Efficient Concatenation of C C Reduction, C−H ... - ACS Publications

Efficient Concatenation of C═C Reduction, C−H Bond Activation, and C−C and C−N Coupling Reactions on Osmium: Assembly of Two Allylamines and a...
0 downloads 0 Views 1MB Size
6298

Organometallics 2010, 29, 6298–6307 DOI: 10.1021/om100715k

Efficient Concatenation of CdC Reduction, C-H Bond Activation, and C-C and C-N Coupling Reactions on Osmium: Assembly of Two Allylamines and an Allene Miguel Baya,* Miguel A. Esteruelas,* and Enrique O~ nate Departamento de Quı´mica Inorg anica, Instituto de Ciencia de Materiales de Arag on, Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain Received July 21, 2010





An osmium-promoted assembly of two allylamine molecules and gem-disubstituted allenes to afford π-allyl ligands with a diamine pendant substituent is reported. Complex OsH2Cl2(PiPr3)2 (1) reacts with 2 equiv of allylamine to give Os(CH2CH2CH2NH2)Cl(η2-CH2dCHCH2NH2)j

j





(PiPr3) (2). At 0 °C carbon monoxide displaces the chloride ligand of 2. At 50 °C, the resulting salt [Os(CH2CH2CH2 NH2)(CO)(η2-CH2dCHCH2NH2)(PiPr3)]Cl (3) is transformed into j





j

Os(CHdCHCH2NH2)Cl(CO)( PrNH2)(P Pr3) (4) by an intramolecular σ-bond metathesis between the alkyl and olefin donor units of 3. The addition of HBF4 to the diethyl ether solutions 

i



n





of 4 affords the alkylidene [OsCl(dCHCH2CH2NH2)(CO)(nPrNH2)(PiPr3)]BF4 (5). The reaction of





4 with TlPF6 under CO atmosphere leads to the cis-dicarbonyl derivative [Os(CHdCHCH2 NH2)(CO)2(nPrNH2)(PiPr3)]PF6 (6), which by treatment with 1-methyl-1-(trimethylsilyl)allene and





1,1-dimethylallene affords [Os{η3-CH2C(CHMeR)CHCH(NHnPr)CH2NH2}(CO)2(PiPr3)]PF6 (R = SiMe3 (7) Me (8)), as a result of the insertion of the allene into the Os-C(sp2) bond of 6 and the subsequent regio- and stereoselective 1,4-addition of a N-H bond of nPrNH2 to the resulting olefin-allyl organic fragment. In agreement with this, under CO atmosphere, 



complex 4 affords Os(CHdCHCH2NH2)Cl(CO)2(PiPr3) (9), which reacts with 1-methyl-





1-(trimethylsilyl)allene in the presence of TlPF6 to give [Os{η3-CH2C(CHdCHCH2 NH2)C(SiMe3)CH3}(CO)2(PiPr3)]PF6 (10). The addition of nPrNH2 and PhNH2 to 10 leads to 7 and [Os{η3-CH2C[CHMe(SiMe3)]CHCH(NHPh)CH2NH2}(CO)2(PiPr3)]PF6 (11), respectively. The X-ray structures of 2, 4, 7, and 10 are also reported.

Introduction The design of novel metal-mediated synthesis of functionalized organic fragments from basic hydrocarbon units is one of the tasks of chemical science.1 The assembly of organic moieties, in the manner like a child plays with a LEGO, has become a fascinating challenge. This aim requires not only the entry in a consecutive and controlled way of organic molecules into a coordination transition-metal complex but also the efficient concatenation of different *Corresponding authors. E-mail: [email protected]; [email protected]. (1) (a) Davies, H. M. L.; Manning, J. R. Nature 2008, 451, 417. (b) Lewis, J. C.; Bergman, R. G.; Ellman, J. A. Acc. Chem. Res. 2008, 41, 1013. (c) Collet, F.; Dodd, R. H.; Dauban, P. Chem. Commun. 2009, 5061. (d) Dobereiner, G. E.; Crabtree, R. H. Chem. Rev. 2010, 110, 681. (e) Lyons, T. W.; Sanford, M. S. Chem. Rev. 2010, 110, 1147. (f) Crabtree, R. H. Chem. Rev. 2010, 110, 575. pubs.acs.org/Organometallics

Published on Web 11/10/2010

elemental processes, in particular C-H bond activation2 and C-C3 and C-heteroatom4 coupling reactions. (2) (a) Shilov, A. E.; Shul’pin, G. B. Chem. Rev. 1997, 97, 2879. (b) Jones, W. D. Top. Organomet. Chem. 1999, 3, 9. (c) Crabtree, R. H. J. Chem. Soc., Dalton Trans. 2001, 2437. (d) Lersch, M.; Tilset, M. Chem. Rev. 2005, 105, 2471. (e) Jones, W. D. Inorg. Chem. 2005, 44, 4475. (f) Godula, K.; Sames, D. Science 2006, 312, 67. (g) Balcells, D.; Clot, E.; Eisenstein, O. Chem. Rev. 2010, 110, 749. (3) (a) Ritleng, V.; Sirlin, C.; Pfeffer, M. Chem. Rev. 2002, 102, 1731. (b) Esteruelas, M. A.; Lopez, A. M. Organometallics 2005, 24, 3584. (c) Esteruelas, M. A.; Lopez, A. M.; Olivan, M. Coord. Chem. Rev. 2007, 251, 795. (d) Park, Y. J.; Park, J.-W.; Jun, C.-H. Acc. Chem. Res. 2008, 41, 222. (e) Li, C.-J. Acc. Chem. Res. 2009, 42, 335. (f) Colby, D. E.; Bergman, R. G.; Ellman, J. A. Chem. Rev. 2010, 110, 624. (4) (a) Esteruelas, M. A.; L opez, A. M. In Recent Advances in Hydride Chemistry; Peruzzini, M.; Poli, R., Eds.; Elsevier: Amsterdam, 2001; Chapter 7, pp 189-248. (b) Alonso, F.; Beletskaya, I. P.; Yus, M. Chem. Rev. 2004, 104, 3079. (c) Beletskaya, I.; Moberg, C. Chem. Rev. 2006, 106, 2320. (d) Mkhalid, I. A. I.; Barnard, J. H.; Marder, T. B.; Murphy, J. M.; Hartwig, J. F. Chem. Rev. 2010, 110, 890. r 2010 American Chemical Society

Article

Results and Discussion



1. Reaction of OsH2Cl2(PiPr3)2 with Allylamine: Coordination and Hydrometalation of C-C Double Bonds. Treatment for 20 h at 20 °C of complex OsH2Cl2(PiPr3)2 (1) in toluene with 4.2 equiv of allylamine gives rise to the release of [HPiPr3]Cl and the formation of 

Os(CH2CH2CH2 NH2)Cl(η2-CH2dCHCH2NH2)(PiPr3) (2), j

j

which is isolated as a yellow solid in 65% yield, according to eq 1.

Complex 2 has incorporated two substrate molecules. One of them coordinates the nitrogen atom to the metal center and inserts the C-C double bond of the allyl group into an Os-H bond, whereas the other one is coordinated to the metal center by the nitrogen atom and the C-C double bond. The reaction of 1 with allylamine contrasts with that of 1 with vinylpyridine, which leads to 

(5) Esteruelas, M. A.; Oro, L. A. Adv. Organomet. Chem. 2001, 47, 1. (6) Barrio, P.; Esteruelas, M. A.; O~ nate, E. J. Am. Chem. Soc. 2004, 126, 1946. (7) Bola~ no, T.; Castarlenas, R.; Esteruelas, M. A.; O~ nate, E. J. Am. Chem. Soc. 2006, 128, 3965. (8) For recent papers see: (a) Esteruelas, M. A.; L opez, A. M.; O~ nate, E.; Royo, E. Organometallics 2004, 23, 3021. (b) Esteruelas, M. A.; Lopez, A. M.; O~ nate, E.; Royo, E. Organometallics 2004, 23, 5633. (c) Esteruelas, M. A.; Fernandez-Alvarez, F. J.; O~nate, E. J. Am. Chem. Soc. 2006, 128, 13044. (d) Esteruelas, M. A.; Fernandez-Alvarez, F. J.; O~nate, E. Organometallics 2007, 26, 5239. (e) Esteruelas, M. A.; Masamunt, A. B.; Olivan, M.; O~ nate, E.; Valencia, M. J. Am. Chem. Soc. 2008, 130, 11612. (f) Esteruelas, M. A.; Fernandez-Alvarez, F. J.; O~nate, E. Organometallics 2008, 27, 6236. (g) Esteruelas, M. A.; Fuertes, S.; Olivan, M.; O~nate, E. Organometallics 2009, 28, 1582. (h) Buil, M. L.; Esteruelas, M. A.; Garces, K.; O~nate, E. Organometallics 2009, 28, 5691. (i) Esteruelas, M. A.; Fernandez-Alvarez, F. J.; L opez, A. M.; Mora, M.; O~nate, E. J. Am. Chem. Soc. 2010, 132, 5600. (9) Esteruelas, M. A.; Fernandez-Alvarez, F. J.; Olivan, M.; O~ nate, E. J. Am. Chem. Soc. 2006, 128, 4596. (10) M€ uller, T. E.; Hultzsch, K. C.; Yus, M.; Foubelo, F.; Tada, M. Chem. Rev. 2008, 108, 3795. (11) (a) Zimmer, R.; Dinesh, C. U.; Nandanan, E.; Khan, F. A. Chem. Rev. 2000, 100, 3067. (b) Bates, R. W.; Satcharoen, V. Chem. Soc. Rev. 2002, 31, 12. (c) Sydnes, L. K. Chem. Rev. 2003, 103, 1133. (d) Ma, S. Acc. Chem. Res. 2003, 36, 701. (e) Ma, S. Chem. Rev. 2005, 105, 2829. (f) Ma, S. Aldrich Chim. Acta 2007, 40, 91. (g) Ma, S. Acc. Chem. Res. 2009, 42, 1679. (h) Alcaide, B.; Almendros, P.; Aragoncillo, C. Chem. Soc. Rev. 2010, 39, 783. (12) (a) Ingrosso, G.; Immirzi, A.; Porri, L. J. Organomet. Chem. 1973, 60, C35. (b) Diversi, P.; Ingrosso, G.; Immirzi, A.; Porzio, W.; Zocchi, M. J. Organomet. Chem. 1977, 125, 253. (c) Borrini, A.; Ingrosso, G. J. Organomet. Chem. 1977, 132, 275. (d) Barker, G. K.; Green, M.; Howard, J. A. K.; Spencer, J. L.; Stone, F. G. A. J. Chem. Soc., Dalton Trans. 1978, 1839. (e) Duggan, D. M. Inorg. Chem. 1981, 20, 1164. (f) Schmidt, J. R.; Duggan, D. M. Inorg. Chem. 1981, 20, 318. (g) Hoberg, H.; Oster, B. W. J. Organomet. Chem. 1984, 266, 321. (h) Herberhold, M.; Hill, A. F. J. Organomet. Chem. 1990, 395, 315. (i) Chen, M.-C.; Keng, R.-S.; Lin, Y.-C.; Wang, Y.; Cheng, M.-C.; Lee, G.-H. J. Chem. Soc., Chem. Commun. 1990, 1138. (j) Stephan, C.; Munz, C.; Dieck, H. T. J. Organomet. Chem. 1994, 468, 273. (k) Binger, P.; Langhauser, F.; Wedemann, P.; Gabor, B.; Mynott, R.; Kr€ uger, C. Chem. Ber. 1994, 127, 39. (l) Matsunaga, P. T.; Mavropoulos, J. C.; Hillhouse, G. L. Polyhedron 1995, 14, 175. (m) Urabe, H.; Takeda, T.; Hideura, D.; Sato, F. J. Am. Chem. Soc. 1997, 119, 11295. (n) Choi, J.-C.; Sarai, S.; Koizumi, T.; Osakada, K.; Yamamoto, T. Organometallics 1998, 17, 2037. (o) Doxsee, K. M.; Juliette, J. J. J. Polyhedron 2000, 19, 879. (p) Arce, A. J.; Chierotti, M.; De Sanctis, Y.; Deeming, A. J.; Gobetto, R. Inorg. Chim. Acta 2004, 357, 3799. (q) Bayden, A. S.; Brummond, K. M.; Jordan, K. D. Organometallics 2006, 25, 5204. (r) Xue, P.; Zhu, J.; Liu, S. H.; Huang, X.; Ng, W, S.; Sung, H. H. Y.; Williams, I. D.; Lin, Z.; Jia, G. Organometallics 2006, 25, 2344. (s) Bai, T.; Ma, S.; Jia, G. Coord. Chem. Rev. 2009, 253, 423, and references therein.

6299

unsaturated organic fragments,10 is a target of great interest. Allenes are a unique class of 1,2-dienes, which have shown a versatile reactivity. Today, the allene unit is an established member of the tools utilized in modern organic synthetic chemistry, in particular for reactions catalyzed by transition metals.11 The coordination of one of the carbon-carbon double bonds to the metal center produces the activation of the allene, which can then undergo several reactions including C-C coupling12 and N-H additions.13 In the search for novel procedures that are efficient in the synthesis of new organic fragments, we have studied the assembly of allylamine and gem-disubstituted allenes promoted by the complex OsH2Cl2(PiPr3)2. In this paper we show an unprecedent joining of two allylamine molecules and an allene substrate involving the efficient concatenation of four reactions: hydrometalation,14 intramolecular σ-bond metathesis between alkyl and alkenyl groups,15 alkenylallene coupling, and N-H addition to a conjugated olefinallyl system.



The iPr3P-Os-PiPr3 metal fragment leaves available the region in the perpendicular plane to the P-Os-P direction for the entry of ligands.5 By using this metal fragment, we have previously assembled (Chart 1) alkynyl, alkenyl, and carbyne ligands to afford an isometallabenzene with the structure of a 1,2,4-cyclohexatriene6 (I) and an allenylidene ligand, an alkenyl group, and an acetonitrile molecule to form osmacyclopentapyrroles7 (II). Furthermore, as a part of our work on the chemistry of the complex OsH2Cl2(PiPr3)2,8 we have also shown that this compound assembles two 2-vinylpyridine and two acetylene molecules to give the ligand py-C8H-C7HC6H-C5H{-C4H-C3HdC2H-C1H}-py, which coordinates to the [Os(PiPr3)]þ metal fragment by the nitrogen atoms of both pyridine rings, the C8H-C7H-C6H unit in an η3-allyl manner, and C1 to form a carbene (III). Its formation is a one-pot synthesis of multiple complex reactions. In addition to a 1,3-hydrogen shift, three selective C-C couplings are efficiently concatenated.9 Nitrogen is present in many compounds of enormous practical importance, ranging from pharmaceutical agents and biological probes to electroactive materials. Thus, the development of novel synthetic methods, including direct formation of new C-N bonds by addition of an amine to

Organometallics, Vol. 29, No. 23, 2010

Os(CHdCH-C5H5 N)Cl(η2-CH2dCH-C5H5N)(PiPr3).9 Alj

j

though this compound has also incorporated two substrate molecules, the loss of molecular hydrogen during the reaction prevents the insertion into an Os-H bond of the C-C double (13) (a) Ackermann, L.; Bergman, R. G. Org. Lett. 2002, 4, 1475. (b) Ackermann, L.; Bergman, R. G.; Loy, R. N. J. Am. Chem. Soc. 2003, 125, 11956. (c) Hoover, J. M.; Petersen, J. R.; Pikul, J. H.; Johnson, A. R. Organometallics 2004, 23, 4614. (d) Michael, F. E.; Duncan, A. P.; Sweeney, Z. K.; Bergman, R. G. J. Am. Chem. Soc. 2005, 127, 1752. (e) Tobisch, S. Chem.;Eur. J. 2007, 13, 4884. (14) The insertion of alkenes into the M-H bond of a transition-metal hydride complex constitutes a key step in a variety of catalytic reactions. See for example: (a) Chaloner, P. A.; Esteruelas, M. A.; Jo o, F.; Oro, L. A. Homogeneous Hydrogenation; Kluwer Academic: Dordrecht, The Nederlands, 1994. (b) Crabtree, R. H. The Organometallic Chemistry of the Transition Metals, 3rd ed.; Wiley: New York, 2001. (15) For previous σ-bond metathesis reactions between C-donor groups see for example: (a) Buil, M. L.; Esteruelas, M. A.; Goni, E.; Olivan, M.; O~ nate, E. Organometallics 2006, 25, 3076. (b) Lin, Z. Coord. Chem. Rev. 2007, 251, 2280.

6300

Organometallics, Vol. 29, No. 23, 2010

Baya et al.

Chart 1



[Os(CH2CH2CH2NH2)(CO)(η2-CH2dCHCH2NH2)(PiPr3)]Cl j

j



(3), which is isolated as a white solid in 84% yield, according to Scheme 1. The presence of a carbonyl ligand in the cation of 3 is strongly supported by its IR and 13C{1H} NMR spectrum. The IR shows a ν(CO) absorption at 1945 cm-1, whereas the 13 C{1H} NMR spectrum contains a carbonyl resonance at 187.0 ppm as a doublet with a C-P coupling constant of 14.1 Hz. As a consequence of the reduction of the electron density of the metal center, the Os-C(sp3) (δ 26.7) and C(sp2) (δ 39.9 and 42.1) resonances of 3 are shifted toward lower field (about 21 and 11 and 7 ppm, respectively) with regard to those of 2. The same phenomenon occurs in the 31P{1H} NMR spectrum, which contains a singlet at -0.2 ppm, i.e., shifted 7 ppm toward lower field with regard to that of 2. The electron density on the metal center of 3 does not appear to be enough for stabilizing the coordination of two π-acidic ligands, the carbonyl group and the C-C double bond, to the osmium atom. Thus, the salt is moderately stable in dichloromethane. At 50 °C it is converted to give 

(16) (a) Lindner, E.; Jansen, R.-M.; Hiller, W.; Fawzi, R. Chem. Ber. 1989, 122, 1403. (b) Kiel, W. A.; Ball, R. G.; Graham, W. A. G. J. Organomet. Chem. 1990, 383, 481. (c) Esteruelas, M. A.; Lahoz, F. J.; L opez, J. A.; Oro, L. A.; Schl€unken, C.; Valero, C.; Werner, H. Organometallics 1992, 11, 2034. (d) Bellachioma, G.; Cardaci, G.; Macchioni, A.; Zanazzi, P. Inorg. Chem. 1993, 32, 547. (e) Esteruelas, M. A.; Gonzalez, A. I.; L opez, A. M.; O~ nate, E. Organometallics 2003, 22, 414. (f) Esteruelas, M. A.; L opez, A. M.; O~nate, E.; Royo, E. Organometallics 2005, 24, 5780. (g) Esteruelas, M. A.; García-Yebra, C.; Olivan, M.; O~nate, E.; Valencia, M. Organometallics 2008, 27, 4892. (17) (a) Johnson, T. J.; Albinati, A.; Koetzle, T. F.; Ricci, J.; Eisenstein, O.; Huffman, J. C.; Caulton, K. G. Inorg. Chem. 1994, 33, 4966. (b) Edwards, A. J.; Esteruelas, M. A.; Lahoz, F. J.; Lopez, A. M.; O~nate, E.; Oro, L. A.; Tolosa, J. I. Organometallics 1997, 16, 1316. (c) Edwards, A. J.; Elipe, S.; Esteruelas, M. A.; Lahoz, F. J.; Oro, L. A.; Valero, C. Organometallics 1997, 16, 3828. (d) Buil, M. L.; Esteruelas, M. A.; GarcíaYebra, C.; Gutierrez-Puebla, E.; Olivan, M. Organometallics 2000, 19, 2184. (e) Esteruelas, M. A.; García-Yebra, C.; Olivan, M.; O~nate, E. Organometallics 2000, 19, 3260. (f) Baya, M.; Esteruelas, M. A.; O~nate, E. Organometallics 2002, 21, 5681. (g) Barrio, P.; Esteruelas, M. A.; O~nate, E. Organometallics 2003, 22, 2472. (h) Baya, M.; Buil, M. L.; Esteruelas, M. A.; O~ nate, E. Organometallics 2004, 23, 1416. (i) Barrio, P.; Esteruelas, M. A.; O~ nate, E. Organometallics 2004, 23, 3627. (j) Baya, M.; Buil, M. L.; Esteruelas, M. A.; O~ nate, E. Organometallics 2005, 24, 2030. (k) Esteruelas, M. A.; García-Yebra, C.; Olivan, M.; O~nate, E. Inorg. Chem. 2006, 45, 10162. (l) Esteruelas, M. A.; Hernandez, Y. A.; Lopez, A. M.; Olivan, M.; Rubio, L. Organometallics 2008, 27, 799. (m) Esteruelas, M. A.; GarcíaYebra, C.; O~ nate, E. Organometallics 2008, 27, 3029. (n) Castro-Rodrigo, R.; Esteruelas, M. A.; Lopez, A. M.; Lopez, F.; Mascare~nas, J. L.; Olivan, M.; O~ nate, E.; Saya, L.; Villari~no, L. J. Am. Chem. Soc. 2010, 132, 454.

lengths C(2)-C(3) of 1.390(10) and 1.395(10) A˚, suggests a strong osmium-olefin interaction. The 13C{1H} NMR spectrum of 2 is consistent with the structure shown in Figure 1. In agreement with the presence of an Os-C(sp3) bond in the complex, the spectrum contains at 5.9 ppm a doublet with a C-P coupling constant of 3.5 Hz, corresponding to C(6). The C(sp2) resonances due to C(2) and C(3) are observed at 29.3 and 35.5 ppm, respectively. The first of them appears as a singlet, whereas the second one is a doublet with a C-P coupling constant of 2.6 Hz. The 31P{1H} NMR spectrum shows a singlet at -7.3 ppm. 2. σ-Hydrogen Migration from the Coordinated to the Inserted C-C Double Bond. Carbon monoxide displaces the chloride ligand of 2 from the coordination sphere of the metal center. Thus, the stirring at 0 °C of toluene solutions of this compound under atmospheric carbon monoxide pressure affords the salt 

bond of the vinyl substituent of one of the heterocycles. Instead of the latter, a vinyl C-H bond activation occurs9 in addition to the [HPiPr3]Cl release. Complex 2 has been characterized by X-ray diffraction analysis. Its structure has two chemically equivalent but crystallographically independent molecules of the complex in the asymmetric unit. A drawing of one of them is shown in Figure 1. The coordination around the osmium atom can be rationalized as a distorted octahedron with the phosphorus atom of the phosphine ligand trans disposed to the nitrogen atom of the coordinated allylamine (P(1)-Os(1)-N(1) = 168.51(16)° and 169.97(17)°). The perpendicular plane is formed by the inserted group, which acts with bite angles C(6)-Os(1)-N(2) of 79.0(2)° and 79.3(3)°, the chloride ligand trans disposed to C(6) (Cl(1)-Os(1)-C(6)=154.99(19)° and 155.7(2)°) and the coordinated C(2)-C(3) double bond trans disposed to N(2). The Os-C(6) bond lengths of 2.122(7) and 2.117(7) A˚ lie on the lower part of the range reported for the limited number of Os-C(sp3) complexes characterized by X-ray diffraction analysis (2.15-2.21 A˚),16 whereas the distances Os-C(2) of 2.076(7) and 2.153(7) A˚ and Os-C(3) of 2.143(7) A˚ lie on the lower part of the range reported for metal-olefin distances in osmium-olefin compounds (2.13-2.28 A˚)17 and are statistically identical with the Os-C(6) bond lengths. This, along with the olefinic bond

Figure 1. Thermal ellipsoid drawing of one of the two independent molecules of complex 2, with ellipsoids at 50% probability. Some hydrogen atoms have been omitted for clarity. Selected bond lengths (A˚) and angles (deg): Os(1)-N(1) 2.184(6), 2.171(6); Os(1)-N(2) 2.173(6), 2.173(6); Os(1)-C(2) 2.076(7), 2.153(7); Os(1)-C(3) 2.143(7), 2.143(7); Os(1)-C(6) 2.122(7), 2.117(7); C(2)-C(3) 1.390(10), 1.395(10); C(5)-C(6) 1.527(10), 1.544(11); P(1)-Os(1)-N(1) 168.51(16), 169.97(17); C(6)-Os(1)-N(2) 79.0(2), 79.3(3); C(6)-Os(1)-Cl(1) 154.99(19), 155.7(2).

after 8 h the neutral compound Os(CHdCHCH2 NH2)Cl(CO)(nPrNH2)(PiPr3) (4) in quantitative yield (Scheme 1). Its formation involves an R-hydrogen migration from the terminal olefinic CH2 group of the coordinated allylamine to

Article

Organometallics, Vol. 29, No. 23, 2010

6301

Scheme 1

the Os-CH2 group of the inserted one. The subsequent coordination of the chloride anion to the metal center of the resulting five-coordinate species stabilizes the compound. This σ-bond metathesis between a M-alkyl and an olefin is consistent with the fact that it is the product M-C bond strengths that dominate in the determination of the position of the hydrocarbon activation equilibria and not the reactant C-H bond strengths.18 Although a HC(sp2)-H bond is stronger than a RHC(sp3)-H bond, the Os-CHd bond is stronger than the Os-CH2- bond. Complex 4, which is isolated as a white solid in 67% yield, has been characterized by X-ray diffraction analysis. A view of the structure of the molecule is shown in Figure 2. The coordination geometry around the osmium atom can be rationalized as a distorted octahedron with the phosphorus atom of the triisopropylphosphine group and the nitrogen atom of the resulting n-propylamine ligand occupying mutually trans positions (P-Os-N(2)=176.43(7)°). The perpendicular plane is formed by the atoms C(3) and N(1) of the activated allylamine group, which acts with a bite angle C(3)-Os-N(1) of 78.31(11)°, the chloride ligand trans disposed to C(3) (ClOs-C(3)=160.32(9)°) and the carbonyl group trans disposed to N(1) (C(7)-Os-N(1)=171.49(11)°). The Os-C(3) bond length of 2.040(3) A˚ compares well with the Os-C(sp2) singlebond distances found in other osmium-alkenyl complexes,19 whereas the C(3)-C(2) bond length of 1.343(4) A˚ agrees well with the average carbon-carbon double-bond distance (1.32(1) A˚).20 In accordance with the sp2 hybridization at C(3) and C(2), the Os-C(2)-C(3) and C(3)-C(2)-C(1) angles are 118.3(2)° and 120.3(3)°, respectively. The 1H, 13C{1H}, and 31P{1H} NMR spectra of 4 are consistent with the structure shown in Figure 2. In the 1H NMR spectrum, the most noticeable resonances are two doublets (18) Jones, W. D.; Feher, F. J. Acc. Chem. Res. 1989, 22, 91. (19) See for example: (a) Werner, H.; Esteruelas, M. A.; Otto, H. Organometallics 1986, 5, 2295. (b) Werner, H.; Weinand, R.; Otto, H. J. Organomet. Chem. 1986, 307, 49. (c) Espuelas, J.; Esteruelas, M. A.; Lahoz, F. J.; Oro, L. A.; Valero, C. Organometallics 1993, 12, 663. (d) Buil, M. L.; Esteruelas, M. A.; Lopez, A. M.; O~nate, E. Organometallics 1997, 16, 3169. (e) Esteruelas, M. A.; García-Yebra, C.; Olivan, M.; O~nate, E.; Tajada, M. A. Organometallics 2000, 19, 5098. (f) Castarlenas, R.; Esteruelas, M. A.; O~ nate, E. Organometallics 2001, 20, 2294. (g) Eguillor, B.; Esteruelas, M. A.; Olivan, M.; O~nate, E. Organometallics 2005, 24, 1428. (h) Bola~ no, T.; Castarlenas, R.; Esteruelas, M. A.; O~nate, E. J. Am. Chem. Soc. 2006, 128, 3965. (20) Orpen, A. G.; Brammer, L.; Allen, F. H.; Kennard, O.; Watson, D. G.; Taylor, R. J. Chem. Soc., Dalton Trans. 1989, S1.

Figure 2. Thermal ellipsoid drawing of 4, with ellipsoids at 50% probability. Some hydrogen atoms have been omitted for clarity. Selected bond lengths (A˚) and angles (deg): Os-N(1) 2.217(3); Os-N(2) 2.178(2); Os-C(3) 2.040(3); C(2)-C(3) 1.343(4); C(5)-C(6) 1.520(4); P-Os-N(2) 176.43(7); N(1)Os-C(3) 78.31(11); N(1)-Os-C(7) 171.49(11); Cl-Os-C(3) 160.32(9); Os-C(2)-C(3) 118.3(2); C(1)-C(2)-C(3) 120.3(3).

(JHH = 9.0 Hz) at 5.65 and 7.99 ppm corresponding to the C(3)-H and C(2)-H hydrogen atoms, respectively. In the 13 C{1H} NMR spectrum, the C(3) resonance appears at 142.9 ppm, as a doublet with a C-P coupling constant of 15.7 Hz, whereas the C(2) signal is observed at 126.8 ppm as a singlet. The 31P{1H} NMR spectrum contains a singlet at 15.9 ppm. The M-alkylidene to M-olefin rearrangement is in most cases an exothermic process, in particular for cationic species containing an alkylidene ligand with β-CH bonds.21 However, some systems showing alkylidene preference have been found.22 Some cationic osmium metal fragments seem to be a part of these systems, revealing a marked tendency to stabilize the alkylidene form with regard to the olefin.23 In addition, electron-rich osmium metal fragments efficiently promote the electrophilicity transfer from CR to Cβ (21) See for example: (a) Cutler, A.; Fish, R. W.; Giering, W. P.; Rosenblum, M. J. Am. Chem. Soc. 1972, 94, 4354. (b) Casey, C. P.; Albin, L. D.; Burkhardt, T. J. J. Am. Chem. Soc. 1977, 99, 2533. (c) Brookhart, M.; Tucker, J. R.; Husk, G. R. J. Am. Chem. Soc. 1981, 103, 979. (d) Casey, C. P.; Miles, W. H.; Tukada, H. J. Am. Chem. Soc. 1985, 107, 2924. (e) Alias, F. M.; Poveda, M. L.; Sellin, M.; Carmona, E. J. Am. Chem. Soc. 1998, 120, 5816. (22) See for example: (a) Coalter, J. N., III; Bollinger, J. C.; Huffman, J. C.; Werner-Zwanziger, U.; Caulton, K. G.; Davidson, E. R.; Gerard, H.; Clot, E.; Eisenstein, O. New J. Chem. 2000, 24, 9. (b) Coalter, J. N., III; Ferrando, G.; Caulton, K. G. New J. Chem. 2000, 24, 835. (c) Coalter, J. N., III; Huffman, J. C.; Caulton, K. G. Organometallics 2000, 19, 3569. (d) Coalter, J. N., III; Huffman, J. C.; Streib, W. E.; Caulton, K. G. Inorg. Chem. 2000, 39, 3757. (e) Coalter, J. N., III; Streib, W. E.; Caulton, K. G. Inorg. Chem. 2000, 39, 3749. (f) Ferrando, G.; Gerard, H.; Spivak, G. J.; Coalter, J. N., III; Huffman, J. C.; Eisenstein, O.; Caulton, K. G. Inorg. Chem. 2001, 40, 6610. (g) Padilla-Martínez, I. I.; Poveda, M. L.; Carmona, E.; Monge, M. A.; RuizValero, C. Organometallics 2002, 21, 93. (h) Ferrando-Miguel, G.; Coalter, J. N., III; Gerard, H.; Huffman, J. C.; Eisenstein, O.; Caulton, K. G. New J. Chem. 2002, 26, 687. (i) Ferrando, G.; Coalter, J. N., III; Gerard, H.; Huang, D.; Eisenstein, O.; Caulton, K. G. New J. Chem. 2003, 27, 1451. (j) Ozerov, O. V.; Watson, L. A.; Pink, M.; Caulton, K. G. J. Am. Chem. Soc. 2003, 125, 9604. (k) Ozerov, O. V.; Watson, L. A.; Pink, M.; Caulton, K. G. J. Am. Chem. Soc. 2004, 126, 6363. (l) Paneque, M.; Poveda, M. L.; Santos, L. L.; Carmona, E.; Lledos, A.; Ujaque, G.; Mereiter, K. Angew. Chem., Int. Ed. 2004, 43, 3708. (m) Hirsekorn, K. F.; Veige, A. S.; Marshak, M. P.; Koldobskaya, Y.; Wolczanski, P. T.; Cundari, T. R.; Lobkovsky, E. B. J. Am. Chem. Soc. 2005, 127, 4809. (n) Kuznetsov, V. F.; Abdur-Rashid, K.; Lough, A. J.; Gusev, D. G. J. Am. Chem. Soc. 2006, 128, 14388. (o) Besora, M.; Vyboishchikov, S. F.; Lledos, A.; Maseras, F.; Carmona, E.; Poveda, M. L. Organometallics 2010, 29, 2040.

Organometallics, Vol. 29, No. 23, 2010

Baya et al. Scheme 2





in coordinated alkenyl ligands.3c In agreement with both the alkylidene preference of the [OsCl(CO)(nPrNH2)(PiPr3)]þ metal fragment and the efficient nucleophilicity transfer from C(3) to C(2) in 4, the addition of 1.2 equiv of HBF4 3 OEt2 to the diethyl ether solutions of the latter causes the instantaneous precipitation of the alkylidene derivative





[OsCl(dCHCH2CH2 NH2)(CO)(nPrNH2)(PiPr3)]BF4 (5) as a brown solid in 67% yield (Scheme 1). Its formation is strongly supported by the 1H and 13C{1H} NMR spectra of the obtained solid in dichloromethane-d2. The first of them shows at 17.88 ppm a multiplet corresponding to the OsdCH hydrogen, whereas the second one contains at 296.3 ppm a doublet with a C-P coupling constant of 6.3 Hz due to the Os-C carbon atom. A singlet at 26.4 ppm in the 31P{1H} NMR spectrum is also characteristic of 5. 3. Amine-Allene Assembly. The addition of 3.0 equiv of 1-methyl-1-(trimethylsilyl)allene or 1,1-dimethylallene to an NMR tube containing a dichloromethane-d2 solution of 4 does not produce any change in the 1H, 13C{1H}, and 31P{1H} NMR spectra of this compound. Since it has been proven that carbon monoxide triggers H-C, C-C, and C-heteroatom reductive couplings without elimination from the coordination sphere of the metal,19,24 we decided to replace the chloride ligand of 4 by a carbonyl group in order to assemble the coordinated amines with the allenes. Treatment for 3 h at room temperature of dichloromethane solutions of 4 with 2.0 equiv of TlPF6 under CO atmosphere gives rise to the precipitation of TlCl and the formation of



the cis-dicarbonyl derivative [Os(CHdCHCH2 NH2)(CO)2(nPrNH2)(PiPr3)]PF6 (6), which is isolated as a white solid in 71% yield, according to eq 2.

ratio between them suggests an angle between the CO ligands of about 90°.25 The 13C{1H} NMR spectrum contains two resonances at 183.4 and 182.1 ppm, which appear as doublets with C-P coupling constants of 5.9 and 9.3 Hz, respectively. The Os-C and C(sp2) signals of the activated amine are observed at 154.8 and 138.8 ppm. The first of them is a doublet with a C-P coupling constant of 8.1 Hz, whereas the second one appears as a singlet. These C-P coupling constant values support the cis disposition of the phosphine ligand to the carbonyl groups and the metalated atom of the amine. In the 31P{1H} NMR spectrum, the phosphine ligand displays a singlet at 18.2 ppm. Complex 6 reacts with 1-methyl-1-(trimethylsilyl)allene and 1,1-dimethylallene, as expected, in contrast to 4. Treatment of dichloromethane solutions of 6 with 3.0 equiv of 1-methyl-1-(trimethylsilyl)allene and 1,1-dimethylallene at 60 °C for 24 h leads to the diaminoallyl derivatives

The presence of two cis carbonyl ligands in 6 is strongly supported by its IR and 13C{1H} NMR spectrum. The IR shows two ν(CO) bands at 2015 and 1936 cm-1. The intensity (23) (a) Esteruelas, M. A.; Lahoz, F. J.; L opez, A. M.; O~ nate, E.; Oro, L. A. Organometallics 1994, 13, 1669. (b) Esteruelas, M. A.; Oro, L. A.; Valero, C. Organometallics 1995, 14, 3596. (c) Esteruelas, M. A.; Lahoz, F. J.; O~ nate, E.; Oro, L. A.; Valero, C.; Zeier, B. J. Am. Chem. Soc. 1995, 117, 7935. (d) Albeniz, M. J.; Esteruelas, M. A.; Lledos, A.; Maseras, F.; O~ nate, E.; Oro, L. A.; Sola, E.; Zeier, B. J. Chem. Soc., Dalton Trans. 1997, 181. (e) Crochet, P.; Esteruelas, M. A.; Lopez, A. M.; Martínez, M.-P.; Olivan, M.; O~ nate, E.; Ruiz, N. Organometallics 1998, 17, 4500. (f) Spivak, G. J.; Caulton, K. G. Organometallics 1998, 17, 5260. (g) Buil, M. L.; Esteruelas, M. A. Organometallics 1999, 18, 1798. (h) Esteruelas, M. A.; Olivan, M.; O~ nate, E.; Ruiz, N.; Tajada, M. A. Organometallics 1999, 18, 2953. (i) Buil, M. L.; Esteruelas, M. A.; García-Yebra, C.; Gutierrez-Puebla, E.; Olivan, M. Organometallics 2000, 19, 2184. (j) Baya, M.; Esteruelas, M. A. Organometallics 2002, 21, 2332. (k) Castro-Rodrigo, R.; Esteruelas, M. A.; Fuertes, S.; L opez, A. M.; Mozo, S.; O~nate, E. Organometallics 2009, 28, 5941. (24) (a) Oliv an, M.; Eisenstein, O.; Caulton, K. G. Organometallics 1997, 16, 2227. (b) Huang, D.; Olivan, M.; Huffman, J. C.; Eisenstein, O.; Caulton, K. G. Organometallics 1998, 17, 4700. (c) Spivak, G. J.; Coalter, J. N.; Olivan, M.; Eisenstein, O.; Caulton, K. G. Organometallics 1998, 17, 999. (d) Castarlenas, R.; Esteruelas, M. A.; O~nate, E. Organometallics 2001, 20, 2294. (e) Bola~ no, T.; Castarlenas, R.; Esteruelas, M. A.; Modrego, F. J.; O~ nate, E. J. Am. Chem. Soc. 2005, 127, 11184. (f) Bola~no, T.; Castarlenas, R.; Esteruelas, M. A.; O~nate, E. J. Am. Chem. Soc. 2009, 131, 2064. (25) [I(higher ν)]/[I(lower ν)] = cot2 ϑ; see: Crabtree, R. H. The Organometallic Chemistry of the Transition Metals; 4th ed.; Wiley Interscience: NJ, 2005; Chapter 10, p 298.



6302

[Os{η 3 -CH 2 C(CHMeR)CHCH(NH n Pr)CH 2 NH2 }(CO)2 (PiPr3)]PF6 (R = SiMe3 (7), Me (8)), as a result of the assembly of the allenes with the amines. Complexes 7 and 8 are isolated as white solids in 62% and 58% yield, respectively, according to Scheme 2. Figure 3 shows a view of the cation of 7. The structure proves the assembly of the organic fragments on the coordination sphere of the metal. The process gives rise to an allyl ligand with a diamine pendant group, which coordinates by one of the nitrogen atoms. Thus, the polyhedron around the osmium atom can be rationalized as being derived from a highly distorted octahedron with the C(14)-O(1) carbonyl group trans disposed to the N(1) nitrogen atom of the pendant diamine (C(14)-Os-N(1) = 175.4(2)°). The allyl group occupies two cis positions with a C(1)-Os-C(10) angle of 65.7(2)°. The terminal carbon atom C(1) is trans disposed to the C(15)-O(2) carbonyl group (C(1)-Os-C(15) = 162.3(2)°), whereas the substituted C(10) carbon atom lies trans to the phosphine (C(10)-Os-P = 163.33(17)°). The pendant diamine substituent is anti with regard to the C(2)-C(3) bond with a torsion angle C(3)-C(2)-C(10)-C(9) of 138(7)°. The C(1)-C(2)-C(10) angle is 117.1(6)°. The allyl moiety coordinates in an asymmetrical fashion, with the separation between the substituted carbon atom C(10) and the metal (2.239(7) A˚) being shorter than the separation between the metal and C(1) (2.268(6) A˚) and C(2) (2.275(6) A˚). The carbon-carbon distances within the allylic moiety, 1.418(8) A˚ for C(1)-C(2) and

Article

Organometallics, Vol. 29, No. 23, 2010

6303

Scheme 3

(26) See for example: (a) Baya, M.; Esteruelas, M. A.; O~ nate, E. Organometallics 2001, 20, 4875. (b) Esteruelas, M. A.; Gonzalez, A. I.; L opez, A. M.; Olivan, M.; O~nate, E. Organometallics 2006, 25, 693. (27) Collado, A.; Esteruelas, M. A.; L opez, F.; Mascare~ nas, J. L.; O~ nate, E.; Trillo, B. Organometallics 2010, 29, 4966.





cis-dicarbonyl derivative Os(CHdCHCH2 NH2)Cl(CO)2(PiPr3) (9), which is isolated as a white solid in 72% yield. In agreement with the presence of two cis-carbonyl ligands in the complex, its IR shows two ν(CO) bands at 1999 and 1917 cm-1 with an intensity ratio that is consistent with an angle between the carbonyl ligands of about 90°. In the 13 C{1H} NMR spectrum, the inequivalent carbonyl ligands display two doublets at 178.4 and 181.6 ppm. The C-P coupling constant values of 8.3 and 5.3 Hz support the cis disposition of the phosphine ligand to both carbonyl groups. The Os-C and C(sp2) resonances of the metallacycle are observed as doublets at 154.5 and 135.0 ppm, respectively. The C-P coupling constant values of 17.0 and 12.1 Hz are also consistent with a cis disposition of the phosphine to the metalated carbon atom. The 31P{1H} NMR spectrum shows a singlet at 22.7 ppm. Treatment of dichloromethane solutions of 9 with 3.0 equiv of TlPF6 in the presence of 3.0 equiv of 1-methyl-1-(trimethylsilyl)

1.447(9) A˚ for C(2)-C(10), are in accordance with the values found in other osmium π-allyl derivatives.16e,26 The 1H, 13C{1H}, and 31P{1H} NMR spectra of 7 and 8 are consistent with the structure shown in Figure 3. In the 1H NMR spectra the most noticeable resonances are those corresponding to the allylic hydrogen atoms, which appear at 2.68, 3.91, and 5.25 ppm (7) and 2.64, 3.75, and 5.27 ppm (8). In the 13C{1H} NMR spectra, the resonances due to the allylic skeleton of 7 are observed at 47.0 (CH2), 71.0 (CH), and 130.0 (C) ppm, whereas those of 8 appear at 46.3 (CH2), 71.3 (CH), and 124.7 (C) ppm. In the 31P{1H} NMR spectra, the phosphine ligands display singlets at 24.5 (7) and 25.8 (8) ppm. Complexes 7 and 8 result from the coupling of the central carbon atom of the allenes and the metalated carbon atom of 6, the addition of one of the NH-hydrogen atoms of the generated n-propylamine to the substituted carbon atom of the allenes, and the attack of the resulting nPrNH-amido group to the internal C(sp2) atom of the metallacycle of 6. The formation of the new bonds can be rationalized according to Scheme 2. The addition of the allenes to the dichloromethane solutions of 6 should initially produce the replacement of the n-propylamine ligand by the less congested C-C double bond of the allenes.27 Thus, the subsequent migratory insertion of the coordinated double bond into the Os-C(sp2) bond of the heterometallacycle could generate the π-allyl intermediate B, which should finally undergo an anti-Markovnikov type 1,4-addition of one of the NH bonds of the released n-propylamine ligand to the olefin-allyl unit, affording 7 and 8. Although the hydrogen atom of the amine could be added to both terminal carbon atoms of the allyl skeleton, it should be noted that the addition selectively occurs at the substituted one. In order to corroborate this proposal, intermediate B with R = SiMe3 (complex 10) has been prepared by means of the reaction sequence shown in Scheme 3. The n-propylamine ligand of 4 can be displaced by a CO molecule in dichloromethane at room temperature under

carbon monoxide atmosphere. The substitution leads to the



Figure 3. Thermal ellipsoid drawing of the cation of 7, with ellipsoids at 50% probability. Some hydrogen atoms have been omitted for clarity. Selected bond lengths (A˚) and angles (deg): Os-N(1) 2.182(6); Os-C(1) 2.268(6); Os-C(2) 2.275(6); Os-C(10) 2.239(7); C(1)-C(2) 1.418(8); C(2)-C(10) 1.447(9); C(9)-C(10) 1.520(9); N(2)-C(9) 1.483(9); P-Os-C(10) 163.33(17); N(1)-Os-C(14) 175.4(2); C(1)-Os-C(15) 162.3(2); C(1)-Os-C(10) 65.7(2); C(1)-C(2)-C(10) 117.1(6); C(2)-C(10)-C(9) 125.9(6).

allene leads after 1 h to [Os{η3-CH2C(CHdCHCH2 NH2)C(SiMe3)CH3}(CO)2(PiPr3)]PF6 (10), as a result of the insertion of the allene into the Os-C(sp2) bond of 9. Complex 10 is isolated as a white solid in 82% yield. The structure of 10 determined by X-ray diffraction analysis has two chemically equivalent but crystallographically independent cations in the asymmetric unit. A drawing of one of them is shown in Figure 4. The insertion of the allene into the metallacycle of 9 generates an allyl ligand, coordinated by C(1), C(2), and C(3), with a pendant C(10)-bonded allylamine substituent at the central carbon atom C(2). The polyhedron around the osmium atom can be rationalized as a distorted octahedron similar to that of 7, with the C(11)-O(1) carbonyl ligand trans disposed to the pendant N(1) nitrogen atom (C(11)-Os(1)-N(1) =175.6(6)° and 174.9(6)°). The allyl unit occupies two cis positions with C(1)-Os(1)-C(3) angles of 66.6(5)° and 65.5(6)°. The terminal carbon atom C(1) is trans disposed to the C(12)-O(2) carbonyl group (C(1)Os(1)-C(12) = 158.1(6)° and 157.3 (6)°), whereas C(3) lies trans to the phosphine (C(3)-Os(1)-P(1) = 169.8(4)° and 169.3(4)°). The pendant amine is syn disposed with regard to the methyl substituent at C(3) (C(10)-C(2)-C(3)-C(4) = 10(2)° and 7(2)°) and anti with regard to the trimethylsilyl group (C(10)-C(2)-C(3)-Si(1) = 129(1)° and 135(1)°). The C(1)-C(2)-C(3) angles are 120.1(13)° and 119.3(13)°. The allyl moiety coordinates in an asymmetrical fashion, with the separation between C(3) and the metal (2.324(14) and

Baya et al. 

Organometallics, Vol. 29, No. 23, 2010 

6304

[Os{η3-CH2C[CHMe(SiMe3)]CHCH(NHPh)CH2NH2}(CO)2(PiPr3)]PF6 (11), which is isolated as a white solid in 75% yield. The presence of a PhNH group in the diaminoallyl ligand of 11 is strongly supported by the 1H and 13C{1H} NMR spectra of this compound, which contain the corresponding phenyl signals. In agreement with 7 and 8, the 1H NMR spectrum shows the allylic hydrogen resonances at 2.30, 3.97, and 5.28 ppm, whereas in the 13C{1H} NMR spectrum the resonances due to the allylic skeleton are observed at 45.2 (CH2), 68.5 (CH), and 130.0 (C) ppm. A singlet at 23.4 ppm in the 31P{1H} NMR spectrum is also characteristic of this compound.

Concluding Remarks

Experimental Section General Methods and Instrumentation. All reactions were carried out under argon with rigorous exclusion of air using Schlenk-tube or glovebox techniques. Solvents were dried by the usual procedures and distilled under argon prior to use. The starting material OsH2Cl2(PiPr3)2 (1) was prepared according to the published method.28 All reagents were obtained from commercial sources. Unless stated, NMR spectra were recorded on a Varian Gemini 2000, a Bruker ARX 300, or a Bruker Avance 300 MHz instrument, with resonating frequencies of 300 MHz (1H), 121.5 MHz (31P), and 75.5 MHz (13C). Chemical shifts (expressed in parts per million) are referenced to residual solvent peaks (1H, 13C) or external H3PO4 (31P). Coupling constants, J, are given in hertz. Infrared spectra were run on a Perkin-Elmer Spectrum 100 FT-IR spectrometer. C, H, and N analyses were carried out in a Perkin-Elmer 2400 CHNS/O analyzer. Highresolution electrospray mass spectra were acquired using a MicroTOF-Q hybrid quadrupole time-of-flight spectrometer (Bruker Daltonics, Bremen, Germany). 

2.340(16) A˚) being longer than those between the metal and C(1) (2.260(17) and 2.256(15) A˚) and C(2) (2.302(12) and 2.319(13) A˚). The carbon-carbon distances within the allyl moiety, 1.434(18) and 1.471(2) A˚ for C(1)-C(2) and 1.470(19) and 1.41(2) A˚ for C(2)-C(3), agree well with those of 7. The C(9)-C(10) bond lengths of 1.33(2) and 1.32(3) A˚ support the presence of a double bond between these atoms of the pendant substituent. The 1H, 13C{1H}, and 31P{1H} NMR spectra of 10 are consistent with the structure shown in Figure 4. In the 1H NMR spectrum the resonances due to the C(1)H2-hydrogen atoms are observed at 6.00 and 6.70 ppm. In the 13C{1H} NMR spectrum the allylic resonances appear at 35.5 (C(1)), 64.5 (C(3)), and 127.8 (C(2)) ppm, whereas the olefinic C(9) and C(10) signals are observed at 126.9 and 130.1 ppm, respectively. The 31P{1H} NMR spectrum shows the phosphine resonance at 22.3 ppm. Complex 10 reacts with 1.0 equiv of n-propylamine in dichloromethane at room temperature to give 7 in quantitative yield, as a result of the addition of one of the NH hydrogen atoms to the allylic carbon atom C(3) and the nPrNH-amido group to the olefinic carbon atom C(9). The comparison of the stereochemistries of the diamineallyl and amineallyl ligands of 7 and 10, respectively, suggests that the formation of 7 implies a stepwise 1,4-conjugated addition in which the nuclephillic attack of the amine takes place at the exo face of the C-C double bond. The second step would consist of the diastereoselective proton transfer to the C(3) carbon of the C(Me)SiMe3 moiety. The formation of 7 by addition of n-propylamine to 10 not only is a strong evidence in favor of the mechanistic proposal shown in Scheme 2 but also opens the door to the preparation of species related to 7 and 8 with a substituent different from nPrNH. In fact, complex 10 reacts with aniline in dichloromethane to give



Figure 4. Thermal ellipsoid drawing of one of the two independent molecules of complex 10, with ellipsoids at 50% probability. Some hydrogen atoms have been omitted for clarity. Selected bond lengths (A˚) and angles (deg): Os(1)-N(1) 2.197 (12), 2.196(12); Os(1)-C(1) 2.260(17), 2.256(15); Os(1)-C(2) 2.302(12), 2.319(13); Os(1)-C(3) 2.324(14), 2.340(16); C(1)-C(2) 1.434(18), 1.470(2); C(2)-C(3) 1.470(19), 1.41(2); C(9)-C(10) 1.33(2), 1.32(3); P(1)Os(1)-C(3) 169.8(4), 169.3(4); N(1)-Os(1)-C(11) 175.6(6), 174.9(6); C(1)-Os(1)-C(12) 158.1(6), 157.3(6); C(1)-Os(1)-C(3) 66.6(5), 65.5(6); C(1)-C(2)-C(3) 120.1(13), 119.3(13); C(2)C(3)-C(4) 115.3(12), 115.6(13); C(2)-C(3)-Si(1) 123.7(10), 124.9(12).

This study has revealed that two molecules of allylamine and gem-disubstituted allenes can be assembled on the coordination sphere of osmium to afford allyl ligands with a pendant diamine group, which coordinate to the metal center by the allyl unit and one of the nitrogen atoms of the diamine substituent. Starting from the complex OsH2Cl2(PiPr3)2, the process has been carried out by means of the efficient concatenation of four relevant reactions: (i) the hydrometalation of the carbon-carbon double bond of one of the amines; (ii) the reduction of the metalated amine by hydrogen-atom transfer from the other one, which is metalated by means of C(sp2)-H bond activation; (iii) the insertion of the allene into the Os-C(sp2) bond of the resulting heterometallacycle to give an allyl ligand with a pendant C3-bonded allylamine substituent; and (iv) the regio- and stereoselective 1,4 addition of a N-H bond of the reduced amine to the olefin-allyl unit of the allyl C3-bonded allylamine ligand. The replacement of the reduced amine for the other amine in the last step allows preparing allyl ligands with different amino substituents at the C2-carbon atom of the pendant group.

Preparation of Os(CH2CH2CH2NH2)Cl(η2-CH2dCHCH2NH2)(P Pr3) (2). Allylamine (300 μL, 3.90 mmol) was added to a suspension of 1 (540 mg, 0.93 mmol) in toluene (15 mL). The mixture immediately turned into a yellow solution. After 20 h of stirring, a yellowish suspension was obtained, which was vacuum-dried, and the residue was extracted with dichloromethane (50 mL). The resulting solution was vacuum-dried, washed with cold methanol (273 K, 3  4 mL) and pentane (4  4 mL), and dried in vacuo. A yellow solid i

j

j

(28) Aracama, M.; Esteruelas, M. A.; Lahoz, F. J.; L opez, J. A.; Meyer, U.; Oro, L. A.; Werner, H. Inorg. Chem. 1991, 30, 288.

Organometallics, Vol. 29, No. 23, 2010









Preparation of Os(CHdCHCH2 NH2)Cl(CO)(nPrNH2)(PiPr3) (4). A warm (323 K) solution of 3 (120 mg, 0.23 mmol) in toluene (15 mL) was stirred for 2 h. A white suspension was obtained, which was concentrated to ca. 0.5 mL. Addition of pentane (4 mL) caused a precipitate, which was decanted and further washed with pentane (2  4 mL) and dried in vacuo. A white solid was obtained. Yield: 80 mg (0.34 mmol, 67%). Anal. Calcd for C16H36ClN2OOsP: C, 36.32; H, 6.86; N, 5.29. Found: C, 36.39; H, 6.61; N, 5.14. IR (cm-1): 3354, 3249 (w, NH); 1867 (s, CO). 1H NMR (CD2Cl2, plus COSY): δ 0.90 (t, 2JHH = 7.5 Hz, 3H, -CH2CH2CH3), 1.22 (dd, 3 JHP = 12.9 Hz, 3JHH = 7.5 Hz, 9H, PCHCH3), 1.25 (dd, 3JHP = 12.9 Hz, 3JHH =7.5 Hz, 9H, PCHCH3), 1.50 (m, 2H, -CH2CH2CH3), 2.37 (m, 3H, PCHCH3), 2.43, 3.48, 3.63, 4.46 (all br, 1H each, NH), 2.76, 2.89 (both m, 1H each, -CH2CH2CH3), 3.62 (m, 2H, NH2CH2CHd), 5.65 (d, 2JHH = 9.0 Hz, 1H, Os-CHdCH-), 7.99 (d, 2JHH = 9.0 Hz, 1H, Os-CHdCH-). 13C NMR (CD2Cl2, plus APT, HSQC, and HMBC): δ 11.0 (þ, s, -CH2CH2CH3), 19.3, 19.6 (þ, both s, PCHCH3), 26.2 (þ, d, 1JCP = 27.6 Hz, PCHCH3), 26.5 (-, s, -CH2CH2CH3), 48.5 (-, s, NH2CH2CHd), 49.7 (-, s, -CH2CH2CH3), 126.8 (þ, s, Os-CHdCH-), 142.9 (þ, d, 2JCP = 15.7 Hz, Os-CHdCH-), 188.3 (-, d, 2JCP = 11.9 Hz, Os-CO). 31 1 P{ H} NMR (CD2Cl2): δ 15.9 (s). Preparation of [OsCl(dCHCH 2CH 2 NH2 )(CO)(nPrNH 2)(Pi Pr 3)]BF4 (5). HBF4 (1:1 molar ratio solution in diethyl ether,

Preparation of [Os(CHdCHCH2NH2)(CO)2(nPrNH2)(PiPr3)]PF6 (6). TlPF6 (168 mg, 0.48 mmol) was added to a dichloromethane solution (12 mL) of 4 (126 mg, 0.24 mmol) under a carbon monoxide atmosphere, and the mixture was stirred for 3 h away from light. The resulting suspension was filtered, and the solution was vacuum-dried. The residue was washed with pentane (4  4 mL). A white solid was obtained. Yield: 112 mg (0.17 mmol, 71%). Anal. Calcd for C17H36F6N2O2OsP2: C, 30.63; H, 5.44; N, 4.20. Found: C, 30.89; H, 5.41; N, 4.52. IR (cm-1): 3350, 3317 (w, NH); 2015, 1936 (s, CO); 831 (vs, PF6-). 1H NMR (CD2Cl2, plus COSY): δ 0.93 (t, 2JHH =7.8 Hz, 3H, -CH2CH2CH3), 1.24 (dd, 3 JHP = 14.1 Hz, 3JHH = 7.5 Hz, 9H, PCHCH3), 1.26 (dd, 3JHP = 14.1 Hz, 3JHH = 7.5 Hz, 9H, PCHCH3), 1.55 (m, 2H, -CH2CH2CH3), 2.35 (m, 3H, PCHCH3), 2.89, 3.00 (both m, 1 H each, -CH2CH2CH3), 3.64, 4.55 (both br, 2 H each, NH), 3.71 (m, 2H, Os-CHdCH-CH2-), 6.46 (d, 2JHH = 10.6 Hz, 1H, Os-CHdCH-), 7.77 (d, 2JHH = 10.6 Hz, 1H, Os-CHdCH-). 13C NMR (CD2Cl2, plus APT, HSQC, and HMBC): δ 10.4 (þ, s, -CH2CH2CH3), 19.1, 19.2 (þ, both s, PCHCH3), 26.0 (-, s, -CH2CH2CH3), 26.2 (þ, d, 1JCP = 29.5 Hz, PCHCH3), 52.9 (-, s, Os-CHdCHCH2-), 53.2 (-, s, -CH2CH2CH3), 138.8 (þ, s, Os-CHdCH-), 154.8 (þ, d, 2JCP = 8.1 Hz, Os-CHdCH-), 182.1 (-, d, 2JCP = 9.3 Hz, Os-CO), 183.4 (-, d, 2JCP = 5.9 Hz, Os-CO). 31P{1H} NMR (CD2Cl2): δ 18.2 (s, PiPr3), -145.1 (sept, 2JFP = 717.6 Hz, PF6-). 

j

j

H2)(PiPr3)]Cl (3). A solution of 2 (90 mg, 0.18 mmol) in toluene (8 mL) was stirred in a carbon monoxide atmosphere for 6 h at 0 °C. A white suspension was obtained, which was concentrated to ca. 0.5 mL. Addition of pentane (4 mL) caused a precipitate, which was decanted, washed with pentane (3  4 mL), and dried in vacuo. A white solid was obtained. Yield: 80 mg (0.15 mmol, 84%). Anal. Calcd for C16H36ClN2OOsP: C, 36.32; H, 6.86; N, 5.29. Found: C, 36.05; H, 6.42; N, 5.00. IR (cm-1): 3196, 3093 (m, NH); 1945 (vs, CO). 1H NMR (CD2Cl2, plus COSY): δ 0.77 (br, 1H, NH), 0.88 (m, 1H, Os-CH2-), 1.12 (dd, 3JHP = 12.9 Hz, 3JHH = 7.2 Hz, 9H, PCHCH3), 1.16 (dd, 3JHP = 12.9 Hz, 3JHH = 7.2 Hz, 9H, PCHCH3), 1.55 (m, 2H, Os-CH2-CH2-), 2.27 (m, 3H, PCHCH3), 2.38 (m, 1H, NH2-CH2-CH2-), 2.54 (dd, 3JHH = 9.9 Hz, 2JHH = 1.8 Hz, 1H, -CHdCH2), 2.72 (m, 1H, NH2-CH2-CH2-), 2.89 (d, 1H, -CHdCH2), 2.99 (m, 1H, Os-CH2-), 3.64 (m, 1H, -CHd CH2), 3.98 (m, 1H, Os-CH2-CHd), 4.14 (br, 1H, NH), 5.11 (dd, 2 JHH = 8.7 Hz, 2JHH = 8.7 Hz, 1H, Os-CH2-CHd), 6.33 (br, 1H, NH), 7.26 (br, 1H, NH). 13C NMR (CD2Cl2, 273 K, plus APT, HSQC, and HMBC): δ 19.5, 19.6 (þ, both s, PCHCH3), 26.3 (þ, d, 1 JCP = 44.2 Hz, PCHCH3), 26.7 (-, d, 2JCP = 10.7 Hz, Os-CH2-), 32.3 (-, s, NH2-CH2-CH2-), 39.9 (-, d, 2JCP = 3.3 Hz, -CHd CH2), 42.1 (þ, d, 2JCP = 2.7 Hz, -CHdCH2), 49.9 (-, d, 3JCP = 5.3 Hz, NH2-CH2-CHd), 51.3 (-, s, NH2-CH2-CH2-), 187.0 (-, d, 2JCP = 14.1 Hz, Os-CO). 31P{1H} NMR (CD2Cl2): δ -0.2 (s).



Preparation of [ Os(CH2CH2CH2NH2)(CO)(η2-CH2dCHCH2N-

6305

25 μL, 0.18 mmol) was added to a solution of 4 (82 mg, 0.15 mmol) in diethyl ether (8 mL). A pale brown precipitate immediately appeared, which was decanted, washed with diethyl ether (4  5 mL), and dried in vacuo. A pale brown solid was obtained. Yield: 75 mg (0.10 mmol, 67%). Anal. Calcd for C16H37BClF4N2OOsP: C, 31.15; H, 6.04; N, 4.54. Found: C, 31.37; H, 5.76; N, 4.60. IR (cm-1): 3289 (w, NH); 1958 (s, CO) 1030 (vs, BF4-). 1H NMR (CD2Cl2, plus COSY): δ 0.87 (t, 2JHH = 7.5 Hz, 3H, -CH2CH2CH3), 1.03 (dd, 3JHP = 12.9 Hz, 3JHH = 7.5 Hz, 9H, PCHCH3), 1.42 (dd, 3JHP = 12.9 Hz, 3JHH = 7.5 Hz, 9H, PCHCH3), 1.45 (m, 2H, -CH2CH2CH3), 1.48 (m, 1H, OsdCH-CH2-), 2.41 (m, 3H, PCHCH3), 2.61 (m, 1H, -CH2CH2CH3), 2.81 (m, 1H, OsdCHCH2-), 2.89 (m, 1H, -CH2CH2CH3), 3.07 (m, 1H, -CH2CH2CHdOs), 3.19, 4.00, 4.02, 5.07 (all br, 1H each, NH), 3.80 (m, 1H, -CH2CH2CHdOs), 17.88 (m, 1H, OsdCH-). 13C NMR (CD2Cl2, plus APT, HSQC and HMBC): δ 10.8 (þ, s, -CH2CH2CH3), 17.8, 19.4 (þ, both br, PCHCH3), 24.3 (þ, d, 1JCP = 29.4 Hz, PCHCH3), 26.2 (-, s, -CH2CH2CH3), 44.2 (-, s, -CH2CH2CHdOs), 53.2 (-, s, -CH2CH2CH3), 63.8 (-, s, -CH2CH2CHdOs), 180.9 (-, d, 2JCP = 9.8 Hz, Os-CO), 296.3 (þ, d, 2 JCP = 6.3 Hz, OsdCH-). 31P{1H} NMR (CD2Cl2): δ 26.4 (s). 





was obtained. Yield: 301 mg (0.60 mmol, 65%). Anal. Calcd for C15H36ClN2OsP: C, 35.95; H, 7.24; N, 5.59. Found: C, 36.28; H, 6.85; N, 5.78. IR (cm-1): 3322, 3225, 3129 (m, NH). 1H NMR (CD2Cl2, plus COSY): δ 0.58 (br, 1H, NH); 1.16 (dd, 3JHP = 11.1, 3JHH = 7.2, 9H, PCHCH3); 1.20 (dd, 3JHP = 11.1, 3JHH = 7.5, 9H, PCHCH3); 1.26 (partially hidden, 1H, Os-CH2-); 1.46 (m, 2H, Os-CH2-CH2-); 1.64 (dd, 3JHH=8.1, 2JHH=3.0, 1H, dCH2); 2.10 (m, 3H, PCHCH3); 2.13 (partially hidden, 1H, Os-NH2-CH2-CH2-); 2.43 (br, 1H, NH); 2.90 (ddd, 3JHH=7.5, 3JHH=6.9, 3JHH=6.9, 1H, -CHdCH2); 2.99 (m, 1H, NH2-CH2-CHd); 3.35 (m, 3JHH = 7.5, 2JHH = 3.0, 1H, dCH2); 3.69 (m, 1H, Os-CH2-); 3.93 (br, 1H, NH); 4.14 (m, 1H, NH2-CH2-CHd); 4.48 (dd, 3JHH=9.3, 3JHH=9.3, 1H, NH2-CH2CHd); 4.63 (br, 1H, NH). 13C NMR (CD2Cl2, plus APT, HSQC and HMBC): δ 5.9 (d, 3JHP = 3.5, Os-CH2-); 19.8, 20.0 (both s, PCHCH3); 27.2 (d, 1JCP =14.9, PCH); 29.3 (s, -CHdCH2); 35.5 (d, 2JCP=2.6, -CHdCH2); 35.5 (s, NH2-CH2-CH2-); 47.9 (s, NH2CH2-CH2-); 52.8 (d, 3JCP = 3.2, NH2-CH2-CHd). 31P{1H} NMR (CD2Cl2): δ -7.3 (s).



Article

Preparation of [Os{η3-CH2C[CHMe(SiMe3)]CHCH(NHnPr)CH2NH2}(CO)2(PiPr3)]PF6 (7). 3-Trimethylsilyl-1,2-butadiene (85 μL, 0.51 mmol) was added to a solution of 6 (129 mg, 0.19 mmol) in dichloromethane (6 mL), and the mixture was heated (333 K) and stirred in a Teflon tube for 24 h. The resulting solution was vacuum-dried, and the residue was washed with pentane (3  3 mL). A white solid was obtained. Yield: 95 mg (0.12 mmol, 62%). Anal. Calcd for C24H50F6N2O2OsP2Si: C, 36.35; H, 6.36; N, 3.53. Found: C, 36.25; H, 5.91; N, 3.49. HRMS (ESIþ, m/z): calcd for C24H50F6N2O2OsP2Si: [M]þ 649.3, found 649.3; calcd for C18H32F6NO2OsP2: [M þ H - NH2nPr - SiMe3]þ 518.2, found 518.2. IR (cm-1): 3339, 3299 (w, NH); 2020, 1954 (vs, CO); 828 (vs, PF6-). 1H NMR (CD2Cl2, 500.0 MHz, plus COSY): δ 0.27 (s, 9H, -Si(CH3)3), 0.91 (t, 2JHH = 7.0 Hz, 3H, -CH2CH2CH3), 1.08 (d, 3JHH = 6.5 Hz, 3H, -C6H-C7H3), 1.36 (dd, 3 JHP = 14.5 Hz, 3JHH = 7.0 Hz, 9H, PCHCH3), 1.41 (dd, 3JHP = 14.5 Hz, 3JHH = 7.0 Hz, 9H, PCHCH3), 1.45 (m, 2H, -CH2CH2CH3), 2.09 (q, 3JHH = 6.5 Hz, 1H, -C6H-), 2.30-2.50 (both m, 1H each, -CH2CH2CH3), 2.51 (m, 3H, PCHCH3), 2.56 (m, 1H, -C5H2), 2.68 (br, 1H, NH), 2.88 (m, 1H, -C1H2-), 3.39 (br, 1H, NH), 3.65 (br, 1H, -C2H-), 3.85 (m, 1H, -C1H2-), 3.91 (m, 1H, -C5H2), 5.25 (m, 1H, -C3H-). 13C NMR (CD2Cl2,

Organometallics, Vol. 29, No. 23, 2010

Baya et al. 3

JHP=12.6 Hz, 3JHH=7.5 Hz, 9H, PCHCH3), 1.35 (dd, 3JHP= 12.6 Hz, 3JHH = 7.5 Hz, 9H, PCHCH3), 2.65 (m, 3H, PCHCH3), 3.50, 3.95 (both m, 1 H each, Os-CHdCH-CH2-), 4.01, 4.32 (both br, 1 H each, NH), 6.35 (d, 2JHH = 12.0 Hz, 1H, OsCHdCH-), 7.66 (d, 2JHH = 12.0 Hz, 1H, Os-CHdCH-). 13C NMR (CD2Cl2, plus APT, HSQC, and HMBC): δ 19.0, 19.4 (þ, both s, PCHCH3), 25.9 (þ, d, 1JCP = 29.4 Hz, PCHCH3), 54.8 (-, s, Os-CHdCH-CH2-), 135.0 (þ, d, 2JCP = 17.0 Hz, OsCHdCH-), 154.5 (þ, d, 2JCP = 12.1 Hz, Os-CHdCH-), 178.0 (-, d, 2JCP = 8.3 Hz, Os-CO), 184.5 (-, d, 2JCP = 5.3 Hz, OsCO). 31P{1H} NMR (CD2Cl2): δ 22.7 (s).





Preparation of Os(CHdCHCH2 NH2)Cl(CO)2(PiPr3) (9). A solution of 4 (141 mg, 0.27 mmol) in dichloromethane (15 mL) was stirred in a CO atmosphere for 3 h. A white solution was obtained, which was concentrated to ca. 0.1 mL. Addition of pentane (4 mL) caused a precipitate, which was decanted, washed with pentane (3  4 mL), and dried in vacuo. A white solid was obtained. Yield: 96 mg (0.19 mmol, 72%). Anal. Calcd for C14H27ClNO2OsP: C, 33.76; H, 5.46; N, 2.81. Found: C, 34.21; H, 5.09; N, 3.26. IR (cm-1): 3276, 3224 (w, NH); 1999, 1917 (vs, CO). 1H NMR (CD2Cl2, plus COSY): δ 1.32 (dd,



Preparation of [Os{η3-CH2C(CHMe2)CHCH(NHnPr)CH2 NH2}(CO)2(PiPr3)]PF6 (8). 3-Methyl-1,2-butadiene (150 μL, 1.53 mmol) was added to a solution of 6 (250 mg, 0.38 mmol) in dichloromethane (8 mL), and the mixture was heated (333 K) and stirred in a Teflon tube for 48 h. The resulting solution was vacuum-dried, and the residue was washed with pentane (4  5 mL). A white solid was obtained. Yield: 160 mg (0.12 mmol, 58%). Anal. Calcd for C22H44F6N2O2OsP2: C, 35.96; H, 6.04; N, 3.81. Found: C, 35.61; H, 6.45; N, 4.11. HRMS (ESIþ, m/z): calcd for C22H44F6N2O2OsP2: [M]þ 591.3, found 591.3. IR (cm-1): 3341, 3300 (w, NH); 2021, 1951 (vs, CO); 825 (vs, PF6-). 1 H NMR (CD2Cl2, 400.0 MHz, plus COSY): δ 0.92 (t, 2JHH = 7.6 Hz, 3H, -CH2CH2CH3), 1.17, 1.39 (both d, 3JHH = 6.8 Hz, 3H each, -C6H(CH3)2), 1.35 (dd, 3JHP = 14.5 Hz, 3JHH = 6.8 Hz, 9H, PCHCH3), 1.40 (dd, 3JHP = 14.5 Hz, 3JHH = 6.8 Hz, 9H, PCHCH3), 1.45 (m, 2H, -CH2CH2CH3), 2.33 (m, 1H, -C6H(CH3)2), 2.40-2.60 (both m, 1H each, -CH2CH2CH3), 2.49 (m, 3H, PCHCH3), 2.64 (m, 1H, -C5H2), 2.70, 3.38 (both br, 3H, NH), 3.03, 3.65 (both m, 1H each, -C1H2-), 3.69 (m, 1H, -C2H-), 3.75 (m, 1H, -C5H2), 5.27 (m, 1H, -C3H-). 13C NMR (CD2Cl2, 100.6 MHz, plus APT, HSQC, and HMBC): δ 11.4 (þ, s, -CH2CH2CH3), 18.5, 19.0 (þ, both s, PCHCH3), 21.0, 25.4 (þ, both s, -C6H(CH3)2), 23.0 (-, s, -CH2CH2CH3), 26.4 (þ, d, 1JCP = 27.1 Hz, PCHCH3), 38.3 (þ, s, -C6H(CH3)2), 46.3 (-, d, 2JCP = 2.6 Hz, -C5H2), 49.3 (-, s, -CH2CH2CH3), 57.5 (þ, s, -C2H-), 59.0 (-, s, -C1H2-), 71.3 (þ, d, 2JHP = 16.8 Hz, -C3H-), 124.7 (-, s, -C4-), 177.3 (-, d, 2JCP = 8.8 Hz, OsCO), 182.5 (-, s, Os-CO). 31P{1H} NMR (CD2Cl2, 162.0 MHz): δ 25.8 (s, PiPr3), -143.9 (sept, 2JFP = 717.6 Hz, PF6-).

Preparation of [Os{η3-CH2C(CHdCHCH2 NH2)C(SiMe3)CH3}(CO)2(PiPr3)]PF6 (10). TlPF6 (249 mg, 0.71 mmol) was added to solution of 9 (122 mg, 0.24 mmol) and 3-trimethylsilyl1,2-butadiene (120 μL, 0.72 mmol) in dichloromethane (15 mL), and the mixture was stirred for 1 h. The resulting suspension was filtered, and the solution was vacuum-dried. The residue was washed with pentane (4  5 mL). A white solid was obtained. Yield: 147 mg (0.20 mmol, 82%). Anal. Calcd for C21H41F6NO2OsP2Si: C, 34.37; H, 5.63; N, 1.91. Found: C, 33.99; H, 5.65; N, 2.40. IR (cm-1): 3233 (w, NH); 2015, 1950 (vs, CO); 828 (vs, PF6-). 1H NMR (CD2Cl2, 500.0 MHz): δ 0.29 (s, 9H, Si(CH3)3), 1.41 (dd, 3JHP = 14.5 Hz, 3JHH = 7.0 Hz, 18H, PCHCH3), 1.82 (d, 3JHH = 3.0 Hz, 3H, -C7H3), 2.50 (m, 3H, PCHCH3), 2.58 (d, 2JHH = 3.0 Hz, 1H, -C5H2), 3.01 (m, 1H, -C1H2-), 3.03, 3.16 (both br, 1 H each, NH), 3.45 (d, 2JHH = 3.0 Hz, 1H, -C5H2), 3.80 (m, 1H, -C1H2-), 6.00 (dd, 3JHH = 12.0 Hz, 3JHH = 9.0 Hz, 1H, -C2Hd), 6.70 (d, 3JHH = 12.0 Hz, 1H, d C3H-). 13C NMR (CD2Cl2, plus APT): δ 0.58 (þ, s, Si(CH3)3), 18.6 (þ, both s, PCHCH3), 21.1 (þ, s, -C7H3), 25.7 (þ, d, 1JCP = 27.2 Hz, PCHCH3), 35.5 (-, d, 2JCP = 2.3 Hz, -C5H2), 41.5 (-, s, -C1H2), 64.5 (-, d, 2JCP = 7.6 Hz, -C6-), 126.9 (þ, s, -C2Hd), 127.8 (-, s, -C4-), 130.1 (þ, s, dC3H-), 178.4 (-, d, 2JCP = 9.8 Hz, Os-CO), 181.6 (-, s, Os-CO). 31P{1H} NMR (CD2Cl2, 202.5 MHz): δ 22.3 (s, PiPr3), -145.1 (sept, 2JFP = 717.6 Hz, PF6-).









125.8 MHz, plus APT, HSQC, and HMBC): δ -2.8 (þ, s, -Si(CH3)3), 11.5 (þ, s, -CH2CH2CH3 and -C7H3), 18.8, 19.0 (þ, both s, PCHCH3), 23.1 (-, s, -CH2CH2CH3), 26.9 (þ, d, 1JCP = 26.4 Hz, PCHCH3), 34.1 (þ, s, -C6H-), 47.0 (-, d, 2 JCP = 2.6 Hz, -C5H2), 50.9 (-, s, -CH2CH2CH3), 57.7 (þ, s, -C2H-), 59.3 (-, d, 3JHP = 7.2 Hz, -C1H2-), 71.0 (þ, d, 2JHP = 18.9 Hz, -C3H-), 130.0 (-, s, -C4-), 177.1 (-, d, 2JCP = 8.0 Hz, Os-CO), 182.7 (-, s, Os-CO). 31P{1H} NMR (CD2Cl2, 202.5 MHz): δ 24.5 (s, PiPr3), -145.1 (sept, 2JFP = 717.6 Hz, PF6-).



6306

Preparation of [Os{η3-CH2C[CHMe(SiMe3)]CHCH(NHPh)CH2NH2}(CO)2(PiPr3)]PF6 (11). Aniline (28 μL, 0.30 mmol) was added to a solution of 10 (101 mg, 0.14 mmol) in dichloromethane (10 mL), and the mixture was heated at 323 K and stirred in a Teflon tube for 24 h. The resulting solution was vacuum-dried, and the residue was washed with pentane (4  4 mL). A white solid was obtained. Yield: 85 mg (0.11 mmol, 75%). Anal. Calcd for C27H48F6N2O2OsP2Si: C, 39.22; H, 5.85; N, 3.87. Found: C, 38.74; H, 5.83; N, 3.82. HRMS (ESIþ, m/z): calcd for C27H48F6N2O2OsP2Si [M]þ 683.3, found 683.3. IR (cm-1): 3335, 3298 (w, NH); 2023, 1952 (vs, CO); 829 (vs, PF6-). 1H NMR (CD2Cl2, 300.0 MHz, plus COSY): δ 0.24 (s, 9H, Si(CH3)3), 1.08 (d, 3JHH = 6.9 Hz, 3H, -C7H3), 1.38 (dd, 3JHP = 15.0 Hz, 3JHH = 8.1 Hz, 9H, PCHCH3), 1.40 (dd, 3JHP = 15.0 Hz, 3 JHH = 8.1 Hz, 9H, PCHCH3), 2.09 (m, 1H, -C6H-), 2.30 (d, 2 JHH = 4.5 Hz, 1H, -C5H2), 2.51 (m, 3H, PCHCH3), 2.68 (1H, NH), 3.13 (m, 2H, -C1H2), 3.38 (1H, NH), 3.64 (1H, NH), 4.00 (d, 2 JHH = 4.5 Hz, 1H, -C5H2), 4.41 (m, 1H, -C2H-), 5.28 (m, 1H, -C3H-), 6.50 - 7.20 (5H, Ph). 13C NMR (CD2Cl2, 75.5 MHz, plus APT, HSQC, and HMBC): δ -2.6 (þ, s, Si(CH3)3), 12.1 (þ, s, -C7H3), 18.6, 19.0 (þ, both s, PCHCH3), 26.6 (þ, d, 1JCP = 26.6 Hz, PCHCH3), 34.3 (þ, s, -C6H-), 45.3 (-, s, -C5H2), 49.5 (-, d, 2 JHP = 4.2 Hz, -C1H2-), 56.1 (þ, s, -C2H-), 68.5 (þ, d, 2JHP = 18.6 Hz, -C3H-), 113.0, 118.5, 129.4 (þ, all s, CH’s in Ph), 130.0 (-, s, -C4-), 146.3 (-, s, Cipso Ph), 176.6 (-, d, 2JCP = 8.2 Hz,

Article Os-CO), 181.4 (-, s, Os-CO). 31P{1H} NMR (CD2Cl2, 121.5 MHz): δ 23.4 (s, PiPr3), -144.5 (sept, 2JFP = 717.6 Hz, PF6-).

Structural Analysis of Complexes 2, 4, 7, and 10. X-ray data were collected on a Bruker Smart APEX CCD diffractometer equipped with a normal focus, 2.4 kW sealed tube source (Mo radiation, λ = 0.71073 A˚) operating at 50 kV and 40(7, 10)/ 30(2, 4) mA. Data were collected over the complete sphere. Each frame exposure time was 10 s covering 0.3° in ω. Data were corrected for absorption by using a multiscan method applied with the SADABS program.29 The structures were solved by direct methods. Refinement of complexes was performed by fullmatrix least-squares on F2 with SHELXL97,30 including isotropic and subsequently anisotropic displacement parameters. Crystals of 2 and 4 suitable for X-ray analysis were obtained by slow vapor diffusion of pentane into toluene solutions of each compound. Crystals of 7 and 10 suitable for X-ray analysis were obtained by slow vapor diffusion of diethyl ether into dichloromethane solutions of each compound. The unit cell parameters of 10 are a = 30.456(5) A˚, b = 12.727(2) A˚, c = 14.731(3) A˚, and β (90.440(2)°) is fortuitously close to 90°. Refinement of the structure converged at unacceptable high R factors. A close inspection of the intensities revealed a pseudomerohedric twining. When the potential twin operator was included in SHELX, the structure could be satisfactorily refined with a twining fraction of 0.21. Unfortunately, even with the correction included, some spurious residual peaks of electronic density can be shown in the least cycles of refinement. Crystal data for 2: C15H36ClN2OsP, Mw 501.08, needle, light yellow (0.50  0.04  0.04), monoclinic, space group P21/c, a = 17.0286(19) A˚, b = 15.1283(17) A˚, c = 14.5231(16) A˚, β = 99.836(8)°, V = 3686.4(7) = A˚3, Z = 8, Dcalc = 1.806 g cm-3, F(000) = 1984, T = 100(2) K, μ = 7.145 mm-1; 45 297 measured reflections (2θ: 3-58°, ω scans 0.3°), 9156 unique (Rint = 0.0557); min./max. transmn factors 0.43/0.76. Final agreement (29) Blessing, R. H. Acta Crystallogr. 1995, A51, 33. SADABS: Areadetector absorption correction; Bruker-AXS: Madison, WI, 1996. (30) SHELXTL Package v. 6.10; Bruker-AXS: Madison, WI, 2000. Sheldrick, G. M. Acta Crystallogr. 2008, A64, 112.

Organometallics, Vol. 29, No. 23, 2010

6307

factors were R1 = 0.0425 (8152 observed reflections, I > 2σ(I)) and wR2 = 0.0888; data/restraints/parameters 9156/1/463; GoF = 1.224. Largest peak and hole: 2.285 and -1.905 e/A˚3. Crystal data for 4: C16H36ClN2OOsP, Mw 529.09, irregular block, colorless (0.10  0.08  0.08), triclinic, space group P1, a = 8.3543(7) A˚, b = 10.6850(9) A˚, c = 12.0981(10) A˚, R = 81.4340(10)°, β = 7.2450(10)°, γ = 82.2200(10)°, V = 1000.85(14) A˚3, Z = 2, Dcalc = 1.756 g cm-3, F(000): 524, T = 100(2) K, μ = 6.588 mm-1; 12 604 measured reflections (2θ: 3-58°, ω scans 0.3°), 4791 unique (Rint = 0.0255); min./ max. transmn factors 0.50/0.62. Final agreement factors were R1 = 0.0204 (4546 observed reflections, I > 2σ(I)) and wR2 = 0.0455; data/restraints/parameters 4791/0/224; GoF = 0.936. Largest peak and hole: 0.996 and -0.724 e/A˚3. Crystal data for 7: C24H50N2O2OsPSi 3 PF6 3 0.5C4H10O, Mw 829.95, plate, colorless (0.10  0.08  0.01), monoclinic, space group P21/c, a = 14.676(5) A˚, b = 15.476(5) A˚, c = 16.336(5) A˚, β = 109.164(5)°, V = 3505(2) A˚3, Z = 4, Dcalc = 1.573 g cm-3, F(000) = 1676, T = 100(2) K, μ = 3.822 mm-1; 31 965 measured reflections (2θ: 3-58°, ω scans 0.3°), 8512 unique (Rint = 0.0815); min./max. transmn factors 0.67/0.96. Final agreement factors were R1 = 0.0554 (6146 observed reflections, I > 2σ(I)) and wR2 = 0.1022; data/restraints/parameters 8512/17/393; GoF = 1.077. Largest peak and hole: 2.009 and -2.104 e/A˚3. Crystal data for 10: C21H41NO2OsPSi 3 PF6, Mw 733.78, irregular block, colorless (0.16  0.14  0.14), monoclinic, space group P21/c, a = 30.456(5) A˚, b = 12.727(2) A˚, c = 14.731(3) A˚, β = 90.440(2)°, V = 5709.7(18) A˚3, Z = 8, Dcalc = 1.707 g cm-3, F(000) = 2912, T = 100(2) K, μ 4.678 mm-1; 53 080 measured reflections (2θ: 3-58°, ω scans 0.3°), 13 933 unique (Rint = 0.0619); min./max. transmn factors 0.40/0.56. Final agreement factors were R1 = 0.0809 (11 894 observed reflections, I > 2σ(I)) and wR2 = 0.2213; data/restraints/parameters 13 933/18/634; GoF = 1.052. Largest peak and hole: 8.101 and -3.413 e/A˚3.

Acknowledgment. Financial support from the MICINN of Spain (Projects CTQ2008-00810 and Consolider Ingenio 2010 CSD2007-00006), Diputaci on General de Arag on (E35), and the European Social Fund is acknowledged. M.B. thanks the Spanish MICINN/Universidad de Zaragoza for funding through the “Ram on y Cajal” program. Supporting Information Available: X-ray analysis and crystal structure determinations including bond lengths and angles of compounds 2, 4, 7, and 10. Pictorial 1H and 31P{1H} spectra of the new compounds are also included. This material is available free of charge via the Internet at http://pubs.acs.org.