Efficiency and Costing - American Chemical Society

Thermodynamic Properties of Coal and Coal-Derived Liquids. Evaluation and Application to the Exergy Analysis of a Coal Liquefaction Process. MASARU ...
0 downloads 0 Views 2MB Size
18 Thermodynamic Properties of Coal and Coal-Derived Liquids Evaluation and Application to the Exergy Analysis of a Coal Liquefaction Process

Downloaded by CORNELL UNIV on August 16, 2016 | http://pubs.acs.org Publication Date: November 11, 1983 | doi: 10.1021/bk-1983-0235.ch018

MASARU ISHIDA and TAKAHIRO SUZUKI Research Laboratory of Resources Utilization, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 227, Japan NAONORI NISHIDA Department of Management Science, Science University of Tokyo, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162, Japan Methods to estimate heats of formation ΔHf° and absolute entropies S° for coal and coal-derived liquids are proposed based on the group contribution method. Semiempirical formulas to e s t i mate them are given on the basis of unit mole of carbon in coal or coal-derived liquids. Necessary information on these formulas includes elemental composition data and normal boiling points (only for coal-derived l i q u i d s ) . Using these formulas and the Structured Process EnergyExergy-flow Diagram (SPEED), an exergy analysis for the H-Coal process system for producing synthetic fuels is performed. The exergy (or availability) analysis has been applied to coal conversion processes by various investigators. Most of them have treated coal gasification processes (1,2), and, therefore, the application of exergy analysis of liquefaction process has not been made extensively. The COED process is the only direct liquefaction process to which an exergy analysis has been performed (3-5). It has not been applied to other processes such as the Exxon donor solvent, H-Coal, and SRC-II processes. One reason why these processes have not been treated may be that the necessary information such as pressures, temperatures, flow rates, and compositions as to complete both the f i r s t law and the second law analysis has been considered proprietary by their developers. Another reason may be due to the lack of thermodynamic properties necessary to calculate both the enthalpy and entropy of coal-derived l i q u i d s . Accordingly, Unruh et a l . (5) performed an exergy analysis on the COED process by assuming that the exergy values for coal and coal-derived liquids are equal to their standard heat of combustion. Kidnay and his colleagues (6,7) have conducted experimental enthalpy measurements on coal liquids, which were derived from 0097-6156/83/0235-0373$06.25/0 © 1983 American Chemical Society Gaggioli; Efficiency and Costing ACS Symposium Series; American Chemical Society: Washington, DC, 1983.

SECOND LAW ANALYSIS OF PROCESSES

374

v a r i o u s c o a l l i q u e f a c t i o n p r o c e s s e s . Experiments have been undertaken f o r whole c o a l l i q u i d s , d i s t i l l a t e samples from c o a l l i q u i d s , and model compounds r e p r e s e n t a t i v e o f c o a l - d e r i v e d l i q u i d s . They a l s o have compared the observed e n t h a l p i e s w i t h those p r e d i c t e d by c o r r e l a t i o n s developed f o r petroleum f r a c t i o n s . They have found t h a t the thermodynamic p r o p e r t i e s o f c o a l - d e r i v e d l i q u i d s d i f f e r c o n s i d e r a b l y from those o f petroleum l i q u i d s . Methods t o estimate the thermodynamic p r o p e r t i e s o f c o a l have been developed by p r e v i o u s i n v e s t i g a t o r s . Dulong (8) has proposed a formula f o r the heat of combustion o f c o a l from i t s elemental composition data. Based on i t , the enthalpy o f format i o n o f c o a l A H ° may be determined. For the a b s o l u t e entropy o f c o a l S ° , Cheng e t a l . (9) have proposed a formula i n terms o f elemental composition o f c o a l . I t has been d e r i v e d by extrapol a t i n g the known values o f S° f o r low molecular weight hydrocarbons which are s o l i d a t room temperature. S° o f c o a l may a l s o be determined backward from the S z a r g u t - S t r y s k a formula (10) which estimates the exergy o f c o a l from i t s elemental composition. In view o f the above survey, n e i t h e r c o r r e l a t i o n nor e s t i mation method has been developed to determine the enthalpy o f formation and the absolute entropy o f c o a l - d e r i v e d l i q u i d s . In t h i s paper, methods t o estimate the heat o f formation A H ° and the absolute entropy S° f o r c o a l and c o a l - d e r i v e d l i q u i d s are proposed based on the group c o n t r i b u t i o n method. By a p p l y i n g these methods and the S t r u c t u r e d Process Energy-Exergy-flow Diagram (SPEED, 11), an exergy a n a l y s i s f o r the H-Coal process i s performed.

Downloaded by CORNELL UNIV on August 16, 2016 | http://pubs.acs.org Publication Date: November 11, 1983 | doi: 10.1021/bk-1983-0235.ch018

f

f

Thermodynamic P r o p e r t i e s o f C o a l and C o a l - D e r i v e d L i q u i d s Enthalpy o f Formation and Absolute Entropy o f C o a l . We have app l i e d the g r o u p - c o n t r i b u t i o n method proposed by Benson and h i s c o l l e a g u e s (12,13) to estimate the thermodynamic p r o p e r t i e s o f c o a l (14). In t h i s method, the d i s t r i b u t i o n o f major atomic groups which 'constitute c o a l s was estimated by reviewing s t u d i e s on s t r u c t u r a l analyses o f c o a l s and by u s i n g the group c o n t r i b u t i o n t a b l e s which Benson e t a l . developed. Then the heat o f formation and a b s o l u t e entropy o f c o a l were estimated by summing up the c o n t r i b u t i o n s o f major atomic groups. In the f o l l o w i n g , we s h a l l b r i e f l y o u t l i n e t h a t work. For s i m p l i c i t y , c o a l i s assumed t o be c o n s t i t u t e d from carbon, hydrogen and oxygen. T h i s assumption may be v a l i d s i n c e n i t r o g e n and s u l f u r contents are r e l a t i v e l y small and t h e i r cont r i b u t i o n to A H ° and S° may be n e g l e c t e d . Carbon atomic groups which c o n s t i t u t e c o a l are c l a s s i f i e d i n t o e i g h t groups i n d i c a t e d i n Table I based on the s t r u c t u r a l analyses o f c o a l s . The number of each group p r e s e n t i n c o a l denoted by CH 0y (MAF b a s i s ) i s obtained as f o l l o w s . There are two types o f carbon atom; aromatic ( C ) and a l i p h a t i c (C i). F i g u r e 1 shows t h a t good c o r r e l a t i o n can be obf

x

a r

a

Gaggioli; Efficiency and Costing ACS Symposium Series; American Chemical Society: Washington, DC, 1983.

18.

Coal and Coal-Derived Liquids

ISHIDA ET AL.

375

t a i n e d f o r c o a l s as w e l l as f o r c o a l - d e r i v e d l i q u i d s by p l o t t i n g the molar r a t i o o f C t o t o t a l carbon C t o t a l a g a i n s t x, i . e . the molar r a t i o o f t o t a l hydrogen H t o t a l totalFrom t h i s c o r r e l a t i o n , carbon atoms i n c o a l can be decomposed i n t o aromatic and a l i p h a t i c carbon atoms with the parameter H t t a l / t o t a l • For c o a l s whose carbon contents a r e l e s s than 90 weight %, i t i s r e p o r t e d (13,16) t h a t the condensed aromatic r i n g s a r e mostly o f the cata-condensed type w i t h two through f i v e r i n g s . T h i s i m p l i e s t h a t about 30% o f t o t a l aromatic carbon ( C ) i s aromatic condensed carbon (C p) and hence we assume C p / C = ° - For a l i p h a t i c carbon, there a r e two types; one l i n k e d d i r e c t l y t o aromatic r i n g s and the other l i n k e d t o other a l i p h a t i c carbon atoms. F o r example, C H 3 group may be c l a s s i f i e d i n t o C ~ ( H ) ( C ) and C - ( H ) 3 ( C ) ; C H 2 group i n t o C - ( H ) 2 ( C ) 2 , C - ( H ) ( C ) ( C ) , and C - ( H ) ( C ) ; CH group i n t o C-(H)(C)3 and C - ( H ) ( C ) 2 ( C ) • However, s i n c e the d i f f e r e n c e s i n the c o n t r i b u t i o n s o f these groups t o AHf° and S° a r e i n s i g n i f i c a n t l y s m a l l , the average v a l u e s may be used, as summarized i n Table I . Major oxygen c o n s t i t u e n t s p r e s e n t i n c o a l are p h e n o l i c OH or e t h e r e a l oxygen. Since no p r a c t i c a l method t o estimate t h e i r p r e c i s e d i s t r i b u t i o n i s a v a i l a b l e a t the p r e s e n t stage, 60% o f t o t a l oxygen atoms a r e assumed t o be p h e n o l i c and the r e s t ethereal. I t i s a l s o assumed t h a t a l l e t h e r e a l oxygen atoms have the form o f -0- l i n k i n g two aromatic r i n g s . With these assumptions, the d i s t r i b u t i o n o f the C - ( 0 ) and C -(OH) groups can be d e t e r mined. Hydrogen atoms can be c l a s s i f i e d i n t o a l i p h a t i c ( H i ) , aromatic ( H ) , and p h e n o l i c ones ( H Q H ) • x may f u r t h e r be c l a s s i f i e d i n t o H Q J , HCH2# and HCH3- Ladner e t a l . (17) obtained the atomic r a t i o , (HCH + H c H 3 ) / H c H 2 r f o r v a r i o u s c o a l s by NMR analyses. By denoting t h i s r a t i o as a and assuming the atomic r a t i o , H i / C i ( " [ H C H + HCH2 + H H 3 l / [ H + 1 / 2 « H H 2 + V3«H H3l)' equal t o 2, C H 3 / H i , H c H 2 / H i , and Hcu/Hai are expressed as 0 . 7 5 a ( a + l ) " ( a + l ) - l , and 0.25a(a+l)-l, r e s p e c t i v e l y . By r e f e r r i n g t o t h e i r values o f a, F i g u r e 2 i s obtained. Since t h e number o f H H i s equal t o the number o f the C -(0H) group, t h e number o f H , say the number o f the group C - ( H ) , can be c a l c u l a t e d by the r e l a t i o n H t a l = a l + + HQHFinally the number o f the C -(C) group can be determined by s u b t r a c t i n g the number o f the groups C - ( H ) , C - ( 0 ) , C -(OH), and C F - ( C " ) from the t o t a l number o f C . Using c o r r e l a t i o n s shown i n F i g u r e s 1 and 2, the d i s t r i b u t i o n of each atomic group p e r u n i t mole o f carbon i n c o a l was d e t e r mined i n terms o f two parameters, x ( = H t o t a l / t o t a l ) Y (=O i/C ) , and then A H f and S° per u n i t mole o f carbon i n c o a l CH Oy (MAF b a s i s ) were estimated by summing up the c o n t r i b u t i o n o f each atomic group. Based on the above s t r u c t u r a l a n a l y s i s , semiempirical formulas f o r e s t i m a t i n g the heat o f formation and the absolute entropy p e r u n i t mole o f carbon i n c o a l were obtained as f o l l o w s : a r

f

t

o

c

c

0

a r

3

Downloaded by CORNELL UNIV on August 16, 2016 | http://pubs.acs.org Publication Date: November 11, 1983 | doi: 10.1021/bk-1983-0235.ch018

B

3

B

ar

B

2

2

B

2

B

B

B

B

a

H

a

a r

a

i

C

C

C H

a

s

C

H

1

a

a

f

0

B

a r

B

H

H

A

t o

R

B

B

B

B

B

a r

c

a

n

d

0

t o t a

t o t a l

x

Gaggioli; Efficiency and Costing ACS Symposium Series; American Chemical Society: Washington, DC, 1983.

2

Downloaded by CORNELL UNIV on August 16, 2016 | http://pubs.acs.org Publication Date: November 11, 1983 | doi: 10.1021/bk-1983-0235.ch018

376

SECOND LAW ANALYSIS OF PROCESSES

I.

Table

Group v a l u e s

f

A H [ kJ/mol

Group

f

C —

(H) (C)

C

( H )



o f A H ° and S° f o r c o a l

-42.68

S ] [ J/mol-K

127.2

3

2

( C ' )

2

-19.64

40.4 -50.7

( H ) ( C ' ) 3

-6.02

( H )

13.81

48.2

B

— (C)

23.05

-32.2

c

B



-47.90

-24.5

C

B



-162.30

79.1

17.57

-20.9

C



C

B



c

C

C

B F -

]

(0) ( O H )

C

< ">3

: C atm i n a benzene r i n g B

C

: C atm l o c a t e d a t the border o f fused r i n g s Br

C

: C or C

B

C" : C o r C B BF

Gaggioli; Efficiency and Costing ACS Symposium Series; American Chemical Society: Washington, DC, 1983.

Downloaded by CORNELL UNIV on August 16, 2016 | http://pubs.acs.org Publication Date: November 11, 1983 | doi: 10.1021/bk-1983-0235.ch018

ISHIDA ETAL.

0.3

Coal and Coal-Derived Liquids

0.5

0.7

Htotai/Ctotai

0.9

[mol/moll

F i g u r e 2. R e l a t i o n between atomic r a t i o H t o t a l / C t o t a l and a l i p h a t i c hydrogen d i s t r i b u t i o n o f c o a l .

Gaggioli; Efficiency and Costing ACS Symposium Series; American Chemical Society: Washington, DC, 1983.

378

S E C O N D LAW A N A L Y S I S O F P R O C E S S E S

AH °[kJ/mol-C]

= 1.312x2-35.27x-3.83/x-162.3y+40.97

(1)

S°[J/mol-C-K]

= 4.414x2-18.64x-14.63/x+24.7y+47.53

(2)

f

and

Downloaded by CORNELL UNIV on August 16, 2016 | http://pubs.acs.org Publication Date: November 11, 1983 | doi: 10.1021/bk-1983-0235.ch018

The p r e d i c t e d v a l u e s f o r AHf° and S° f o r v a r i o u s c o a l s are shown i n Table I I . In t h i s Table, p r e d i c t e d and observed v a l u e s o f heat o f combustion f o r the c o a l s are a l s o shown, where the former was c a l c u l a t e d by the p r e d i c t e d value o f AHf°. I t i s found t h a t p r e d i c t e d v a l u e s o f heat o f combustion agree w e l l w i t h observed ones. For S ° , on the other hand, methods o f t h i s work (14) and o f Cheng e t a l . (9) y i e l d comparable r e s u l t s . Enthalpy o f Formation and Absolute Entropy o f Coal L i q u i d s . Coald e r i v e d l i q u i d s are o f extremely complex compositions i n c l u d i n g h i g h l y aromatic groups. They are a l s o c h a r a c t e r i z e d by t h e i r h i g h contents o f heteroatoms, such as oxygen, n i t r o g e n and s u l f u r . Most o f the oxygen atoms are contained i n the form o f a l k y l phen o l s . N i t r o g e n atoms are mainly i n the form o f p i r o l s , p y r i d i n e , or carbazole type compounds. Among them, the p y r i d i n e type compounds are major c o n s t i t u e n t s o f the n i t r o g e n - c o n t a i n i n g h e t e r o c y c l i c r i n g compounds. S u l f u r contents are r e l a t i v e l y s m a l l . Therefore, i t s c o n t r i b u t i o n t o AHf° and S° i s neglected. With t h i s assumption, and u t i l i z i n g a s i m i l a r approach to the e s t i m a t i o n o f AHf° and S° o f c o a l , semiempirical formulas p r e d i c t i n g AHf° and S° o f c o a l - d e r i v e d l i q u i d s (26) are proposed as follows. In order t o d e a l w i t h a c o a l - d e r i v e d l i q u i d as a mixture which has a s t a t i s t i c a l l y average chemical s t r u c t u r e , we choose two measurable s t r u c t u r a l parameters, a r o m a t i c i t y , f ( = C / C t o t a l ) i and the degree o f s u b s t i t u t i o n o f the aromatic r i n g , a. To ident i f y major atomic groups o f c o a l - d e r i v e d l i q u i d s which c o n t r i b u t e to AHf° and S°, the f o l l o w i n g assumptions are made. 1) No double bonds e x i s t except those i n the aromatic r i n g s . 2) A l l oxygen heteroatoms are p r e s e n t i n p h e n o l i c OH form, and a l l n i t r o g e n heteroatoms are i n p y r i d i n e d e r i v a t i v e s . 3) A l l a l i p h a t i c carbons are contained i n a l i p h a t i c chains o f aromatic r i n g s and t h e i r average number o f carbon atoms i n chains i s two. 4) Aromatic condensed r i n g s are o f cata-condensed type. With these assumptions, s i x major atomic groups c o n s t i t u t i n g c o a l l i q u i d s were d e r i v e d , as shown i n Table I I I . The group value f o r C - ( H ) ( C ) 4 - n i n Table I I I i s an average value f o r groups C-(H)3(C) and C - ( H ) 2 ( C ) ( C B ) , which are given by Benson e t al. S i m i l a r l y , the v a l u e f o r C B F - ( C " ) 3 i s an average value f o r groups C B F ~ ( C B ) 2 ( C B F ) and C B F ~ ( C B ) ( C B F ) 2 Given a formula CH OyNz o f c o a l - d e r i v e d l i q u i d from i t s e l e mental a n a l y s i s , moles o f groups C - ( H ) ( C ) 4-n> CB-(OH), and N I - ( C B ) are given as l - f , y, and z, r e s p e c t i v e l y . Since the degree o f oxygen s u b s t i t u t i o n as w e l l as o f a l i p h a t i c s u b s t i t u t i o n a

ar

n

x

n

a

Gaggioli; Efficiency and Costing ACS Symposium Series; American Chemical Society: Washington, DC, 1983.

Gaggioli; Efficiency and Costing ACS Symposium Series; American Chemical Society: Washington, DC, 1983.

72.,7

74.,8

78.,4

Western

Kentucky

0.,789

0,,720

83..7

87..6

Moura

0.,796

0.,898

0,,836

Pittsburgh

No.9

H/C

0/C

-495.,2

3..8

0.,044

-504.,3

-2,,4

0.,071

-500.,5

-500..6

-506.,0

-502.,0

-499.,8

-487.,9

-482.,5 -496.,3

Estd.

Obsd.

17..2

18.,8

19.,8

15..8

17.,0

17.,7

19,,9

19.,6

22.,7 22.,4

Cheng

Eq.(2)

S°[J/mol-C»K]

properties of coal

AH°[kJ/mol-C]

-8.,8

-22.,1

-25.,9

Eq.(1)

AH°[kJ/mol-C]

0.,109

0.,174

0.,208

[wt% daf][mol/mol][mol/mol]

C

Comparison o f e s t i m a t e d and o b s e r v e d thermodynamic

Tempoku

Table I I .

Downloaded by CORNELL UNIV on August 16, 2016 | http://pubs.acs.org Publication Date: November 11, 1983 | doi: 10.1021/bk-1983-0235.ch018

S E C O N D LAW A N A L Y S I S O F PROCESSES

Downloaded by CORNELL UNIV on August 16, 2016 | http://pubs.acs.org Publication Date: November 11, 1983 | doi: 10.1021/bk-1983-0235.ch018

T a b l e I I I . Group v a l u e s

for coal-derived liquids A H

Group

C

C

B

C,

< >n< >4-n H

-

[ J/mol*K ]

-31.50

83.2

(H)

13.81

48.2

23.05

-32.2

-162.30

79.1

17.57

-20.9

69.87

42.3

B



(C)

C

B



(OH)

CBF~ T

]

~

C

N

S

f

[ kJ/mol

~

(C

( C " ) (C

B

3

)

): a pyridine B : 2 or 3

nitrogen

Gaggioli; Efficiency and Costing ACS Symposium Series; American Chemical Society: Washington, DC, 1983.

18.

Coal and Coal-Derived Liquids

ISHIDA ET AL.

381

determines the value o f a, the number o f CB-(C) i s obtained as faO"-y. By i n t r o d u c i n g the number o f aromatic r i n g s per molecule, R, the number o f C B F - ( C " ) 3 i s given as 2(R-1). By t a k i n g i n t o c o n s i d e r a t i o n the r a t i o o f t o t a l hydrogen t o t o t a l carbon, R i s found t o be equal t o ( 4 - f - x ) / 2 . Then the number o f C B F ~ ( C " ) 3 becomes 2 - f - x . The r e s t o f carbon i s due to C B ~ ( H ) . Hence i t s number i s obtained as f (2-a)+x-2 (=1- [ l - f ] - [ f a - y ] - [ 2 - f - x ] - [y]). In t h i s manner, the amounts o f a l l groups are determined, g i v i n g r i s e to the f o l l o w i n g c o r r e l a t i o n s f o r the standard heat o f format i o n and the absolute entropy per u n i t mole o f carbon i n c o a l l i q u i d (CHxOyN ): a

a

a

a

a

a

Downloaded by CORNELL UNIV on August 16, 2016 | http://pubs.acs.org Publication Date: November 11, 1983 | doi: 10.1021/bk-1983-0235.ch018

z

AHf°[kJ/mol-C] = -23.64+41.2f +9.24f O-3.76x -185.4y+69.87z-AH

(3)

S°[J/mol-C«K] = -54.4+33.5f -80.4f fJ+69.1x +111.3y+42.3z-AS +AS ix

(4)

a

a

V

and a

a

v

m

where Ar^ and ASv# r e s p e c t i v e l y , r e f e r t o the enthalpy and the entropy o f v a p o r i z a t i o n . They are c o r r e c t i o n f a c t o r s between the i d e a l gaseous s t a t e and the r e a l l i q u i d s t a t e . For the absolute entropy, i t i s necessary to take i n t o account the entropy o f mixing, ASmi . The entropy o f mixing was estimated t o be 2 J/mol-C*K u s i n g the d e t a i l e d component analyses on H-Coal l i q u i d s (27). For the enthalpy o f v a p o r i z a t i o n , a c o r r e l a t i o n was d e r i v e d from the measured data o f SRC-II c o a l l i q u i d s (19) as: x

AH

V

[kJ/mol-C] = TbAS = -5.0X10"3Tb + 6.55

(5)

v

where Tb[K] i s the normal b o i l i n g p o i n t o f c o a l l i q u i d . To o b t a i n the value of A H a t 298 K more a c c u r a t e l y , we must make a c o r r e c t i o n f o r the d i f f e r e n c e i n the heat c a p a c i t i e s between the l i q u i d s t a t e and the i d e a l gaseous s t a t e . However, t h i s information i s not a v a i l a b l e , but, t h i s c o r r e c t i o n w i l l be s m a l l and f o r the sake o f zeroth-order approximation f o r the exergy a n a l y s i s of a c o a l l i q u e f a c t i o n process system, i t may be neglected. Necessary data f o r e s t i m a t i n g the standard heat o f formation and the absolute entropy by Equations 3 and 4 are the elemental a n a l y s i s , s t r u c t u r a l parameters, f and o~, and the normal b o i l i n g p o i n t . For a p r a c t i c a l purpose, i t w i l l be more convenient i f we could c a l c u l a t e AHf° and S° only from elemental a n a l y s i s data and normal b o i l i n g p o i n t . The a r o m a t i c i t y f f o r c o a l l i q u i d s may be estimated by the c o r r e l a t i o n shown i n F i g u r e 1. On the other hand, the value o f O may be taken as 0.3 f o r i t s average value based on the reported data (18,20,21). S u b s t i t u t i o n o f these r e l a t i o n s i n t o Equations 3 and 4 g i v e s v

a

a

AHf° [kJ/mol-C] = 40.1-34.1x-185.4y+69.9z-AH

(6)

v

and S°[J/mol-C-K] = -38.8+62.6x+111.3y+42.3z-AS

v

Gaggioli; Efficiency and Costing ACS Symposium Series; American Chemical Society: Washington, DC, 1983.

(7)

SECOND LAW ANALYSIS OF PROCESSES

382

Naphtha f r a c t i o n s r e q u i r e s l i g h t l y d i f f e r e n t treatment. The major c o n s t i t u e n t s o f naphtha are r e p o r t e d t o be c y c l o p a r a f i n e s . Since the c o n t r i b u t i o n s o f CH2 and CH s u b s t i t u e n t s become s i g n i f i cant, the values o f AHf° and S° f o r C - ( H ) ( C ) 4-n i n Table I I I are r e p l a c e d by -24.25 kJ/mol and 57.8 J/mol-K. Hence, f o r naphtha f r a c t i o n s , we have n

AHf°[kJ/mol-C] = 37.1-29.3x-185.4y+69.9z-AH

(8)

v

and S°[J/mol-C-K] = -29.5+44.7x+111.3y+42.3z-AS

Downloaded by CORNELL UNIV on August 16, 2016 | http://pubs.acs.org Publication Date: November 11, 1983 | doi: 10.1021/bk-1983-0235.ch018

v

(9)

Proposed methods f o r p r e d i c t i n g heats o f formation and absol u t e e n t r o p i e s are t e s t e d on two f r a c t i o n s o f s y n t h e t i c crude o i l obtained by the EDS process, one sample o f H-Coal, one sample o f S y n t h o i l , two samples o f Solvent Refined C o a l , and f i v e pure compounds found i n c o a l l i q u e f a c t i o n products. For these samples, the heats o f combustion are c a l c u l a t e d u s i n g p r e d i c t e d values o f AHf° and compared i n Table IV with observed v a l u e s . Note t h a t Equations 8 and 9 were used t o p r e d i c t AHf° and S° o f the EDS heavy naphtha. Equations 6 and 7 are a p p l i e d t o other samples o f c o a l - d e r i v e d l i q u i d s , and Equations 3 and 4 to the pure compounds. Exergy A n a l y s i s o f H-Coal Process A process flow diagram (PFD) o f the H-Coal process f o r producing s y n t h e t i c f u e l s from bituminous c o a l i s shown i n F i g u r e 3. Raw c o a l i s crushed and d r i e d . The d r i e d c o a l i s then s l u r r i e d with r e c y c l e o i l s which are recovered from subsequent processes. A f t e r t h a t , i t was mixed with r e c y c l e and make-up hydrogen. The c o a l - o i l s l u r r y and hydrogen gas are pumped to the p r e h e a t i n g furnace, and then l i q u e f i e d i n d i r e c t c o n t a c t with c a t a l y s t i n an e b u l l a t e d bed r e a c t o r . The r e a c t o r e f f l u e n t i s separated i n t o r e c y c l e and net product streams by a s e r i e s o f f l a s h e s and by f r a c t i o n a t i o n . Primary products i n c l u d e f u e l gases, s t a b i l i z e d naphtha, t u r b i n e f u e l , and d i s t i l l a t e b o i l e r f u e l . A l s o , s e v e r a l by-products, such as ammonia, s u l f u r and phenols, are obtained from the p l a n t . In add i t i o n t o these primary products and by-products, the H-Coal l i q u e f a c t i o n system produces the p l a n t u t i l i t y gases which are a l l consumed w i t h i n the p l a n t . An exergy a n a l y s i s o f the conceptual design o f the synclude mode H-Coal process f o r bituminous c o a l o f I l l i n o i s No.6 has been c a r r i e d out based on the data r e p o r t e d by the F l u o r Engineers and C o n s t r u c t o r s , Inc.,(31). The p l a n t i s designed t o convert 14,448 tons (short ton) o f c o a l per day. The o v e r a l l process has been analysed u s i n g a S t r u c t u r e d Process Energy-Exergy-flow Diagram (SPEED) which has r e v e a l e d the h i e r a r c h i c a l s t r u c t u r e o f chemical process systems and f a c i l i t a t e d computer-aided energy and exergy c a l c u l a t i o n s (11). In t h i s method, a t t e n t i o n i s p a i d on the changes i n energy (enthalpy) and exergy i n the processes r a t h e r than those f o r the streams. For

Gaggioli; Efficiency and Costing ACS Symposium Series; American Chemical Society: Washington, DC, 1983.

Gaggioli; Efficiency and Costing ACS Symposium Series; American Chemical Society: Washington, DC, 1983.

IV.

o

C

C

C

C

C

C

C

C

C

C

EDS Fuel O i l (200-540°C)

H-Coal O i l (250-517°C)

Synthoil O i l (172-477°C)

SRC Light Org.Liquid (83-294°C)

SRC Rec. Solvent (163-469°C)

i-Propylbenzene

Tetralin

1-Methylnaphthalene

m-Cresol

Quinoline

H

H

H

H

H

H

H

H

H

H

A

=

Obsd.- Estd.

c

S

N

-778 0.111

l . ,143°0.143

o . .909

i . .2

i . .333

N

S

i . ,039°0.036 0..006 0..001

S

0 N i . .407 0.042 0.,002 0..002

s

S

0 N i . .092 0.026 0.,oio o..002

u

O N i . .071 0.016 0..007 0..002

S

O N i . .026 0.015 0..006 0..002

f

values

17..30

-22..59

7..30

522..07

535..52

528.,55

558.,19

579.,49

-4.. 17 -2..40

534..19

567..54

538..03

546..07

534..22

597..24

c Obsd.

-5..49

-19..71

-4..53

-1..99

-0..74

-16,.07

Estd.

521..97

534.,27

530.,74

558.,82

579.,89

536..87

575..34

545..51

545..06

540..66

595..82

' Estd.

-AH°rkJ/mol-C)

for coal-derived

AH°[kJ/mol-C]

observed

0 N i . .517 0.025 0..002 0..002

,

and

Empirical formula

of e s t i m a t e d

%Error = (Obsd.- Estd.)/Obsd.

C

Comparison

EDS Heavy Naphtha (70-200°C)

Compound

Table

0.,02

0.,23

-0.,42

-0. 11

-0.,01

-0..50

-1..38

-1.,39

0..19

-1..21

0..24

%Error

liquids

Downloaded by CORNELL UNIV on August 16, 2016 | http://pubs.acs.org Publication Date: November 11, 1983 | doi: 10.1021/bk-1983-0235.ch018

25..6

-

24..1

47..9

23..2

27..5

27..5

43..2

21..7

23.,2

38.,7

23..1

31..1

44..7

-

27..8

22..3

-

-

31..6

Estd.

-

Obsd.

-3.4

4.7

1.5

4.3

-7.6

-

-

-

-

-

A

compounds

S°fJ/mol-C-K]

and pure

Gaggioli; Efficiency and Costing ACS Symposium Series; American Chemical Society: Washington, DC, 1983.

Figure 3. H-Coal process system flow diagram.

Downloaded by CORNELL UNIV on August 16, 2016 | http://pubs.acs.org Publication Date: November 11, 1983 | doi: 10.1021/bk-1983-0235.ch018

"RESIDUUM

VACUUM TOWER

L

PROPANE JgUTANE

NAPHTHA TURBINE FUEL BOILER FUEL

A

~ " "

FUEL GAS * ACID GAS

C/3

m

C/3

ffl

7*

o -0

CO

>

2:

>

I

r

a

m

i

C/5

4-

00

Downloaded by CORNELL UNIV on August 16, 2016 | http://pubs.acs.org Publication Date: November 11, 1983 | doi: 10.1021/bk-1983-0235.ch018

18.

ISHIDA ET AL.

Coal and Coal-Derived Liquids

385

f u r t h e r d e t a i l on the SPEED, readers may r e f e r t o another paper i n t h i s book (32). The standard heat o f formation AHf° and absolute entropy S° o f the substances appeared i n t h i s process have been estimated by the proposed methods and a r e t a b u l a t e d i n Table V, where AHf° and S° f o r each substance were evaluated f o r the value p e r u n i t mole of carbon i n the substance. AHf° and S° f o r residuum were e s t i mated by formulas f o r c o a l , i . e . , by Equations 1 and 2. The heat c a p a c i t y o f the c o a l - d e r i v e d l i q u i d s was estimated by r e f e r i n g the measured data by Lee and Bechtold ( 4 ) . S e v e r a l p r o c e s s i n g c o n d i t i o n s were, u n f o r t u n a t e l y , u n a v a i l able t o c a l c u l a t e enthalpy and exergy due t o the c o n t r a c t o r ' s r e s t r i c t i o n s on p r o p r i e t a r y data. In p a r t i c u l a r , p r e s s u r e s , temperatures and compositions o f s e v e r a l streams a s s o c i a t e d with p r e h e a t i n g and hydrogenation were not r e p o r t e d , so t h a t s e v e r a l numerical values o f t h e i r streams were estimated approximately. In F i g u r e 4, the exergy c a l c u l a t i o n f o r the H-Coal process by the SPEED i s d e p i c t e d . S e v e r a l s p e c i a l symbols a r e used i n the F i g u r e . The sequence o f the q u o t a t i o n mark i m p l i e s t h a t the r e a c t i o n l i s t e d below i t i s the t a r g e t p r o c e s s . The mark @ i n d i c a t e s the temperature and pressure o f the i n l e t and o u t l e t streams. For i n s t a n c e , @ 669, 25 stands f o r the c o n d i t i o n a t 669 K and 25 atm. The symbol { } i n d i c a t e s t h a t streams w i t h i n the parent h e s i s c o n s i s t i n the same phase and, t h e r e f o r e , they form a mixture. The sequence o f the r i p p l e mark 'v* denotes t h a t the process below i t i s an exergy acceptor. D i s the d i r e c t i o n f a c t o r ( 3 2 ) which i s d e f i n e d as f o l l o w s . f

D = T

0

A S / A H

(10)

where the r e f e r e n c e temperature T was chosen as 298.15 K. I t i s a dimensionless value denoting the entropy i n c r e a s e p e r u n i t enthalpy i n c r e a s e . C a l c u l a t i o n s were c a r r i e d out f o r u n i t mole o f carbon i n feed c o a l (MAF b a s i s ) . Since the e m p i r i c a l formula o f feed c o a l i s denoted by CH0.839O0.096 0.018 0.019* i molecular weight p e r u n i t mole o f carbon i s 15.236. In the p r e s e n t exergy a n a l y s i s , the exergy i n p u t t o the l i q u e f a c t i o n system i s 528.71 k J , which corresponds t o the exergy value o f 1 mol-C o f feed c o a l , as shown i n Table V. The o v e r a l l t a r g e t r e a c t i o n o f the H-Coal l i q u e f a c t i o n s y s tem i s p r i n t e d s y m b o l i c a l l y on the top o f F i g u r e 4. As shown i n the F i g u r e , i t i s a process i n which 1 mol-C o f c o a l , , r e a c t s with 0.448 mol-H o f make-up hydrogen, ; e v e n t u a l l y , they produce 0.045 mol-C o f f u e l gas, , 0.535 mol-C o f synt h e t i c f u e l o i l , , 0.001 mol-C o f by-products, , 0.314 mol-C o f residuum, , and 0.111 mol-C o f f u e l gas as the u t i l i t y source, . The , , , and so on are d e f i n e d so t h a t t h e i r r e s p e c t i v e carbon mole number becomes u n i t y , as shown i n remarks o f the F i g u r e . Note t h a t the s y n t h e t i c Q

N

2

s

t

s

2

Gaggioli; Efficiency and Costing ACS Symposium Series; American Chemical Society: Washington, DC, 1983.

Gaggioli; Efficiency and Costing ACS Symposium Series; American Chemical Society: Washington, DC, 1983.

Distillate (IBP/350°F)

Distillate (350/600°F)

Distillate (500/800°F)

Middle

Heavy

Coal

for

c

c

c

C

H

H

H

N

S

S

l . 141°0.o i i o . 006 0.0003

N

S

l . 364°0.008 0.005 0.0003

N

S

l . 926°0.005 0.002 0.0003

N

formula

-3. 89

-11. 61

-24. 72

-7. 84

-552. 78

-576. 93

-644. 14

-511. 22

28. 5

40. 1

47. 8

19. 9

557. 29

576. 58

638. 08

528. 71

[kJ/mol-C]

liquids

[kJ/mol-C] [J/mol-CK]

c

o f c o a l and c o a l

[kJ/mol-C]

f

properties

839°0.096 0.018 0.019

Empirical

H-Coal system

E s t i m a t e d thermodynamic

Light

I l l i n o i s No.6

Compound

T a b l e V.

Downloaded by CORNELL UNIV on August 16, 2016 | http://pubs.acs.org Publication Date: November 11, 1983 | doi: 10.1021/bk-1983-0235.ch018

18.

ISHIDA ET AL.

Coal and Coal-Derived Liquids

387

tt it tt n it it tt tt tt it tt tt it ti ti it it

+ 0.448 => 0.045 + 0.001 :

+ 0.535 + 0.111 + 0.314 + 0 . 976 => 3 • 675 : ToEASi= 7.926 k J

it ti«

II

ti ti it it it it it n it it it

II

it

;Preheating & Hydrogenation 3.675 + 1 .532 => 3•694 To E A S i = 31.9^8 k J

:

Downloaded by CORNELL UNIV on August 16, 2016 | http://pubs.acs.org Publication Date: November 11, 1983 | doi: 10.1021/bk-1983-0235.ch018

ti tt ti tt ti it tt it it it tt it it it ti it it

;Separation 3.694 => 0.045 + 0.535 + 0.111 + 0.314 + 0.001 + 1.699 + 0.976 + 1.084 : ToEASi= 15.955 k J ;Accommodated s y s t e m ;Oxygen p r o d u c t i o n ;Hydrogen p r o d u c t i o n ;Power p r o d u c t i o n ; U t i l i t i e s & Others ; Remarks LIGHT MIDDLE HEAVY

ToEASi= ToEASir ToEASir ToEASi =

4.860 k J 19.167 k J 28.145 k J 65.416 k J

= C H1.926 0.005 N.002 S.0003 = C H1.364 0.008 N.005 S.0003 = C HI.141 0.011 N.006 S.0003 = C H.839 0.096 N.018 S.019 + 1.982 ASH + 0.0195 H20,L = {0.002 LIGHT + 0.442 MIDDLE + 0.556 HEAVY} = {0.002 LIGHT + 0.151 MIDDLE + 0.267 HEAVY} + 0.580 C H.634 0.084 + 3.238 ASH = [0.272 + 0.462< RC.0IL> + 0.266] = 0.292 + 0.708 = {H2 + 0.0068 N2 + 0.0226 CO + 0.0026 C02 + 0.0055 CH4 +0.0009 H20} = {H2 + 0.0034 N2 + 0.0046 CO}



= [0.012 + 0.145 + 0.030 + 0.085 + 0.0003 + 0.460 + 0.264 + 0.293]



= = = =



= 0.128 C3H8 + 0.154 C4H10 = {0.0381 CO + 0.3247 CH4 + 0.1433 C2H6 + 0.1166 C3H8 + 0.0002 C4H10 + 0.1406 H2 + 0.0280 N2} = C H.698 0.077 + 1.982 ASH = {C02 + 13.4 H2S + 11.0 NH3} + 83-0 H20,L



0.285 {0.003 C4H10 + {0.190 LIGHT + {0.030 LIGHT +

F i g u r e 4.

+ 0.441 + 0.273 0.988 LIGHT} 0.810 MIDDLE} 0.296 MIDDLE + 0.674 HEAVY}

SPEED f o r H-Coal process system.

Gaggioli; Efficiency and Costing ACS Symposium Series; American Chemical Society: Washington, DC, 1983.

388

S E C O N D LAW A N A L Y S I S O F P R O C E S S E S

f u e l o i l , , i s composed o f naphtha, , t u r b i n e f u e l , , and b o i l e r f u e l , . Since the b o i l i n g ranges o f l i g h t (denoted by LIGHT), middle (MIDDLE), and heavy (HEAVY) d i s t i l l a t e s o f the s y n t h e t i c l i q u i d s are d e f i n e d as i n Table V, naphtha, , t u r b i n e f u e l , , and b o i l e r f u e l , , r e s p e c t i v e l y , can be expressed as a mixture o f these d i s t i l l a t e s and l i g h t hydrocarbons. For example, naphtha can be expressed as a mixture o f 0.003 mole o f butane and 0.988 mol-C o f the LIGHT, as remarked i n F i g u r e 4. Molar f r a c t i o n s o f these products i n terms o f the LIGHT, MIDDLE and HEAVY were determined by i n s p e c t i o n of the m a t e r i a l balance i n the F l u o r s r e p o r t (31). As shown i n F i g u r e 4, the o v e r a l l t a r g e t i s decomposed i n t o three subtargets u s i n g 1.699 mol-C o f r e c y c l e o i l , , and 0.976 mol-C o f r e c y c l e s l u r r y , . They are pretreatment, p r e h e a t i n g and hydrogenation, and s e p a r a t i o n . In t h i s way, we know t h a t the c o a l l i q u e f a c t i o n system cons t i t u t e s a s t r u c t u r e o f m u l t i - t a r g e t system. In a d d i t i o n to these subtargets, the c o a l l i q u e f a c t i o n system attaches an accomodate system which i n c l u d e s oxygen p r d d u c t i o n , hydrogen p r o d u c t i o n , power p r o d u c t i o n , and u t i l i t i e s . F i g u r e 5 shows t h a t the c o a l pretreatment subtarget i s f u r t h e r decomposed i n t o three sub-subtargets. The f i r s t sub-subtarget i s c o a l c r u s h i n g and d r y i n g . In t h i s s e c t i o n , c o a l c o n t a i n i n g 10 weight % moisture i s d r i e d to 2% moisture. T h i s i s accomp l i s h e d by donating 9.982 k J o f heat and 0.881 k J o f e l e c t r i c power t o 1 mol-C o f c o a l . F i g u r e 5 a l s o shows t h a t 4.568 k J o f exergy T Q E A S ^ i s d e s t r u c t e d i n t h i s stage. In the second sub-subtarget system o f c o a l pretreatment the d r i e d c o a l , @ 311, 2, i s mixed with 1.699 mol-C o f hot r e c y c l e o i l , @ 567, 7. In t h i s stage, power i s c o n s i d ered as a coupled p r o c e s s . The most power i s consumed i n mixing pumps. The t h i r d sub-subtarget o f c o a l pretreatment system i s another mixing process i n which the c o a l and o i l mixture, [ +1.699] @ 444, 23 from the p r e v i o u s sub-subtarget process, i s f u r t h e r mixed with the s o l i d s - c o n t a i n i n g hydroclone overflow stream, 0.976 @ 669, 26. Again, power r e q u i r e d f o r mixing and s l u r r y f e e d pumps i s c o n s i d e r e d t o be an exergy donor. By summing up the exergy d e s t r u c t i o n o f each sub-subtarget process system, the o v e r a l l exergy d e s t r u c t i o n T £ A S i f o r the p r e t r e a t i n g subsystem i s g i v e n as 7.926 k J , as l i s t e d i n the SPEED i n F i g u r e 5. T h i s value i s a l s o shown below the subtarget o f p r e treatment i n F i g u r e 4. Since there i s not enough space f o r a complete drawing o f SPEED f o r the o v e r a l l process, F i g u r e s 4 and 5 are shown s e p a r a t e l y . However, i f the content o f F i g u r e 5 i s i n s e r t e d i n t o F i g u r e 4 with an indent, the h i e r a r c h i c a l s t r u c t u r e o f the l i q u e f a c t i o n system w i l l be d e p i c t e d more c l e a r l y . When we compare t h i s SPEED with the PFD o f F i g u r e 3, we l e a r n t h a t the SPEED p l a y s a p a r t o f the PFD being attended w i t h q u a n t i t a t i v e information. The subtarget o f p r e h e a t i n g and hydrogenation shown i n F i g u r e 4 has been f u r t h e r s u b d i v i d e d i n t o a sub-subtarget o f p r e h e a t i n g

Downloaded by CORNELL UNIV on August 16, 2016 | http://pubs.acs.org Publication Date: November 11, 1983 | doi: 10.1021/bk-1983-0235.ch018

1

0

Gaggioli; Efficiency and Costing ACS Symposium Series; American Chemical Society: Washington, DC, 1983.

ISHIDA ET AL.

389

Coal and Coal-Derived Liquids

H II II H H H H H H II H H II H it H ii

;Pretreating @3 12, 2 + 1 . 6 9 9 < R C O I L > 0567,7 + 0 . 976 => 3.675 § 5 2 2 , 2 1 5 : AH= -2.373 k J , Ae = - 2 . 0 5 3 k J , D = 0.135

§669,26

II it n II ti II II it it II ti it ti ii it II it

Downloaded by CORNELL UNIV on August 16, 2016 | http://pubs.acs.org Publication Date: November 11, 1983 | doi: 10.1021/bk-1983-0235.ch018

;Crushing & Drying 0298,1 => §311,2 : AH= 0.289 k J , Ae= 0.006 k J ,

D= 0.979

* E L E C T R I C I T Y SOURCE ;For c r u s h i n g AH= -0.881 k J , A c - -0.881 k J , D= 0 *HEAT SOURCE § 4 7 3 AH = -9.982 k J ,

;For d r y i n g Ae= -3.693 k J ,

*HEAT SINK § 2 9 8 . 1 5 ;Heat AH = 10.574 k J , Ae= 0 k j , T o Z A S i = 4.568 k j

D= 0.630

loss D= 1

ti it it tt it it it it tt tt it tt it it it it it

§311,2 + 1.699 § 5 6 7 , 7 => [ + 1.699] § 4 4 4 , 2 3 : AH = -1.056 k J , Ae= - 0 . 9 1 9 k J , D= 0.130 "ELECTRICITY AH=

SOURCE

-0.155 k J ,

Ae= - 0 . 1 5 5 k j ,

*HEAT SINK § 2 9 8 . 1 5 AH = 1.211 k J , Ae= 0 k J , T o Z A S i = 1.074 k J

D=

D=0

1

ti it tt tt ti tt it ti ti it it it it it tt tt it

[ + 1 . 6 9 9 < R C 0 I L > ] § 4 4 4 , 2 3 + 0.976 => 3.675 § 5 2 2 , 2 1 5 : AH = - 1 . 3 1 7 k J , Ae= -1.134 k J , D= 0.139 "ELECTRICITY AH=

ToEASir

SOURCE

-1.150 k J ,

Ae= - 1 . 1 5 0 k j ,

*HEAT SINK § 2 9 8 . 1 5 AH= 2.467 k J , Ae= 0 k J , T o Z A S i = 2.284 k J 7.926 k J

F i g u r e 5.

§669,26

D= 0

D= 1

SPEED f o r c o a l pretreatment

subsystem.

Gaggioli; Efficiency and Costing ACS Symposium Series; American Chemical Society: Washington, DC, 1983.

Downloaded by CORNELL UNIV on August 16, 2016 | http://pubs.acs.org Publication Date: November 11, 1983 | doi: 10.1021/bk-1983-0235.ch018

390

SECOND LAW ANALYSIS OF PROCESSES

and t h a t o f hydrogenation, as shown i n F i g u r e 6. Although i t i s obvious t h a t some r e a c t i o n s proceed i n the preheater, i t i s assumed here t h a t no r e a c t i o n takes p l a c e i n the preheater. I t i s because compositions o f the preheater e f f l u e n t have not been r e ported. In the hydrogenation system, the r e a c t i o n i s exothermic with the heat o f r e l e a s e 10.426 k J . However, t h i s value i s c a l c u l a t e d by c o n s i d e r i n g temperature i n c r e a s e i n r e a c t a n t s . When t h i s heat o f r e a c t i o n i s t r e a t e d as a heat l o s s , 18.026 k J o f exergy i s d e s t r u c t e d a t t h i s stage. I f we assume t h a t the r e a c t i o n proceeds i n an isothermal r e a c t o r a t 740 K, the heat o f r e a c t i o n i s obtained as 22.254 k J , as shown i n F i g u r e 7. When t h i s heat i s absorbed by a heat s i n k a t the same temperature, the exergy d e s t r u c t i o n caused by the r e a c t i o n i t s e l f i s g i v e n as 12.038 k J . In t h i s way, the exergy l o s s o f each subsystem can be c a l c u l a t e d . The o v e r a l l exergy e f f i c i e n c y n. o f the process i s def i n e d here i n the f o l l o w i n g way: e

= 8

=

[ a l l u s e f u l exergy outputs ] [ a l l exergy i n p u t s ] [ a l l exergy inputs 3 - [ a l l exergy l o s s e s 1 [ a l l exergy inputs ]

where the exergy l o s s i n c l u d e s both exergy d e s t r u c t i o n and exergy wastes. Since the denominator o f the above equation i s g i v e n here by the exergy o f 1 mol-C o f feed c o a l , i n s p e c t i o n o f the SPEED y i e l d s = n

£

=

=

528.71 - ( 7.936 + 31.95 + 15.95 + 117.59 ) 528.71 355.29 528.71 67.2%

Conclusion The group c o n t r i b u t i o n method i s a p p l i e d t o estimate the heat o f formation AHf° and the absolute entropy S° o f c o a l and coal-der i v e d l i q u i d s . Semiempirical formulas a r e presented f o r e s t i mating them. Using proposed formulas f o r the e s t i m a t i o n o f AHf° o f c o a l and c o a l - d e r i v e d l i q u i d s , heats o f combustion are p r e d i c t e d f o r v a r i o u s c o a l s and c o a l - d e r i v e d l i q u i d s . I t i s shown t h a t the p r e d i c t e d values agree with the observed ones. Thermodynamic analyses have been conducted f o r the v a r i o u s process steps i n the H-Coal process system f o r producing synt h e t i c f u e l s from bituminous c o a l . A S t r u c t u r e d Process EnergyExergy-flow Diagram (SPEED) f o r the H-Coal process i s presented, which d e p i c t s the t r a n s f o r m a t i o n o f energy and exergy among the processes and the h i e r a r c h i c a l s t r u c t u r e o f the process system with a compact format o f the SPEED.

Gaggioli; Efficiency and Costing ACS Symposium Series; American Chemical Society: Washington, DC, 1983.

18.

391

Coal and Coal-Derived Liquids

ISHIDA ETAL.

;Preheating & Hydrogenation 3.675 §522,215 + 1.532 §377 => 3.694 §740,208 AH = 20.302 k J , Ae = -4. 330 k j , D= 1.213 i ti I I it ti it it

Downloaded by CORNELL UNIV on August 16, 2016 | http://pubs.acs.org Publication Date: November 11, 1983 | doi: 10.1021/bk-1983-0235.ch018

;Preheating 3.675 §522,215 + 1.532 §377 => [3.675 + 0.736] §639,208 + 0.796 §866 AH= 30.728 k J , Ae = 14.489 k j , D= 0.528 *HEAT SOURCE §700 AH= -14.974 k J ,

;Heat Exchange Ae = -8.599 k J , D = 0.397

*HEAT SOURCE §-2.08E05 ;Furnace AH= -21.267 k J , Ac= -21.297 k j , *HEAT RECOVERY AH = 3-379 k J ,

D= -0.0014

;Steam g e n e r a t i o n Ac= 1.485 k J , D= 0.561

*HEAT SINK §298.15 AH= 2. 134 k J , Ae= 0 k J , ToEASir 13-922 kJ

D= 1

n tt it it 11 11 11 11 it 11 11 11 11 11 11 it ti

;Hydrogenation C3.675 +0.736] §639,208 + 0.796 §866 => 3.694 §740 : AH= -10.426 k J , Ae= -17.895 k J , D= -0.716 ^ELECTRICITY SOURCE AH= -0.131 k J ,

'Acr -0.131 k J ,

*HEAT SINK §298.15 AH = 10.557 k J , Ae = 0 k J , ToEASir 18.026 kJ ToEASir 31.948 kJ F i g u r e 6. P r e h e a t i n g and hydrogenation

D= 0 D= 1

subsystem.

tt ti tt tt tt tt tt tt tt tt tt tt tt tt tt tt tt

3 . 6 7 5 < S L U R R Y > 0 7 4 0 , 2 0 8 + 1.532 => 3 . 69'4 AH= - 2 2 . 2 5 4 k J , Ac = - 2 5 . 3 3 0 k J , D= - 0 . 1 3 8 r

r

r

,

r

r

r

r

r

r

f

r

r

r

r

:

f

^j \j \j \j'\j \j \ \ \j \j \j ^ \ \j \ \ \j J

J

*rIEAT S I N K @740 AH= 2 2 . 2 5 4 k J , To>:ASi= 1 2 . 0 3 8 k J F i g u r e 7. at 740 K.

J

J

J

Ar= 13.292

kJ,

Hydrogenation under i s o t h e r m a l

D=

0.403

condition

Gaggioli; Efficiency and Costing ACS Symposium Series; American Chemical Society: Washington, DC, 1983.

392

SECOND LAW ANALYSIS OF PROCESSES

Literature Cited 1.

2.

3.

Downloaded by CORNELL UNIV on August 16, 2016 | http://pubs.acs.org Publication Date: November 11, 1983 | doi: 10.1021/bk-1983-0235.ch018

4.

5.

6.

7.

8. 9.

10. 11. 12. 13. 14.

15. 16. 17. 18. 19.

Gaggioli, R. A., et al., "A Thermodynamic-Economic Analysis of the SYNTHANE Process," Report to U.S. Department of Energy, C00-4589-1, Nov. (1978). Wen, C. Y., S. Ikumi, M. Onozaki, C. D. Luo, "Coal G a s i f i cation Availability Analysis," paper presented to the 2nd World Congress of a Chemical Engineering and World Chemical Exposition, Montreal, Canada, Oct. (1981). L i n , C. Y., "Available Work Energy and Coal Conversion Processes," Ph.D. Dissertation, West Virginia University, Morgantown, W.Va. (1977). Brainard, A. J., "The Application of an Availability Analysis to a Direct Liquefaction Process," paper presented to the 72nd Annual Meeting of the AIChE, San Francisco, Nov. (1979). Unruh, T. L., and B. G. Kyle, "The Energetics of the COED Process for Coal Conversion from a Second Law Perspective," paper presented to the 72nd Annual Meeting of the AIChE, San Francisco, Nov. (1979). Kidnay, A. J., and V. F . Yesavage, "Enthalpy Measurement of Coal-Derived Liquids," Quarterly Technical Progress Reports, work done on DOE Contract No. EX-76-C-01-2035. Sharma, R., et al., "The Measurement and Correlation of the Enthalpy of Coal-Derived Liquids," paper presented to the AIChE Spring 1981 National Meeting, Houston (1981). Lowry, H. H.,(Ed.) "Chemistry of Coal U t i l i z a t i o n , " Chap. 4, Wiley, New York (1945). Cheng, W. B., et al., "Entropies of Coals and Reference States in Coal Gasification Availability Analysis," paper presented to the 73rd AIChE Annual Meeting, Chicago (1980). Szargut, J., and T. Styryska, Brennstoff-Warme-Kraft, 16, 589 (1964). Oaki, H . , and M. Ishida, J. Japan Petrol. Inst., 24, 36 (1981). Benson, S. W., "Thermochemical Kinetics," 2nd e d . , Chap.2, Wiley, New York (1976). Shaw, R., et al., J. Physical Chemistry, 81, 1716 (1977). Suzuki, T . , and M. Ishida, "Estimation of the Enthalpy of Formation and the Absolute Entropy of Coal Based on the Group-Contribution Method," J. Fuel Society Japan, 61, 250 (1982). Hirsh, P. B . , Proc. Roy. Soc., A226, 143 (1954). Honda, H . , Fuel, 36, 159 (1957). Ladner, W. R., and A. E . Stacey, Fuel, 40, 295 (1961). Kamiya, Y . , J. Fuel Society Japan, 59, 229 (1980). Gray, J. A., et al., "Selected Physical, Chemical, and Thermodynamic Properties of Narrow Boiling Range Coal Liquids," paper presented to the AIChE F a l l 1981 Annual Meeting, New Orleans, Nov. (1981).

Gaggioli; Efficiency and Costing ACS Symposium Series; American Chemical Society: Washington, DC, 1983.

18. 20. 21. 22. 23. 24. 25.

Downloaded by CORNELL UNIV on August 16, 2016 | http://pubs.acs.org Publication Date: November 11, 1983 | doi: 10.1021/bk-1983-0235.ch018

26.

27. 28. 29. 30. 31.

32.

ISHIDA ET AL.

Coal and Coal-Derived Liquids

393

Yokoyama, S., et al., Fuel, 60, 254 (1981). Yoshida, T . , and Y. Nakada, J. Fuel Society Japan, 60, 762 (1981). Sakabe, T . , Report of the Resources Research Institute of Japan, 49 (1961). Annual Technical Progress Report 1977 SRC Process DOE, June (1978). Sugimura, H . , et al., J . Fuel Society Japan, 46, 911 (1967). van Krevelen, D. W., "Coal", Elsevier, Amsterdam, p.323 (1961). Suzuki, T . , and M. Ishida, "Estimation of Enthalpies of Formation and Absolute Entropies of Coal-Derived Liquids Based on the Group-Contribution Method," J . Fuel Society of Japan, 61, 383 (1982). Project H-Coal Report, HRI R&D No.26, OCR (1967). Furlong, L . E., et al., Chem. Eng. Prog., August, 69 (1976). Callen, R. B . , et al., Ind. Eng. Chem., Prod. Res. Dev., 15, 222 (1976). "Lange's Handbook of Chemistry," p.9-65, McGraw-Hill, New York (1979). Buckingham, P. A . , et al., "Engineering Evaluation of Conceptual Coal Conversion Plant Using the H-Coal Liquefaction Process," EPRI Report, AF-1297 (1979). Ishida, M . , "Analysis of Hierarchical Structure of a Process System Based on Energy and Exergy Transformation," in this book.

RECEIVED July 7, 1983

Gaggioli; Efficiency and Costing ACS Symposium Series; American Chemical Society: Washington, DC, 1983.