Subscriber access provided by UNIV OF CAMBRIDGE
Article
Electrical and Magnetic Properties Modification in Heavy Ion Irradiated Nanograin NiCo O Films x
(3-x)
4
John Stuart McCloy, Weilin Jiang, Wendy Bennett, Mark H. Engelhard, Jeffrey Lindemuth, Narendra Singh Parmar, and Gregory J. Exarhos J. Phys. Chem. C, Just Accepted Manuscript • DOI: 10.1021/acs.jpcc.5b06406 • Publication Date (Web): 10 Sep 2015 Downloaded from http://pubs.acs.org on September 15, 2015
Just Accepted “Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.
The Journal of Physical Chemistry C is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.
Page 1 of 50
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Physical Chemistry
Electrical and Magnetic Properties Modification in Heavy Ion Irradiated Nanograin NixCo(3-x)O4 Films John S. McCloy,1* Weilin Jiang,2 Wendy Bennett,2 Mark Engelhard,3 Jeffrey Lindemuth,4 Narendra Parmar,1 Gregory J. Exarhos2
1
School of Mechanical and Materials Engineering and Materials Science & Engineering Program, Washington State University, Pullman, WA 99164, USA
2
Pacific Northwest National Laboratory, Richland, Washington 99352, USA
3
Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, USA
4
Lake Shore Cryotronics, Inc., 575 McCorkle Blvd., Westerville, Ohio 43081, USA
ACS Paragon Plus Environment
The Journal of Physical Chemistry
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
ABSTRACT Reactively sputtered NixCo(3-x)O4 films (x = 1.5, 1.0, and 0.75) were grown and subsequently irradiated with 5.5 MeV Si+ ions to investigate effects of lattice-site and charge state distribution.
Films were characterized before and after
irradiation by x-ray diffraction, x-ray photoemission spectroscopy, Rutherford backscattering spectroscopy, electric resistivity measurements, and temperaturedependent AC and DC magnetometry. Results indicate that ion irradiation induces oxygen loss, partial reduction of nickel, and an increase in both low temperature ferrimagnetism and room temperature conductivity. Frequency dependent AC magnetic susceptibility measurements indicate a spin-glass like transition at low temperature which moves to higher temperature after irradiation. Significance of the charge transfer for magnetism and conduction in a mixed spinel with Co2+, Co3+, Ni2+, and Ni3+ in tetrahedral and octahedral sites is discussed.
Keywords Spinel, multivalent transition metal, cobalt, nickel, polaron hopping, catalysis
ACS Paragon Plus Environment
Page 2 of 50
Page 3 of 50
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Physical Chemistry
1. INTRODUCTION Nickel cobalt oxides are candidate materials for supercapacitors,1-4 electrocatalysis,5;
6
and
infrared transparent electrodes.7 For these applications, understanding and tailoring of cation site occupancy and valence is required.7-9 NiCo2O4 is a ferromagnetic spinel with reported Curie temperature ~450 K,10;
11
though this value may highly depend on the cation valence and
occupancy as recently shown.12 Recent work has shown that single crystal epitaxial films of NiCo2O4 grown on insulating substrates change their site distribution and magnetic character depending on growth temperature.13 Epitaxial films grown by pulsed laser deposition at high temperatures have the inverse spinel structure and are insulating and non-magnetic at room temperature.13 Raman measurements suggest that growth at temperatures 0.9999. 3.4. Magnetic properties Magnetic properties showed dramatic changes with irradiation (see Table III). The peak in real (χ') and imaginary (χ'') contributions to the AC susceptibility are frequency dependent and shift slightly with field cooling. Irradiation results in an increase in low temperature coercivity (Hc) in all cases. Hysteresis curves at 10 K are shown in Figure 6. Substrate effects have been removed.
Most results showed a ferromagnetic component superimposed on a strong
diamagnetic component from the Si substrate, with the exception of x = 1.5 (irrad) and x = 0.75 (irrad) which showed a small residual paramagnetic background on the ferromagnetic component. Temperature dependent AC susceptibility measurements show that ion irradiation shifts the χ' peak to higher temperatures and increases the value by more than an order of magnitude (Figure 6). A corresponding peak in the χ'' imaginary component exists at similar temperatures to the χ' peak, but the peak of the DC ZFCW curve (Tmax,ZFC, see Table III) is 20–60 K lower in temperature, where the ZFCW-FCC branches split (Figure 7). All χ' peaks exhibit a frequency dependence, with the higher frequencies shifted to higher temperatures and lower intensities, thus showing relaxation phenomena similar to spin or cluster glasses.39; 40 4. DISCUSSION 4.1. Mixed spinel structures For stoichiometric NiCo2O4 high spin (HS) Co2+(d7) is normally dominant in tetrahedral sites,25 with some HS Ni3+(d7) present.22 Charge transfer may occur within the octahedral sites, changing from low spin (LS) Co3+ (d6) and LS Ni3+ (d7) to HS Co2+ (d7) and LS Ni4+ (d6).22 End-
ACS Paragon Plus Environment
The Journal of Physical Chemistry
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 12 of 50
member Co3O4 is p-type semiconductor with a normal spinel structure, AB2O4, represented as {Co2+}[Co3+]2O4, where {tetrahedral} and [octahedral] sites are indicated. As Ni is added to Co3O4, Ni2+ displaces Co3+ due to its larger octahedral site preference energy,41 and Co3+ goes to the tetrahedral sites.7 When Ni>Co (i.e., more Ni-rich than Ni1.5Co1.5O4) the system normally phase separates into NiO plus an inverse spinel {B}[AB]O4, observed at lower Ni concentrations in solution-derived than sputtered films.18 There is some potential indication of NiO in the unirradiated samples, based on the XRD patterns of the higher Ni (x = 1 and x = 1.5) samples, and XPS (see section 4.3) cannot easily distinguish since Ni2+ in NiO and likely in NiCo2O4 is HS Ni2+ in octahedral sites. The pure Ni3O4 spinel end member has also been reported, usually as a surface state of NiO.42-45 As previously stated, single crystal films grown at high temperatures are insulating and nonmagnetic at RT and possess the inverse spinel structure, suggesting {Co3+HS}[Ni2+HS,Co3+LS]O4, while higher temperature growths result in conduction and ferrimagnetism due to a mixed spinel.13 Magnetization versus temperature measurements on insulating materials suggest they may still be ferromagnetic, though having quite low Néel temperature 300 K and shows a frequency dependence suggesting a spin glass-like behavior due to cation disorder, and possibly structural disorder (normal and inverse spinel) as well. It is not clear without additional data from other techniques, such as depth profiled Auger emission spectroscopy, that surface composition and oxidation state are the same as in the bulk, or that multiple clusters with different compositions might exist, particularly for Ni-Co-O.15; 22 Regardless, it appears that ion irradiation is indeed a way of enhancing desirable electrical and magnetic properties in Ni-Co-O films. It remains to be seen whether this type of treatment could enhance other properties, such as catalytic activity, as well.
ACKNOWLEDGEMENTS This work was supported in part by the Laboratory Directed Research and Development (LDRD) program at the Pacific Northwest National Laboratory (PNNL). PNNL is operated for the U.S. Department of Energy (DOE) by Battelle under Contract DE-AC05-76RL01830. Some of the research was performed using facilities within the Environmental Molecular Sciences Laboratory (EMSL) at PNNL, sponsored by the DOE's Office of Biological and Environmental Research. The authors thank Saehwa Chong, Chuck Henager, Alex Rettie, and Scott Chambers for helpful comments.
ACS Paragon Plus Environment
Page 25 of 50
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Physical Chemistry
REFERENCES (1) Zhang, G.; Lou, X. W. General Solution Growth of Mesoporous NiCo2O4 Nanosheets on Various Conductive Substrates as High-Performance Electrodes for Supercapacitors. Adv. Mater., 2012, 25, 976979. (2) Shen, L.; Che, Q.; Li, H.; Zhang, X. Mesoporous NiCo2O4 Nanowire Arrays Grown on Carbon Textiles as Binder-Free Flexible Electrodes for Energy Storage. Adv. Funct. Mater., 2013, 24, 2630-2637. (3) Kovalenko, A. S.; Shilova, O. A.; Morozova, L. V.; Kalinina, M. V.; Drozdova, I. A.; Arsent’ev, M. Y. Features of the Synthesis and the Study of Nanocrystalline Cobalt-Nickel Spinel. Glass. Phys. Chem., 2014, 40, 106-113. (4) Shen, L.; Yu, L.; Yu, X.-Y.; Zhang, X.; Lou, X. W. Self-Templated Formation of Uniform NiCo2O4 Hollow Spheres with Complex Interior Structures for Lithium-Ion Batteries and Supercapacitors. Angew. Chem. Int. Ed., 2015, 54, 1868-1872. (5) Roginskaya, Y. E.; Morozova, O. V.; Lubnin, E. N.; Ulitina, Y. E.; Lopukhova, G. V.; Trasatti, S. Characterization of Bulk and Surface Composition of CoxNi1-xOy Mixed Oxides for Electrocatalysis. Langmuir, 1997, 13, 4621-4627. (6)
Castro, E. B.; Gervasi, C. A. Electrodeposited Ni–Co-Oxide Electrodes:Characterization and
Kinetics of the Oxygen Evolution Reaction. Intl. J. Hydrog. Energ., 2000, 25, 1163-1170. (7) Exarhos, G. J.; Windisch Jr, C. F.; Ferris, K. F.; Owings, R. R. Cation Defects and Conductivity in Transparent Oxides. Appl. Phys. A, 2007, 89, 9-18. (8) Windisch, C. F.; Exarhos, G. J.; Owings, R. R. Vibrational Spectroscopic Study of the Site Occupancy Distribution of Cations in Nickel Cobalt Oxides. J. Appl. Phys., 2004, 95, 5435-5442. (9) Windisch, J. C. F.; Ferris, K. F.; Exarhos, G. J. Synthesis and Characterization of Transparent Conducting Oxide Cobalt-Nickel Spinel Films. J. Vac. Sci. Technol. A, 2001, 19, 1647-1651. (10) Blasse, G. New Type of Superexchange in the Spinel Structure Some Magnetic Properties of Oxides Me2+Co2O4 and Me2+Rh2O4 with Spinel Structure. Philips Res. Repts., 1963, 18, 383-392.
ACS Paragon Plus Environment
The Journal of Physical Chemistry
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 26 of 50
(11) Lotgering, F. K. On the Ferrimagnetism of Some Suphides and Oxides: 3. Oxygen and Sulphur Spinels Containing Cobalt (MCo2O4 and MCo2S4). Phililps Res. Repts., 1956, 11, 337-350. (12) Silwal, P.; Miao, L.; Stern, I.; Zhou, X.; Hu, J.; Ho Kim, D. Metal Insulator Transition with Ferrimagnetic Order in Epitaxial Thin Films of Spinel NiCo2O4. Appl. Phys. Lett., 2012, 100, 032102. (13) Iliev, M. N.; Silwal, P.; Loukya, B.; Datta, R.; Kim, D. H.; Todorov, N. D.; Pachauri, N.; Gupta, A. Raman Studies of Cation Distribution and Thermal Stability of Epitaxial Spinel NiCo2O4 Films. J. Appl. Phys., 2013, 114, 033514. (14) Silwal, P.; Miao, L.; Hu, J.; Spinu, L.; Ho Kim, D.; Talbayev, D. Thickness Dependent Structural, Magnetic, and Electronic Properties of the Epitaxial Films of Transparent Conducting Oxide NiCo2O4. J. Appl. Phys., 2013, 114, 103704. (15) Dileep, K.; Loukya, B.; Silwal, P.; Gupta, A.; Datta, R. Probing Optical Band Gaps at Nanoscale from Tetrahedral Cation Vacancy Defects and Variation of Cation Ordering in NiCo2O4 Epitaxial Thin Films. J. Phys. D, 2014, 47, 405001. (16) Windisch, C. F.; Ferris, K. F.; Exarhos, G. J.; Sharma, S. K. Conducting Spinel Oxide Films with Infrared Transparency. Thin Solid Films, 2002, 420-421, 89-99. (17) Zakutayev, A.; Paudel, T. R.; Ndione, P. F.; Perkins, J. D.; Lany, S.; Zunger, A.; Ginley, D. S. Cation Off-Stoichiometry Leads to High P-Type Conducxtivity and Enhanced Transparency in Co2ZnO4 and Co2NiO4 Thin Films. Phys. Rev. B, 2012, 85, 085204. (18) Windisch Jr, C. F.; Exarhos, G. J.; Ferris, K. F.; Engelhard, M. H.; Stewart, D. C. Infrared Transparent Spinel Films with p-Type Conductivity. Thin Solid Films, 2001, 398–399, 45-52. (19) Owings, R. R.; Exarhos, G. J.; Windisch, C. F.; Holloway, P. H.; Wen, J. G. Process Enhanced Polaron Conductivity of Infrared Transparent Nickel–Cobalt Oxide. Thin Solid Films, 2005, 483, 175184. (20) Marco, J. F.; Gancedo, J. R.; Gracia, M.; Gautier, J. L.; Rios, E.; Berry, F. J. Characterization of the Nickel Cobaltite, NiCo2O4, Prepared by Several Methods: An XRD, XANES, EXAFS, and XPS Study. J. Solid State Chem., 2000, 153, 74-81.
ACS Paragon Plus Environment
Page 27 of 50
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Physical Chemistry
(21) Lenglet, M.; Guillamet, R.; Dürr, J.; Gryffroy, D.; Vandenberghe, R. E. Electronic Structure of NiCo2O4 by XANES, EXAFS and 61Ni Mössbauer Studies. Solid State Comm., 1990, 74, 1035-1039. (22) Marco, J. F.; Gancedo, J. R.; Gracia, M.; Gautier, J. L.; Rios, E. I.; Palmer, H. M.; Greaves, C.; Berry, F. J. Cation Distribution and Magnetic Structure of the Ferrimagnetic Spinel NiCo2O4. J. Mater. Chem., 2001, 11, 3087-3093. (23) Chadwick, A. V.; Savin, S. L. P.; Fiddy, S.; Alcántara, R.; Fernández Lisbona, D.; Lavela, P.; Ortiz, G. F.; Tirado, J. L. Formation and Oxidation of Nanosized Metal Particles by Electrochemical Reaction of Li and Na with NiCo2O4: X-Ray Absorption Spectroscopic Study. J. Phys. Chem. C, 2007, 111, 4636-4642. (24) Owings, R. R.; Holloway, P. H.; Exarhos, G. J.; Windisch, C. F. Effect of Annealing and Lithium Substitution on Conductivity in Nickel–Cobalt Oxide Spinel Films. Surf. Interf. Anal., 2005, 37, 424-431. (25)
Battle, P. D.; Cheetham, A. K.; Goodenough, J. B. A Neutron Diffraction Study of the
Ferrimagnetic Spinel NCo2O4. Mater. Res. Bull., 1979, 14, 1013-1024. (26) Ziegler, J. F.; Biersack, J. P.; U. Littmark. The Stopping and Range of Ions in Solids; Available at http://www.srim.org; Pergamon: New York, 1985. (27) McIntyre, N. S.; Cook, M. G. X-Ray Photoelectron Studies on Some Oxides and Hydroxides of Cobalt, Nickel, and Copper. Analy. Chem., 1975, 47, 2208-2213. (28) Lindemuth, J.; Mizuta, S.-I. "Hall Measurements on Low-Mobility Materials and High Resistivity Materials," 81100I-81100I-81107 in Proc. SPIE. 8110. 2011. (29) Petrov, K.; Will, G. A New Cobalt-Nickel Oxide Spinel Prepared under High Pressure in an Oxygen Atmosphere. J. Mater. Sci. Lett., 1987, 6, 1153-1155. (30) De Faria, L. A.; Prestat, M.; Koenig, J. F.; Chartier, P.; Trasatti, S. Surface Properties of Ni+Co Mixed Oxides: A Study by X-rays, XPS, BET and PZC. Electrochim. Acta, 1998, 44, 1481-1489. (31) Verma, S.; Joshi, H. M.; Jagadale, T.; Chawla, A.; Chandra, R.; Ogale, S. Nearly Monodispersed Multifunctional NiCo2O4 Spinel Nanoparticles: Magnetism, Infrared Transparency, and Radiofrequency Absorption. J. Phys. Chem. C, 2008, 112, 15106-15112.
ACS Paragon Plus Environment
The Journal of Physical Chemistry
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 28 of 50
(32) Kuboon, S.; Hu, Y. H. Study of NiO−CoO and Co3O4−Ni3O4 Solid Solutions in Multiphase Ni−Co−O Systems. Industr. Eng. Chem. Res., 2011, 50, 2015-2020. (33) Petitto, S. C.; Marsh, E. M.; Carson, G. A.; Langell, M. A. Cobalt Oxide Surface Chemistry: The Interaction of CoO(100), Co3O4(110) and Co3O4(111) with Oxygen and Water. J. Molec. Catal. A, 2008, 281, 49-58. (34) Vaz, C. A. F.; Prabhakaran, D.; Altman, E. I.; Henrich, V. E. Experimental Study of the Interfacial Cobalt Oxide in Co3O4/α−Al2O3(0001) Epitaxial Films. Phys. Rev. B, 2009, 80, 155457. (35) Joung, D.; Khondaker, S. I. Efros-Shklovskii Variable-Range Hopping in Reduced Graphene Oxide Sheets of Varying Carbon sp2 Fraction. Phys. Rev. B, 2012, 86, 235423. (36) Efros, A. L.; Shklovskii, B. I. Coulomb Gap and Low Temperature Conductivity of Disordered Systems. J. Phys. C, 1975, 8, L49. (37) Mott, N. F. Conduction in Non-Crystalline Materials. Phil. Mag., 1969, 19, 835-852. (38) Emin, D. Phonon-Assisted Jump Rate in Noncrystalline Solids. Phys. Rev. Lett., 1974, 32, 303307. (39) Mao, Y.; Parsons, J.; McCloy, J. S. Magnetic Properties of Double Perovskite La2BMnO6 (B = Ni or Co) Nanoparticles. Nanoscale, 2013, 5, 4720-4728. (40) McCloy, J. S.; Leslie, C.; Kaspar, T.; Jiang, W.; Bordia, R. K. Magnetic Behavior of Ni and Co Doped Cumn2o4 Spinels. J. Appl. Phys., 2012, 111, 07E149-143. (41) Valenzuela, R. Magnetic Ceramics; Cambridge University Press: Cambridge, UK, 1994. (42) Buckett, M. I.; Marks, L. D. Formation of a Ni3O4 Spinel Phase on the Surface of NiO During Electron Irradiation. MRS Proceedings, 1988, 129, 521-526. (43) Buckett, M. I.; Marks, L. D. Electron Irradiation Damage in Nickel Monoxide. Surf. Sci., 1990, 232, 353-366. (44) Miedzinska, K. M. E.; Hollebone, B. R.; Cook, J. G. Optical Properties and Assignment of the Absorption Spectra of Sputtered Mixed Valence Nickel Oxide Films. J. Phys. Chem. Solids, 1988, 49, 1355-1362.
ACS Paragon Plus Environment
Page 29 of 50
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Physical Chemistry
(45) Barbier, A.; Mocuta, C.; Renaud, G. Structure, Transformation, and Reduction of the Polar NiO(111) Surface. Phys. Rev. B, 2000, 62, 16056-16062. (46)
Silwal, P.; La-o-vorakiat, C.; Chia, E. E. M.; Kim, D. H.; Talbayev, D. Effect of Growth
Temperature on the Terahertz-Frequency Conductivity of the Epitaxial Transparent Conducting Spinel Nico2o4 Films. AIP Advances, 2013, 3, 092116. (47) Kim, J. G.; Pugmire, D. L.; Battaglia, D.; Langell, M. A. Analysis of the NiCo2O4 Spinel Surface with Auger and X-Ray Photoelectron Spectroscopy. Appl. Surf. Sci., 2000, 165, 70-84. (48) Chambers, S.; Farrow, R. F. C.; Maat, S.; Toney, M. F.; Folks, L.; Catalano, J. G.; Trainor, T. P.; Brown, J., G. E. Molecular Beam Epitaxial Growth and Properties of CoFe2O4 on Mgo(001). J. Magn. Magn. Mater., 2002, 246, 124-139. (49) Chenavas, J.; Joubert, J. C.; Marezio, M. Low-Spin → High-Spin State Transition in High Pressure Cobalt Sesquioxide. Solid State Comm., 1971, 9, 1057-1060. (50) Belova, I. D.; Roginskaya, Y. E.; Shifrina, R. R.; Gagarin, S. G.; Plekhanov, Y. V.; Venevtsev, Y. N. Co (III) Ions High-Spin Configuration in Nonstoichiometric Co3O4 Films. Solid State Comm., 1983, 47, 577-584. (51) Allen, G. C.; Harris, S. J.; Jutson, J. A.; Dyke, J. M. A Study of a Number of Mixed Transition Metal Oxide Spinels Using X-Ray Photoelectron Spectroscopy. Appl. Surf. Sci., 1989, 37, 111-134. (52)
Verma, S.; Kumar, A.; Pravarthana, D.; Deshpande, A.; Ogale, S. B.; Yusuf, S. M. Off-
Stoichiometric Nickel Cobaltite Nanoparticles: Thermal Stability, Magnetization, and Neutron Diffraction Studies. J. Phys. Chem. C, 2014, 118, 16246-16254. (53) Wang, H.-Y.; Hsu, Y.-Y.; Chen, R.; Chan, T.-S.; Chen, H. M.; Liu, B. Ni3+-Induced Formation of Active Niooh on the Spinel Ni–Co Oxide Surface for Efficient Oxygen Evolution Reaction. Adv. Energy Mater., 2015, 5, in press. (54) Lenglet, M.; d'Huysser, A.; Arsene, J.; Bonnelle, J. P.; Jorgensen, C. K. Xanes, X-Ray PhotoElectron and Optical Spectra of Divalent Nickel at the Crystallographic Transition in NiCr2O4 and the Ni1xCuxCr2O4
System: Correlation with the Jahn-Teller Effect. J. Phys. C, 1986, 19, L363.
ACS Paragon Plus Environment
The Journal of Physical Chemistry
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 30 of 50
(55) Tavares, A. C.; Cartaxo, M. A. M.; da Silva Pereira, M. I.; Costa, F. M. Effect of the Partial Replacement of Ni or Co by Cu on the Electrocatalytic Activity of the NiCo2O4 Spinel Oxide. J. Electroanaly. Chem., 1999, 464, 187-197. (56) Hashemi, T.; Brinkman, A. W. X-Ray Photoelectron Spectroscopy of Nickel Manganese Oxide Thermistors. J. Mater. Res., 1992, 7, 1278-1282. (57) Lenglet, M.; Hochu, F.; Dürr, J.; Tuilier, M. H. Investigation of the Chemical Bonding in 3d8 Nickel(II) Charge Transfer Insulators (NiO, Oxidic Spinels) from Ligand-Field Spectroscopy, Ni 2p XPS and X-Ray Absorption Spectroscopy. Solid State Comm., 1997, 104, 793-798. (58) Kim, K. S.; Winograd, N. X-Ray Photoelectron Spectroscopic Studies of Nickel-Oxygen Surfaces Using Oxygen and Argon Ion-Bombardment. Surf. Sci., 1974, 43, 625-643. (59) Grosvenor, A. P.; Biesinger, M. C.; Smart, R. S. C.; McIntyre, N. S. New Interpretations of XPS Spectra of Nickel Metal and Oxides. Surf. Sci., 2006, 600, 1771-1779. (60) Knop, O.; Reid, K. I. G.; Sutarno; Nakagawa, Y. Chalkogenides of the Transition Elements. Vi. X-Ray, Neutron, and Magnetic Investigation of the Spinels Co3O4, NiCo2O4, Co3S4, and NiCo2S4. Can. J. Chem., 1968, 46, 3463-3476. (61) King, W. J.; Tseung, A. C. C. The Reduction of Oxygen on Nickel-Cobalt Oxides—II: Correlation between Crystal Structure and Activity of Co2NiO4 and Related Oxides. Electrochim. Acta, 1974, 19, 493-498. (62)
Xia, Y.; Kumada, N.; Yoshio, M. Enhancing the Elevated Temperature Performance of
Li/LiMn2O4 Cells by Reducing LiMn2O4 Surface Area. J. Power Sources, 2000, 90, 135-138. (63) Sundararajan, J. A.; Kaur, M.; Jiang, W.; McCloy, J. S.; Qiang, Y. Oxide Shell Reduction and Magnetic Property Changes in Core-Shell Fe Nanoclusters under Ion Irradiation. J. Appl. Phys., 2014, 115, 17B507. (64) McCloy, J. S.; Jiang, W.; Droubay, T. C.; Varga, T.; Kovarik, L.; Sundararajan, J. A.; Kaur, M.; Qiang, Y.; Burks, E. C.; Liu, K. Ion Irradiation of Fe-Fe Oxide Core-Shell Nanocluster Films: Effect of Interface on Stability of Magnetic Properties. J. Appl. Phys., 2013, 114, 083903-083909.
ACS Paragon Plus Environment
Page 31 of 50
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Physical Chemistry
(65) Xie, F. Y.; Gong, L.; Liu, X.; Tao, Y. T.; Zhang, W. H.; Chen, S. H.; Meng, H.; Chen, J. XPS Studies on Surface Reduction of Tungsten Oxide Nanowire Film by Ar+ Bombardment. J. Electron Spectrosc. Relat. Phenom., 2012, 185, 112-118. (66) Casas-Cabanas, M.; Binotto, G.; Larcher, D.; Lecup, A.; Giordani, V.; Tarascon, J. M. Defect Chemistry and Catalytic Activity of Nanosized Co3O4. Chem. Mater., 2009, 21, 1939-1947. (67) Baily, S. A.; Emin, D. Transport Properties of Amorphous Antimony Telluride. Phys. Rev. B, 2006, 73, 165211. (68) Owings, R. R. Polarons and Impurities in Nickel Cobalt Oxide, University of Florida, Ph D Dissertation, 2003. (69) Austin, I. G.; Mott, N. F. Polarons in Crystalline and Non-Crystalline Materials. 1969, 18, 41-102. (70) Rettie, A. J. E.; Lee, H. C.; Marshall, L. G.; Lin, J.-F.; Capan, C.; Lindemuth, J.; McCloy, J. S.; Zhou, J.; Bard, A. J.; Mullins, C. B. Combined Charge Carrier Transport and Photoelectrochemical Characterization of BiVO4 Single Crystals: Intrinsic Behavior of a Complex Metal Oxide. J. Amer. Chem. Soc., 2013, 135, 11389-11396. (71) Hu, L.; Wu, L.; Liao, M.; Hu, X.; Fang, X. Electrical Transport Properties of Large, Individual NiCo2O4 Nanoplates. Adv. Funct. Mater., 2012, 22, 998-1004. (72) Meyer, W.; Biedermann, K.; Gubo, M.; Hammer, L.; Heinz, K. Surface Structure of Polar Co3O4 (111) Films Grown Epitaxially on Ir(100)-(1 × 1). J. Phys. Cond. Matt., 2008, 20, 265011. (73) Ikedo, Y.; Sugiyama, J.; Nozaki, H.; Itahara, H.; Brewer, J.; Ansaldo, E.; Morris, G.; Andreica, D.; Amato, A. Spatial Inhomogeneity of Magnetic Moments in the Cobalt Oxide Spinel Co3O4. Phys. Rev. B, 2007, 75, 054424. (74) Zhao, B.; Kaspar, T. C.; Droubay, T. C.; McCloy, J.; Bowden, M. E.; Shutthanandan, V.; Heald, S. M.; Chambers, S. A. Electrical Transport Properties of Ti-Doped Fe2O3(0001) Epitaxial Films. Phys. Rev. B, 2011, 84, 245325. (75) Jithender, L.; Krishna, N. G. X-Ray Debye Temperature Study of Fe2O3 Nanoparticles. Int. J. Eng. Sci. Tech., 2012, 4, 2861-2865.
ACS Paragon Plus Environment
The Journal of Physical Chemistry
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 32 of 50
(76) Bødker, F.; Hansen, M.; Koch, C.; Lefmann, K.; Mørup, S. Magnetic Properties of Hematite Nanoparticles. Phys. Rev. B, 2000, 61, 6826-6838. (77) Barman, J.; Bora, T.; Ravi, S. Study of Exchange Bias and Training Effect in NiCr2O4. J. Magn. Magn. Mater., 2015, 385, 93-98. (78) Kaur, M.; McCloy, J. S.; Qiang, Y. Exchange Bias in Core-Shell Iron-Iron Oxide Nanoclusters. J. Appl. Phys., 2013, 113, 17D715. (79) Leighton, C.; Nogués, J.; Jönsson-Åkerman, B. J.; Schuller, I. K. Coercivity Enhancement in Exchange Biased Systems Driven by Interfacial Magnetic Frustration. Phys. Rev. Lett., 2000, 84, 34663469. (80) Alaan, U. S.; Wong, F. J.; Grutter, A. J.; Iwata-Harms, J. M.; Mehta, V. V.; Arenholz, E.; Suzuki, Y. Structure and Magnetism of Nanocrystalline and Epitaxial (Mn,Zn,Fe)3O4 Thin Films. J. Appl. Phys., 2012, 111, -. (81) Tian, Y. F.; Ding, J. F.; Lin, W. N.; Chen, Z. H.; David, A.; He, M.; Hu, W. J.; Chen, L.; Wu, T. Anomalous Exchange Bias at Collinear/ Noncollinear Spin Interface. Sci. Rep., 2013, 3, 1094. (82) Kaur, M.; Jiang, W.; Qiang, Y.; Burks, E. C.; Liu, K.; Namavar, F.; McCloy, J. S. Exchange Bias in Polycrystalline Magnetite Films Made by Ion-Beam Assisted Deposition. J. Appl. Phys., 2014, 116, 173902. (83) Cao, Y.; Xu, K.; Jiang, W.; Droubay, T.; Ramuhalli, P.; Edwards, D.; Johnson, B.; McCloy, J. Hysteresis in Single and Polycrystalline Iron Thin Films: Major and Minor Loops, First Order Reversal Curves, and Preisach Modeling. 2015, 395, 361-375. (84) Zysler, R. D.; Vasquez Mansilla, M.; Fiorani, D. Surface Effects in α-Fe2O3 Nanoparticles. Eur. Phys. J. B, 2004, 41, 171-175. (85) Kumar, P. S. A.; Joy, P. A.; Date, S. K. Origin of the Cluster-Glass-Like Magnetic Properties of the Ferromagnetic System La0.5Sr0.5CoO3. J. Phys. Cond. Matt., 1998, 10, L487-L493.
ACS Paragon Plus Environment
Page 33 of 50
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Physical Chemistry
(86) Itoh, M.; Natori, I.; Kubota, S.; Motoya, K. Spin-Glass Behavior and Magnetic Phase Diagram of La1-XSrxCoO3 ( 0 ≤x ≤0.5) Studied by Magnetization Measurements. J. Phys. Soc. Japan, 1994, 63, 14861493. (87) Hurd, C. M. Varieties of Magnetic Order in Solids. Contemp. Phys., 1982, 23, 469-493. (88) Bhowmik, R. N.; Ranganathan, R. Cluster Glass Behaviour in Co0.2Zn0.8Fe2-XRhxO4(x=0-1.0). J. Magn. Magn. Mater., 2001, 237, 27-40. (89) Ghosh, B.; Kumar, S.; Poddar, A.; Mazumdar, C.; Banerjee, S.; Reddy, V. R.; Gupta, A. Spin Glasslike Behavior and Magnetic Enhancement in Nanosized Ni--Zn Ferrite System. J. Appl. Phys., 2010, 108, 034307-034308. (90) Fiorani, D.; Viticoli, S.; Dormann, J. L.; Tholence, J. L.; Murani, A. P. Spin-Glass Behavior in an Antiferromagnetic Frustrated Spinel: ZnCr1.6Ga0.4O4. Phys. Rev. B, 1984, 30, 2776. (91) Parker, R. Electrical Transport Properties. In Magnetic Oxides: Part 1, 1. Craik, D. J., Eds.; John Wiley & Sons: London, 1975; pp 421-482. (92) Kim, Y.-J.; Kim, H.-J. Trapped Oxygen in the Grain Boundaries of ZnO Polycrystalline Thin Films Prepared by Plasma-Enhanced Chemical Vapor Deposition. Mater. Lett., 1999, 41, 159-163. (93) Zhang, S. B.; Wei, S. H.; Zunger, A. Intrinsic n-Type Versus p-Type Doping Asymmetry and the Defect Physics of ZnO. Phys. Rev. B, 2001, 63, 075205. (94) Blackstead, H. A.; Dow, J. D. Evidence That All High-Temperature Superconductors Are p-Type. Phys. Rev .B, 1997, 55, 6605-6611.
ACS Paragon Plus Environment
The Journal of Physical Chemistry
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 34 of 50
TABLES Table I. XRD (a) and RBS (O/(Ni+Co) molar ratio) data for unirradiated (U) and irradiated (I) samples. XPS data shown is prior to Ar+ sputtering. RBS-1 assumes Ni/Co as the target, and RBS-2 assumes Ni/Co as determined at the surface from XPS. a (Å) NixCo(3-x)O4 Ni1.5Co1.5O4 NiCo2O4 Ni0.75Co2.25O4
x 1.50 1.00 0.75
U 8.376 8.313 8.149
I 8.178 8.154 8.173
Ideal spinel 1.333 1.333 1.333
O/(Ni+Co) RBS-1 RBS-2 U U 1.700 1.567 1.900 1.750 1.873 1.722
XPS U 1.099 1.185 1.157
XPS I 1.311 0.971 0.956
RBS-1 I 1.633 1.883 1.840
RBS-2 I 1.500 1.667 1.699
Table II. Comparison of RT acquired electrical data from E (Ecopia, DC), M (MMR, DC), and L (Lakeshore, AC) measurements, for U (unirradiated), and I (ion irradiated) samples.
ρ (x 10-3 Ω-cm) U
µ (cm2/Vs) I
U
n (x 1020 cm-3) I
U
x
E
M
L
E
M
L
E
L
E
L
1.50
2.25
2.24
2.17
1.45
1.42
1.42
0.14
0.77
49.8
33.9
1.00
6.05
5.27
5.97
7.73
7.99
6.93
0.24
0.06
0.10
0.082
0.75
11.2
12.41
11.5
3.94
3.99
3.89
0.03
0.0017
0.41
0.56
I
E
L
E
L
175 (p-type) 74 (p-type)
37.2 (n-type) 165 (n-type)
0.862 (p-type) 141 (p-type)
1.30 (n-type) 110 (n-type)
394 (p-type)
3090 (p-type)
510 (p-type)
28.7 (n-type)
Table III. Summary of magnetic properties of unirradiated (U) and irradiated (I) samples, including real (χ') and imaginary (χ'') components of AC susceptibility, peak in ZFC DC magnetization (Tmax,ZFC), irreversibility temperature between ZFC and FC (Tirr), and low temperature coercivity (Hc). The maxima in χ' and χ'' are indicated for the ZFCC experiment, 100 Hz. n/m indicates that these values were not discernable from the experimental data.
x 1.50 1.00 0.75
χ' max (K) U I 120 ≥300 30 90 50 170
χ'' max (K) U I None ≥300 None 90 50 160
Tmax,ZFC (K) U I 80 270 30 50 30 110
Tirr (K) U I 90-130 ~245 n/m ~55 n/m ~120
Hc (10 K) (kOe) U I 2.9 4.2 0.7 1.03 1.08 1.88
ACS Paragon Plus Environment
Ms (10 K) (emu/g, µB/f.u.) U I 8.2, 0.35 21.8, 0.94 3.7, 0.16 17.6, 0.76 3.2, 0.14 20.6, 0.89
Page 35 of 50
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Physical Chemistry
FIGURE CAPTIONS Figure 1. Normalized GIXRD data for all samples. Intensities have been normalized to each maximum and offset for clarity. Standard powder diffraction files (PDF) for Ni1.71Co1.29O4 (401191), NiCo2O4 (73-1702), Co3O4 (74-1656), and NiO (71-1179), are shown for comparison.
Figure 2. Typical cross-sectional microstructure obtained by helium ion microscopy (HIM), in this case of the x=1.0 ion irradiated sample.
Figure 3. Ni2p, Co2p, and O1s XPS spectra. Legend is shown in the O1s plot and is the same for all plots. Irradiated curves are not shown for O1s but are identical to the x = 0.75 unirradiated spectrum with no high BE component.
Figure 4. Example of RBS fit for x = 1.5, unirradiated: data (points), simulation assuming Ni/Co is 1.0 (solid line), simulation assuming Ni/Co per XPS (dashed line).
Figure 5. Fits for temperature dependent resistivity for Mott 3D Variable Range Hopping, for T ~80 – 200 K.
Figure 6. Magnetic properties of NixCo(3-x)O4. Hysteresis at 10 K (a)-(c) with all linear effects of the substrate removed; dotted lines are irradiated samples in each case. Real part of the AC magnetic susceptibility (d)-(f) taken in zero DC field while cooling (ZFCC). Pre- (solid) and post-irradiated (dashed) data are on different y-axes.
ACS Paragon Plus Environment
The Journal of Physical Chemistry
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Figure 7. Magnetic properties of NixCo(3-x)O4. ZFCW-FCC magnetization curves versus T. Pre(solid) and post-irradiated (dashed) data. FIGURES
ACS Paragon Plus Environment
Page 36 of 50
Page 37 of 50
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Physical Chemistry
Figure 1. Normalized GIXRD data for all samples. Intensities have been normalized to each maximum and offset for clarity. Standard powder diffraction files (PDF) for Ni1.71Co1.29O4 (401191), NiCo2O4 (73-1702), Co3O4 (74-1656), and NiO (71-1179), are shown for comparison.
ACS Paragon Plus Environment
The Journal of Physical Chemistry
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 38 of 50
Figure 2. Typical cross-sectional microstructure obtained by helium ion microscopy (HIM), in this case of the x=1.0 ion irradiated sample
Figure 3. Ni2p, Co2p, and O1s XPS spectra. Legend is shown in the O1s plot and is the same for all plots. Irradiated curves are not shown for O1s but are identical to the x = 0.75 unirradiated spectrum with no high BE component.
ACS Paragon Plus Environment
Page 39 of 50
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Physical Chemistry
Figure 4. Example of RBS fit for x = 1.5, unirradiated: data (points), simulation assuming Ni/Co is 1.0 (solid line), simulation assuming Ni/Co per XPS (dashed line).
Figure 5. Fits for temperature dependent resistivity for Mott 3D Variable Range Hopping, for T ~80 – 200 K.
ACS Paragon Plus Environment
The Journal of Physical Chemistry
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 40 of 50
Figure 6. Magnetic properties of NixCo(3-x)O4. Hysteresis at 10 K (a)-(c) with all linear effects of the substrate removed; dotted lines are irradiated samples in each case. Real part of the AC magnetic susceptibility (d)-(f) taken in zero DC field while cooling (ZFCC). Pre- (solid) and post-irradiated (dashed) data are on different y-axes.
ACS Paragon Plus Environment
Page 41 of 50
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Physical Chemistry
Figure 7. Magnetic properties of NixCo(3-x)O4. ZFCW-FCC magnetization curves versus T. Pre(solid) and post-irradiated (dashed) data.
ACS Paragon Plus Environment
The Journal of Physical Chemistry
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
TABLE OF CONTENTS IMAGE
ACS Paragon Plus Environment
Page 42 of 50
Page 43 of 50
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Physical Chemistry
Normalized GIXRD data for all samples. Intensities have been normalized to each maximum and offset for clarity. Standard powder diffraction files (PDF) for Ni1.71Co1.29O4 (40-1191), NiCo2O4 (73-1702), Co3O4 (74-1656), and NiO (71-1179), are shown for comparison. 106x128mm (300 x 300 DPI)
ACS Paragon Plus Environment
The Journal of Physical Chemistry
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Typical cross-sectional microstructure obtained by helium ion microscopy (HIM), in this case of the x=1.0 ion irradiated sample. 270x296mm (96 x 96 DPI)
ACS Paragon Plus Environment
Page 44 of 50
Page 45 of 50
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Physical Chemistry
Ni2p, Co2p, and O1s XPS spectra. Legend is shown in the O1s plot and is the same for all plots. Irradiated curves are not shown for O1s but are identical to the x = 0.75 unirradiated spectrum with no high BE component. 170x59mm (300 x 300 DPI)
ACS Paragon Plus Environment
The Journal of Physical Chemistry
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Example of RBS fit for x = 1.5, unirradiated: data (points), simulation assuming Ni/Co is 1.0 (solid line), simulation assuming Ni/Co per XPS (dashed line). 77x70mm (300 x 300 DPI)
ACS Paragon Plus Environment
Page 46 of 50
Page 47 of 50
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Physical Chemistry
Fits for temperature dependent resistivity for Mott 3D Variable Range Hopping, for T ~80 – 200 K. 73x56mm (300 x 300 DPI)
ACS Paragon Plus Environment
The Journal of Physical Chemistry
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
84x161mm (300 x 300 DPI)
ACS Paragon Plus Environment
Page 48 of 50
Page 49 of 50
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Physical Chemistry
80x34mm (300 x 300 DPI)
ACS Paragon Plus Environment