n t i a l l y different o p t i c a l s p e c t r u m for w a t e r t h a n w e p r e v i o u s l y d i d (16). W e m a d e a n u m b e r of calculations (20) of the track structure b y o u r m e t h o d , w h i c h has b e e n b r i e f l y m e n t i o n e d above. T a b l e V a g a i n shows a p r o n o u n c e d effect of the c h e m i c a l nature of molecules o n the
Hart; Radiation Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
36.
SANTAR AND BEDNAR
Track of an Ionizing
Particle
537
f u n d a m e n t a l r a d i a t i o n - c h e m i c a l properties. W h i l e t h e y i e l d s of b l o b s a n d short tracks r e m a i n r o u g h l y u n c h a n g e d , t h e y i e l d s of spurs v a r y w i t h i n a factor of t w o . T h i s m a y b e i m p o r t a n t i n d e e d i n considerations of t r a c k
Downloaded by UNIV LAVAL on July 11, 2016 | http://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0081.ch036
effects i n different l i q u i d s .
Figure 2. Comparison between the optical spectra used and the spurdistribution histograms obtained for a 1 Mev. primary electron absorbed in water spectra df/dE, (R/EXdf/dE) used by Magee ( 1 0 ) , - - - - - resulting histograms of number and energy distribution of spurs, by Monte Carlo method, spectrum df/dE for an isolated water molecule (16)
Hart; Radiation Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
538
RADIATION CHEMISTRY
Table V . g° H CH
Effect of Chemical Composition of the Medium on the T r a c k Structure g(spur)
5.8 4.8
2
4
m
1.5 1.2
g(spur)
st
0.8 0.7
3.5 2.9
3.7 2.8
2
o
2
1.0 0.7
0.5 0.4
2.2 1.7
g(s.t.)
g(blob)
g(spur)
) )~0.1
H 0
1
I
;
)
() —0.01
(
I n c o n c l u s i o n , i t m a y b e s a i d that, at present, t h e o r y appears to b e a b l e t o p r o v i d e a u s e f u l a priori
information o n primary radiolytic proc
Downloaded by UNIV LAVAL on July 11, 2016 | http://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0081.ch036
esses a n d y i e l d s .
Literature Cited (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) (19) (20)
Durup, J., Platzman, R. L., Discussions Faraday Soc. 31, 156 (1961). Fano, U., Phys. Rev. 103, 1202 (1956). Ibid.,118,451(1960). Fano, U., Ann. Rev. Nucl. Science 13, 1 (1963). Hart, E. J., Platzman, R. L., "Mechanisms in Radiobiology," Vol. I, p. 93, A. Forssberg, M. Errera, eds., Academic Press, New York, 1961. Magee, J. L., Ann. Rev. Phys. Chem. 12, 389 (1961). Magee, J. L., Funabashi, K., Mozumder, Α., Proc. 6th Japan Conf. Radio isotopes, Tokyo, p. 755, 1965. McGinnies, R. T., U. S. Natl. Bur. Stds. Circ. No. 597 (1959). Mozumder, Α., Magee, J. L., Radiation Res. 28, 203 (1966). Mozumder, Α., Magee, J. L.,J.Chem. Phys. 45, 3332 (1966). Ore, Α., "Radiation Research," p. 54, G. Silini, ed., Proc. Intern. Congr. of Radiation Res., 3rd, North-Holland Publ. Co., Amsterdam, 1967. Platzman, R. L., Intern. J. Appl. Radiation Isotopes 10, 116 (1961). Platzman, R. L., The Vortex 23, 372 (1962). Platzman, R. L., "Radiation Research," p. 20, G. Silini, ed., Proc. Intern. Congr. Radiation Research, 3rd, North-Holland Publ. Co., Amsterdam, 1967. Samuel, A. H., Magee, J. L.,J.Chem. Phys. 21, 1080 (1953). Santar, I., Bednář, J., Coll. Czech. Chem. Commun. 32, 953 (1967). Ibid., 33, 1 (1968). Santar. I., Bednář, J., "The Chemistry of Excitation and Ionization," p. 217, G. R. A. Johnson, G. Scholes, eds., Taylor & Francis, London, 1967. Santar, I., "To the Theory of Primary Radiation—Chemical Yield" (in Czech), Dissertation, The Nuclear Research Institute, Czechoslovak Academy of Sciences,Rež(1967). Santar, I.,Bednář,J. (to be published).
RECEIVED January 2,
1968.
Hart; Radiation Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.