Dynamics of Energy Transfer from CdSe Nanocrystals to Triplet States

Mar 7, 2016 - Department of Chemistry, University of California, Riverside, Riverside, California 92521, United States. J. Phys. Chem. C , 2016, 120 (...
0 downloads 0 Views 2MB Size
Subscriber access provided by Flinders University Library

Article

Dynamics of Energy Transfer from CdSe Nanocrystals to Triplet States of Anthracene Ligand Molecules Geoffrey B. Piland, Zhiyuan Huang, Ming L. Tang, and Christopher J. Bardeen J. Phys. Chem. C, Just Accepted Manuscript • DOI: 10.1021/acs.jpcc.5b12021 • Publication Date (Web): 07 Mar 2016 Downloaded from http://pubs.acs.org on March 9, 2016

Just Accepted “Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.

The Journal of Physical Chemistry C is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Page 1 of 32

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Physical Chemistry

Dynamics of Energy Transfer from CdSe Nanocrystals to Triplet States of Anthracene Ligand Molecules Geoffrey B. Piland, Zhiyuan Huang, Ming Lee Tang, Christopher J. Bardeen* Department of Chemistry University of California, Riverside Riverside, CA 92521 *e-mail: [email protected]

Abstract The combination of CdSe semiconductor nanocrystals with 9-anthracene carboxylic acid ligands can sensitize triplet-triplet annihilation on an emitter molecule, diphenylanthracene. This hybrid system has recently been shown to upconvert visible light (532 nm) to ultraviolet light (420 nm) [Nano Lett. 15, 5552-5557 (2015)]. In the current paper, time-resolved photoluminescence measurements are used to characterize the kinetics of energy transfer from the CdSe exciton state to the triplet state of the anthracene ligand. We find that the 9-anthracene carboxylic acid binds to the CdSe according Poisson statistics with a maximum number of 2-3 per nanocrystal. The CdSe-to-ligand energy transfer rate is 1.5×107 s-1. The overall energy transfer efficiency appears to be limited by the presence of fast nonradiative decay channels in the nanocrystals and the low coverage of anthracene ligands resulting from the specific ligand exchange conditions used in this paper. Possible strategies for improving this component of the hybrid upconversion system are discussed in light of these results.

1 ACS Paragon Plus Environment

The Journal of Physical Chemistry

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Introduction In organic molecules, conversion of the lowest excited singlet state (S1) into the lowest triplet state (T1) (intersystem crossing, ISC) is spin forbidden, making relaxation from S1 to T1 relatively slow. Conversely, conversion of a singlet into a pair of triplets (singlet fission) and its inverse (triplet-triplet annihilation or triplet fusion) are spin-allowed and can occur much more rapidly.1-2 These 12 and 21 exciton fission and fusion processes have attracted considerable attention as possible strategies for improving solar energy conversion efficiencies.3 For example, triplet-triplet fusion or annihilation (TTA) provides a way to upconvert a pair of low energy photons into a high energy photon that can be absorbed in a photovoltaic cell. 4-8 One challenge in using TTA for upconversion (UC) is how to create the triplet states in the first place. The spin-forbidden nature of the S0-T1 transition prevents direct optical excitation of the triplet states. The usual strategy is to employ a second organic molecule as a triplet sensitizer. The sensitizer molecule has a low energy S0-S1 transition and undergoes rapid ISC to populate its T1 state. Triplet energy transfer (TET) from the sensitizer can then populate the T1 state of the emitter molecule. When the T1 states of two emitter molecules have been populated, they can undergo fusion to generate an excited singlet state that emits the high energy photon. Unfortunately, there are few molecular sensitizers that are able to absorb light in the near infrared, the most relevant region of the solar spectrum for standard photovoltaic materials like Si and CdTe. Recently, we demonstrated that inorganic semiconductor nanocrystals (NCs) could be used as upconversion sensitizers out to 980 nm.9

In that work, it was found that the

upconversion efficiency was low (50%) quantum yields and monoexponential decays50, and suppressing the 134 ps decay component has the potential to significantly increase the energy transfer efficiency while simplifying the photophysics. In general, longer-lived NC excitons should provide more opportunity for the NC9-ACA energy transfer to take place, leading to more 9-ACA triplet states and higher UC yields. In summary, the kinetics of energy transfer from a NC exciton state to the triplet state of a conjugated organic ligand have been characterized for the first time. This transfer represents the first step in a sequence of events that enables hybrid organic-inorganic systems to upconvert a pair of low energy photons into one high energy photon. We find that the CdSe-to-ligand energy transfer occurs on a timescale of 70 ns and its overall efficiency appears to be limited by the presence of fast nonradiative decay channels in the NCs and the low coverage of anthracene ligands. It is likely that different ligand exchange conditions and NC surface properties lead to different overall triplet energy transfer rates, and optimizing both should improve energy transfer efficiency and thus UC efficiency.

Acknowledgements

14 ACS Paragon Plus Environment

Page 15 of 32

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Physical Chemistry

The authors acknowledge financial support from the National Science Foundation grant DMR1508099 (C.J.B), the US Army grant W911NF-14-1-0260 for instrumentation (M.L.T.) and National Science Foundation grant CHE-1351663 for supplies (M.L.T.).

Supporting Information CdSe nanocrystal synthesis, upconversion quantum yield measurements, data fitting procedures, and early and late time CdSe photoluminescence spectra. This information is available free of charge via the Internet at http://pubs.acs.org

15 ACS Paragon Plus Environment

The Journal of Physical Chemistry

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

References (1) Pope, M.; Swenberg, C. E., Electronic Processes in Organic Crystals and Polymers. Oxford University Press: New York, 1999. (2) Burdett, J. J.; Piland, G. B.; Bardeen, C. J., Magnetic Field Effects and the Role of Spin States in Singlet Fission. Chem. Phys. Lett. 2013, 585, 1-10. (3) Tayebjee, M. J. Y.; McCamey, D. R.; Schmidt, T. W., Beyond Schockley-Queisser: Molecular Approaches to High-Efficiency Photovoltaics. J. Phys. Chem. Lett. 2015, 6, 23672378. (4) Baluschev, S.; Miteva, T.; Yakutkin, V.; Nelles, G.; Yasuda, A.; Wegner, G., UpConversion Fluorescence: Noncoherent Excitation by Sunlight. Phys. Rev. Lett. 2006, 97, 143903/1-143903/3. (5) Hoseinkhani, S.; Tubino, R.; Meinardi, F.; Monguzzi, A., Achieving the Photon UpConversion Thermodynamic Yield Upper Limit by Sensitized Triplet-Triplet Annihilation. Phys. Chem. Chem. Phys. 2015, 17, 4020-4024. (6) Kozlov, D. V.; Castellano, F. N., Anti-Stokes Delayed Fluorescence From Metal-Organic Bichromophores. Chem. Comm. 2004, 2680-2681. (7) Schulze, T. F.; Schmidt, T. W., Photochemical Upconversion: Present Status and Prospects for Its Applications to Solar Energy Conversion. Ener. Envir. Sci. 2015, 8, 103-125. (8) Singh-Rachford, T. N.; Castellano, F. N., Photon Upconversion Based on Sensitized Triplet-Triplet Annihilation. Coordination Chemistry Reviews 2010, 254, 2560-2573. (9) Huang, Z.; Li, X.; Mahboub, M.; Hanson, K. M.; Nichols, V. M.; Le, H.; Tang, M. L.; Bardeen, C. J., Hybrid Molecule-Nanocrystal Photon Upconversion Across the Visible and NearInfrared. Nano Lett. 2015, 15, 5552-5557. (10) Mongin, C.; Garakyaraghi, S.; Razgoniaeva, N.; Zamkov, M.; Castellano, F. N., Direct Observation of Triplet Energy Transfer from Semiconductor Nanocrystals. Science 2016, 351, 369-372. (11) Somers, R. C.; Snee, P. T.; Bawendi, M. G.; Nocera, D. G., Energy transfer of CdSe/ZnS Nanocrystals Encapsulated with Rhodamine-Dye Functionalized Poly(Acrylic Acid). J. Photochem. Photobiol. A 2012, 248, 24-29. (12) Halivni, S.; Sitt, A.; Hadar, I.; Banin, U., Effect of Nanoparticle Dimensionality on Fluorescence Resonance Energy Transfer in Nanoparticle-Dye Conjugated Systems. ACS Nano 2012, 6, 2758-2765. (13) Dworak, L.; Matylitsky, V. V.; Ren, T.; Basche, T.; Wachtveitl, J., Acceptor Concentration Dependence of Forster Resonance Energy Transfer Dynamics in Dye-Quantum Dot Complexes. J. Phys. Chem. C 2014, 118, 4396-4402. (14) Hoffman, J. B.; Choi, H.; Kamat, P. V., Size-Dependence Energy Transfer Pathways in CdSe Qauntum Dot-Squaraine Light-Harvesting Assemblies: Forster versus Dexter. J. Phys. Chem. C 2014, 118, 18453-18461. (15) Beane, G.; Boldt, K.; Kirkwood, N.; Mulvaney, P., Energy Transfer between Qauntum Dots and Conjugated Dye Molecules. J. Phys. Chem. C 2014, 118, 18079-18086. (16) Samia, A. C. S.; Chen, X.; Burda, C., Semiconductor Quantum Dots for Photodynamic Therapy. J. Am. Chem. Soc. 2003, 125, 15736-15737. (17) Cossairt, B. M.; Juhas, P.; Billinge, S. J. L.; Owen, J. S., Tuning the Surface Structure and Optical Properties of CdSe Clusters Using Coordination Chemistry. Journal of Physical Chemistry Letters 2011, 2, 3075-3080. 16 ACS Paragon Plus Environment

Page 16 of 32

Page 17 of 32

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Physical Chemistry

(18) Li, X.; Nichols, V. M.; Zhou, D.; Lim, C.; Pau, G. S. H.; Bardeen, C. J.; Tang, M. L., Observation of Multiple, Identical Binding Sites in the Exchange of Carboxylic Acid Ligands with CdS Nanocrystals. Nano Lett. 2014, 14, 3382-3387. (19) Li, X.; Slyker, L. W.; Nichols, V. M.; Pau, G.; Heng, S.; Bardeen, C. J.; Tang, M. L., Ligand Binding to Distinct Sites on Nanocrystals Affecting Energy and Charge Transfer. J. Phys. Chem. Lett. 2015, 6, 1709-1713. (20) Carbone, L.; Nobile, C.; Giorgi, M. D.; Sala, F. D.; Morello, G.; Pompa, P.; Hytch, M.; Snoeck, E.; Fiore, A.; Franchini, I. R.; Nadasan, M.; Silvestre, A. F.; Chiodo, L.; Kudera, S.; Cingolani, R.; Krahne, R.; Manna, L., Synthesis and Micrometer-Scale Assembly of Colloidal CdSe/CdS Nanorods Prepared by a Seeded Growth Approach. Nano Lett. 2007, 7, 2942-2950 (21) Yu, W. W.; Qu, L. H.; Guo, W. Z.; Peng, X. G., Experimental Determination of the Extinction Coefficient of CdTe, CdSe, and CdS Nanocrystals. Chemistry of Materials 2003, 15, 2854-2860. (22) Dey, J.; Haynes, J. L.; Warner, I. M.; Chandra, A. K., Fluorescence Spectral Study of 9Acridinecarboxylic Acid and It Methyl Ester. Understanding the Unusual Fluorescence Behavior of 9-Anthroic Acid. J. Phys. Chem. A 1997, 101, 2271-2278. (23) Murov, S. L.; Carmichael, I.; Hug, G. L., Handbook of Photochemistry. Marcel Dekker: New York, 1993. (24) Califano, M.; Franceschetti, A.; Zunger, A., Temperature Dependence of Excitonic Radiative Decay in CdSe Quantum Dots: The Role of Surface Hole Traps. Nano Lett. 2005, 5, 2360-2364. (25) Jones, M.; Lo, S. S.; Scholes, G. D., Quantitative Modeling of the Role of Surface Traps in CdSe/CdS/ZnS Nanocrystal Photoluminescence Decay Dynamics. Proc. Nat. Acad. Sci. 2009, 106, 3011-3016. (26) Jones, M.; Nedeljkovic, J.; Ellingson, R. J.; Nozik, A. J.; Rumbles, G., Photoenhancement of Luminescence in Colloidal CdSe Quantum Dot Solutions. J. Phys. Chem. B 2003, 107, 11346-11352. (27) Klimov, V. I., Spectral and Dynamical Properties of Multiexcitons in Semiconductor Nanocrystals. Ann. Rev. Phys. Chem. 2007, 58, 635-673. (28) Koole, R.; Luigjes, B.; Tachiya, M.; Pool, R.; Vlugt, T. J. H.; Donega, C. d. M.; Meijerink, A.; Vanmaekelbergh, D., Differences in Cross-Linnk Chemistry between Rigid and Flexible Dithiol Molecules Revealed by Optical Studies of CdTe Quantum Dots. J. Phys. Chem. C 2007, 111, 11208-11215. (29) Sadhu, S.; Tachiya, M.; Patra, A., A Stochastic Model for Energy Transfer from CdS Quantum Dots/Rods (Donors) to Nile Red Dye (Acceptors). J. Phys. Chem. C 2009, 113, 1948819492. (30) Snee, P. T.; Tyrakowski, C. M.; Page, L. E.; Isovic, A.; Jawid, A. M., Quantifying Quantum Dots through Forser Resonant Energy Transfer. J. Phys. Chem. C 2011, 115, 1957819582. (31) Gomes, R.; Hassinen, A.; Szcygiel, A.; Zhao, Q.; Vantomme, A.; Martins, J. C.; Hens, Z., Binding of Phosphonic Acids to CdSe Quantum Dots: A Solution NMR Study. J. Phys. Chem. Lett. 2011, 2, 145-152. (32) Huang, Z.; Li, X.; Yip, B. D.; Rubalcava, J. M.; Bardeen, C. J.; Tang, M. L., Nanocrystal Size and Quantum Yield in the Upconversion of Green to Violet Light with CdSe and Anthracene Derivatives. Chem. Mater. 2015, 27, 7503-7507.

17 ACS Paragon Plus Environment

The Journal of Physical Chemistry

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

(33) Tannaci, J. F.; Noji, M.; McBee, J.; Tilley, T. D., 9,10-Dichlorooctafluoroanthracene as a Building Block for n-Type Organic Semiconductors. J. Org. Chem. 2007, 72, 5567-5573. (34) Tarafder, K.; Surendranath, Y.; Olshansky, J. H.; Alivisatos, A. P.; Wang, L. W., Hole Transfer Dynamics from a CdSe/CdS Quantum Rod to a Tethered Ferrocene Derivative. J. Am. Chem. Soc. 2014, 136, 5121-5131. (35) Pavlishchuk, V. V.; Addison, A. W., Conversion Constants for Redox Potentials Measured Versus Different Reference Electrodes in Acetonitrile Solutions at 25oC. Inorg. Chim. Acta 2000, 298, 97-102. (36) Schoonover, J. R.; Dattelbaum, D. M.; Malko, A.; Klimov, V. I.; Meyer, T. J.; StyersBarnett, D. J.; Gannon, E. Z.; Granger, J. C.; Aldridge, W. S.; Papanikolas, J. M., Ultrafast Energy Transfer between the 3MLCT State of [RuII(dmb)2(bpy-an)]2+ and the Covalently Appended Anthracene. J. Phys. Chem. A 2005, 109, 2472-2475. (37) Whited, M. T.; Djurovich, P. I.; Roberts, S. T.; Durrell, A. C.; Schlenker, C. W.; Bradforth, S. E.; Thompson, M. E., Singlet and Triplet Excitation Management in a Bichromophoric Near-Infrared-Phosphorescent BODIPY-Benzoporphyrin Platinum Complex. J. Am. Chem. Soc. 2011, 133, 88-96. (38) Tanaka, M.; Yamaguchi, G.; Shiokawa, J.; Yamanaka, C., Mechanism and Rate of the Intramolecular Energy Transfer in Rare Earth Chelates. Bull. Chem. Soc. Japan 1970, 43, 549550. (39) Klink, S. I.; Grave, L.; Reinhoudt, D. N.; Veggel, F. C. J. M. v.; Werts, M. H. V.; Geurts, F. A. J.; Hofstraat, J. W., A Systematic Study of the Photphysical Processes in Polydentate Triphenylene-Functionalized Eu3+, Tb3+, Yb3+, and Er3+ Complexes. J. Phys. Chem. A 2000, 104, 5457-5468. (40) Nah, M. K.; Oh, J. B.; Kim, H. K.; Choi, K. H.; Kim, Y. R.; Kang, J. G., Photphysical Properties and Energy Transfer Pathway of Er(III) Complexes with Pt-Porphyrin and Terpyridine Ligands. J. Phys. Chem. A 2007, 111, 6157-6164. (41) Thompson, N. J.; Wilson, M. W. B.; Congreve, D. N.; Brown, P. R.; Scherer, J. M.; Bischof, T. S.; Wu, M. F.; Geva, N.; Welborn, M.; Van Voorhis, T.; Bulovic, V.; Bawendi, M. G.; Baldo, M. A., Energy Harvesting of Non-Emissive Triplet Excitons in Tetracene by Emissive PbS Nanocrystals. Nat. Mater. 2014, 13, 1039-1043. (42) Tabachnyk, M.; Ehrler, B.; Gelinas, S.; Bohm, M. L.; Walker, B. J.; Musselman, K. P.; Greenham, N. C.; Friend, R. H.; Rao, A., Resonant Energy Transfer of Triplet Excitons From Pentacene to PbSe Nanocrystals. Nat. Mater. 2014, 13, 1033-1038. (43) Schmidt, T. W.; Castellano, F. N., Photochemical Upconversion: The Primacy of Kinetics. J. Phys. Chem. Lett. 2014, 5, 4062-4072. (44) Hirayama, S., Effect of Substituent on the Behaviour of the Excited Singlet and Triplet States of Carbonyl Derivatives of Anthracene of the Type 9-X.CO.A. J. Chem. Soc. Farad. Trans. 1 1982, 78, 2411-2421. (45) Li, Q.; Guo, H.; Ma, L.; Wu, W.; Liu, Y.; Zhao, J., Tuning the Photophysical Properties of N^N Pt(II) Bisacetylide Complexes with Fluorene Moiety and Its Applications for TripletTriplet Annihilation Based Upconversion. J. Mater. Chem. 2012, 22, 5319-5329. (46) Vatassery, R.; Hinke, J. A.; Sanchez-Diaz, A.; Hue, R.; Mann, K. R.; Blank, D. A.; Gladfelter, W. L., Excited-State Quenching Mechanism of a Terthiophene Acid Dye bound to Monodisperse CdS Nanocrystals: Electron Transfer versus Concentration Quenching. J. Phys. Chem. C 2013, 117, 10708-10715.

18 ACS Paragon Plus Environment

Page 18 of 32

Page 19 of 32

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Physical Chemistry

(47) Chambrier, I.; Banerjee, C.; Remiro-Buenamanana, S.; Chao, Y.; Cammidge, A. N.; Bochmann, M., Synthesis of Porphyrin-CdSe Quantum Dot Assemblies: Controlling Ligand Binding by Substituent Effects. Inorg. Chem. 2015, 54, 7368-7380. (48) Driel, A. F. v.; Allan, G.; Delerue, C.; Lodahl, P.; Vos, W. L.; Vanmaekelbergh, D., Frequency-Dependent Spontaneous Emssion Rate from CdSe and CdTe Nanocrystals: Influence of Dark States. Phys. Rev. Lett. 2005, 95, 236804-1/4. (49) Donega, C. d. M.; Koole, R., Size Dependence of the Spontaneous Emission Rate and Absorption Cross Section of CdSe and CdTe Quantum Dots. J. Phys. Chem. C 2009, 113, 65116520. (50) Donega, C. d. M.; Hickey, S. G.; Wuister, S. F.; Vanmaekelbergh, D.; Meijerink, A., Single-Step Synthesis to Control the Photoluminescence Quantum Yield and Size Dispersion of CdSe Nanocrystals. J. Phys. Chem. B 2003, 107, 489-496.

19 ACS Paragon Plus Environment

The Journal of Physical Chemistry

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Figure 1. Absorption (in black) and fluorescence (in red) of a) DPA, b) 9ACA, and c) CdSe. The triplet energies of 9-ACA and DPA are marked with dashed lines (red for 9-ACA, blue for DPA).

20 ACS Paragon Plus Environment

Page 20 of 32

Page 21 of 32

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Physical Chemistry

Figure 2. a) Time-resolved photoluminescence of NCs with ODPA and [9-ACA]LEX = 20 mM in a 1 ns time window. Approximately 55% of the photoluminescence decays with a time constant of 134 ps in this window, with the exponential fit shown in green. This early-time decay is unaffected by the presence of the 9-ACA. b) Time-resolved photoluminescence of NCs with various [9-ACA]LEX concentrations along with fits (red lines) based on a Poisson binding model given by Equation (1). The decays are plotted on a linear scale for the first 300 ns. c) The timeresolved photoluminescence data plotted on a logarithmic scale for the first 800 ns.

21 ACS Paragon Plus Environment

The Journal of Physical Chemistry

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Figure 3. Time-resolved photoluminescence of CdSe NCs with ODPA ligands only, ODPA ligands with 2.15 mM DPA in solution, and CdSe with benzoic acid ligands only. Neither the presence of COOH binding groups or DPA in solution has an effect on the CdSe decay.

22 ACS Paragon Plus Environment

Page 22 of 32

Page 23 of 32

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Physical Chemistry

Figure 4. The number of bound 9ACA ligands on the NCs calculated from the Poisson binding model versus [9-ACA]LEX along with fits using Equation (2) in the text. There is a ~30% decrease in the number of bound ligands when DPA is present

23 ACS Paragon Plus Environment

The Journal of Physical Chemistry

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Figure 5. a) Time-resolved photoluminescence decay of 9-ACA in the presence of CdSe NCs (black, integrated from 400-470nm) compared to that of 9-ACA by itself (red). b) Photoluminescence spectra measured using an excitation wavelength of 400 nm of CdSe NCs exposed to various [9-ACA]LEX concentrations, illustrating the increasing fluorescence due to free 9-ACA in solution.

24 ACS Paragon Plus Environment

Page 24 of 32

Page 25 of 32

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Physical Chemistry

25 ACS Paragon Plus Environment

The Journal of Physical Chemistry

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

TOC Image

26 ACS Paragon Plus Environment

Page 26 of 32

Page 27 of 32

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Physical Chemistry

Figure 1. Absorption (in black) and fluorescence (in red) of a) DPA, b) 9ACA, and c) CdSe. The triplet energies of 9-ACA and DPA are marked with dashed lines (red for 9-ACA, blue for DPA). 117x166mm (300 x 300 DPI)

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Figure 2. a) Time-resolved photoluminescence of NCs with ODPA and [9-ACA]LEX = 20 mM in a 1 ns time window. Approximately 55% of the photoluminescence decays with a time constant of 134 ps in this window, with the exponential fit shown in green. This early-time decay is unaffected by the presence of the 9-ACA. b) Time-resolved photoluminescence of NCs with various [9-ACA]LEX concentrations along with fits (red lines) based on a Poisson binding model given by Equation (1). The decays are plotted on a linear scale for the first 300 ns. c) The time-resolved photoluminescence data plotted on a logarithmic scale for the first 800 ns. 203x464mm (300 x 300 DPI)

ACS Paragon Plus Environment

Page 28 of 32

Page 29 of 32

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Physical Chemistry

Figure 3. Time-resolved photoluminescence of CdSe NCs with ODPA ligands only, ODPA ligands with 2.15 mM DPA in solution, and CdSe with benzoic acid ligands only. Neither the presence of COOH binding groups or DPA in solution has an effect on the CdSe decay. 63x48mm (300 x 300 DPI)

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Figure 4. The number of bound 9ACA ligands on the NCs calculated from the Poisson binding model versus [9-ACA]LEX along with fits using Equation (2) in the text. There is a ~30% decrease in the number of bound ligands when DPA is present. 63x48mm (300 x 300 DPI)

ACS Paragon Plus Environment

Page 30 of 32

Page 31 of 32

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Physical Chemistry

Figure 5. a) Time-resolved photoluminescence decay of 9-ACA in the presence of CdSe NCs (black, integrated from 400-470nm) compared to that of 9-ACA by itself (red). b) Photoluminescence spectra measured using an excitation wavelength of 400 nm of CdSe NCs exposed to various [9-ACA]LEX concentrations, illustrating the increasing fluorescence due to free 9-ACA in solution. 66x24mm (300 x 300 DPI)

ACS Paragon Plus Environment

CdSe

Norm Photoluminescence

500The nm 1 Journal of Physical Chemistry Page 32 of 32 1 0.01 2 9-ACA 3 4 Environment Increasing [9ACA]LEX DPA ACS Paragon Plus 5 1E-4 0.0 0.4 6 420 nm Time / s 7

0.8