Electrically Augmented Filtration of Aerosols - ACS Publications

G. H. FIELDING, H. F. BOGARDUS, R. C. CLARK, and J. K. THOMPSON. Naval Research Laboratory, Washington, D. C. 20375. In the filtration of aerosols by ...
0 downloads 0 Views 817KB Size
6

Removal of Trace Contaminants from the Air Downloaded from pubs.acs.org by UNIV OF MICHIGAN ANN ARBOR on 11/20/18. For personal use only.

Electrically

Augmented

Filtration

of

Aerosols

G. H . FIELDING, H . F. BOGARDUS, R. C. CLARK, and J. K. THOMPSON Naval Research Laboratory, Washington, D. C. 20375

In the filtration of aerosols by f i b r o u s media, c e r t a i n elec­ trical processes may be utilized to help e f f e c t particle capture. One such process i s d i e l e c t r o p h o r e s i s . D i e l e c t r o p h o r e s i s , a term coined by P o h l ( 1 ) , r e f e r s to the m i g r a t i o n of an uncharged, but p o l a r i z e d particle under the i n f l u e n c e of a divergent electric field. This process i s not to be confused w i t h e l e c t r o p h o r e s i s , the process which occurs in electrostatic precipitation, where a charged particle is a t t r a c t e d to an o p p o s i t e l y charged e l e c t r o d e . This report presents r e s u l t s of experiments in which dielectro­ phoresis was used to enhance the filtration e f f i c i e n c y of com­ m e r c i a l g l a s s f i b e r filter media. An uncharged a e r o s o l particle w i t h i n a homogeneous electric field i s p o l a r i z e d by the field, but i s not subject to any dis­ placing force due to the field. I f , however, there is placed i n the field a f o r e i g n body, such as a filter f i b e r of m a t e r i a l whose dielectric constant is g r e a t e r than one, the field becomes d i s ­ t o r t e d due to polarization of the fiber. Surrounding the f i b e r there is a r e s u l t a n t field gradient w i t h intensity i n c r e a s i n g toward the f i b e r s u r f a c e . An uncharged but p o l a r i z e d a e r o s o l p a r ­ ticle e n t e r i n g such a r e g i o n of inhomogeneous field will be a c c e l e r a t e d in the direction of i n c r e a s i n g field intensity, i.e., toward the f i b e r s u r f a c e , where it may be captured. This d i e l e c t r o p h o r e t i c e f f e c t described for a s i n g l e f i b e r is multiplied many times f o r a f i b r o u s filter medium placed in an electric field. Every interfiber space in the filter mat becomes a m i c r o s c o p i c r e g i o n of field inhomogeneity in which dielectro­ phoresis can-occur. D i e l e c t r o p h o r e s i s in filtration occurs con­ c u r r e n t l y w i t h and in a d d i t i o n to the u s u a l mechanisms c o n t r i b u t ­ i n g to a e r o s o l d e p o s i t i o n , namely, i n t e r c e p t i o n , inertial impac­ tion, and d i f f u s i o n . The first reported a p p l i c a t i o n of d i e l e c t r o p h o r e s i s to aero­ sol filtration was in 1954, when the Harvard U n i v e r s i t y Air C l e a n ­ ing Laboratory t e s t e d a m a n u f a c t u r e r s prototype of a proposed 68

6.

FIELDING E T A L .

Electrically

Augmented

Filtration

of

Aerosols

69

e l e c t r i f i e d f i l t e r u n i t ( 2 ) . Compared t o t h a t o f g l a s s f i b e r mats a l o n e , t h e p e r f o r m a n c e o f t h i s f i l t e r u n i t was b e t t e r by f a c t o r s o f 1.5 t o 6.5, d e p e n d i n g upon t e s t c o n d i t i o n s . A p p a r e n t l y , s u c h improvement was n o t c o n s i d e r e d t o be enough t o j u s t i f y f u r t h e r w o r k , a n d t h e d e v i c e was n e v e r m a r k e t e d . I n 1 9 5 9 , Thomas a n d W o o d f i n r e p o r t e d o b t a i n i n g a 5 - f o l d i m provement i n performance o f an e l e c t r o s t a t i c p r e c i p i t a t o r by p a c k i n g t h e v o i d spaces between c o l l e c t o r p l a t e s w i t h a f i b r o u s f i l t e r m a t e r i a l ( 3 ) . According t o t h e i r paper, a major e f f e c t o f t h i s p a c k i n g was t o g r e a t l y d e c r e a s e t h e f r e e p a t h l e n g t h o f a p a r t i c l e a n d t h u s i n c r e a s e t h e p r o b a b i l i t y o f i t s c a p t u r e when d e f l e c t e d by t h e e l e c t r i c f i e l d . I n a 1962 p a p e r , R i v e r s ( 4 ) d i s c u s s e d t h e o p e r a t i n g p r i n c i ples of n o n - i o n i z i n g e l e c t r o s t a t i c a i r f i l t e r s o f the type patented b y Dahlman i n 1950 ( 5 ) . R i v e r s d e r i v e d e q u a t i o n s f o r c a l c u l a t i n g t h e component o f a e r o s o l d r i f t v e l o c i t y due t o p o l a r i z a t i o n f o r c e s a n d compared h i s c a l c u l a t e d v a l u e s t o t y p i c a l e x p e r i m e n t a l values. Agreement was b e s t i n t h e 2 t o 5 m i c r o n p a r t i c l e s i z e r a n g e . The m a n u f a c t u r e r o f t h e e l e c t r i f i e d f i l t e r d e s c r i b e d b y R i v e r s c l a i m e d t h a t a e r o s o l p e n e t r a t i o n was d e c r e a s e d b y a f a c t o r o f 1.7 b e c a u s e o f e l e c t r i f i c a t i o n . The m e r i t s o f d i f f e r e n t o r i e n t a t i o n s o f t h e e l e c t r i c f i e l d r e l a t i v e t o t h e d i r e c t i o n o f a i r f l o w were d i s c u s s e d by H a v l i c e k i n 1961 ( 6 ) . He showed b o t h t h e o r e t i c a l l y and e x p e r i m e n t a l l y t h a t when t h e e l e c t r i c f i e l d i s i m p r e s s e d p a r a l l e l t o t h e d i r e c t i o n o f a i r f l o w , t h e maximum e l e c t r i c a l f o r c e o n a p a r t i c l e r e i n f o r c e s t h e maximum a e r o d y n a m i c f o r c e s l e a d i n g t o d e p o s i t i o n . I n 1964, W a l k e n h o r s t a n d Z e b e l c o n s t r u c t e d a n i d e a l i z e d m o d e l f i l t e r u s i n g many l a y e r s o f n y l o n h o s i e r y m a t e r i a l w i t h a c a r e f u l l y a r r a n g e d a r r a y o f e l e c t r o d e s i n t e r s p e r s e d e v e r y 10 l a y e r s (7). This f i l t e r had a low r e s i s t a n c e t o a i r f l o w because o f t h e open s t r u c t u r e o f t h e k n i t t e d n y l o n f a b r i c . F i l t r a t i o n thus depended l a r g e l y upon t h e a c t i o n o f t h e e l e c t r i c f i e l d , w h i c h was o r i e n t e d p a r a l l e l t o t h e d i r e c t i o n o f a i r f l o w . W a l k e n h o r s t and Zebel subsequently published extensive analyses o f the performance o f t h i s g e o m e t r i c a l l y r e g u l a r m o d e l (8, _9, JLO, J L l , 1 2 , 1 3 ) . The t h e o r e t i c a l a s p e c t s o f d i e l e c t r o p h o r e t i c f i l t r a t i o n h a v e b e e n e x t e n s i v e l y t r e a t e d b y i n v e s t i g a t i o n s s u c h a s t h o s e mentioned. Hence, t h e N a v a l R e s e a r c h L a b o r a t o r y e f f o r t h a s emphas i z e d s e e k i n g a p r a c t i c a l and e c o n o m i c a l a p p l i c a t i o n o f d i e l e c t r o p h o r e s i s t o i m p r o v e t h e p e r f o r m a n c e o f e x i s t i n g commerc i a l f i l t e r media. A s i m p l e c o n f i g u r a t i o n has been used i n w h i c h the e l e c t r i c f i e l d i s impressed p a r a l l e l t o t h e d i r e c t i o n o f a i r flow. Experimental The f i l t e r m e d i a s t u d i e d w e r e o f a t y p e n o r m a l l y u s e d f o r d u s t r e m o v a l o r f o r p r e - f i l t r a t i o n ahead o f h i g h e f f i c i e n c y f i l ters. They w e r e r e i n f o r c e d , nonwoven g l a s s f i b e r mats 6.4 mm

REMOVAL

70

OF TRACE CONTAMINANTS F R O M

THE

AIR

t h i c k . Three grades were used; they d i f f e r e d from each other i n f i b e r blend, packing d e n s i t y , and t h e i r r e s u l t i n g f i l t r a t i o n capa­ bilities. The f i l t r a t i o n c h a r a c t e r i s t i c s of these f i l t e r s , as s t a t e d by the manufacturer (14), are shown i n Table I. Table I . Filter medium HP-15 HP-100 HP-200

F i l t r a t i o n c h a r a c t e r i s t i c s of g l a s s f i b e r f i l t e r media. Mfr. rated flow c o n d i t i o n s Pressure drop Air velocity 0.35 i n . w.g. 44 cm/sec 0.40 i n . w.g. 20 cm/sec 0.40 i n . w.g. 17 cm/sec

Aerosol retention 5μ dust POP a e r o s o l Not rated 99 % 60-65% 99.7 % 80-85% 99.9 %

For experimental purposes a 14 cm χ 14 cm s e c t i o n was mounted i n a hardboard frame. This framed f i l t e r assembly was then sandwiched between two 20-mesh s t a i n l e s s s t e e l screen e l e c ­ trodes. An exploded view of t h i s assembly i s shown i n F i g u r e 1.

Figure

1.

Filter-electrode

assembly, exploded inches.

view.

Reference

scale

in

The f i l t e r - e l e c t r o d e assembly was mounted between round-tosquare t r a n s i t i o n s i n the center of a c y l i n d r i c a l duct 10 cm i n diameter by 250 cm i n length. A i r movement through the system was

6.

FIELDING

E T A L .

Electrically

Augmented

Filtration

of

Aerosols

71

p r o v i d e d b y a c a n i s t e r - t y p e vacuum c l e a n e r a t t h e d o w n s t r e a m end. The c l e a n e r m o t o r s p e e d was c o n t r o l l e d b y a v a r i a b l e a u t o t r a n s f o r m e r . A i r f l o w r a t e was m e a s u r e d b y means o f t h e p r e s s u r e d r o p a c r o s s a c a l i b r a t e d n o z z l e i n the duct. P r o v i s i o n was made a l s o f o r measuring the p r e s s u r e drop a c r o s s t h e f i l t e r . A e r o s o l was i n t r o d u c e d i n t o a p l e n u m a t t h e i n l e t end o f t h e duct. Two l i q u i d a e r o s o l s w e r e u s e d : (1) 0.3 m i c r o n - d i a m e t e r d i o c t y l p h t h a l a t e (DOP) g e n e r a t e d b y a v a p o r c o n d e n s a t i o n p r o c e s s a n d (2) n o m i n a l 1.0 m i c r o n - d i a m e t e r DOP g e n e r a t e d b y a n a t o m i z e r c o u p l e d t o a j e t impactor f o r removal o f l a r g e drops. A e r o s o l conc e n t r a t i o n b e f o r e a n d a f t e r t h e f i l t e r was m e a s u r e d w i t h a l i g h t s c a t t e r i n g p h o t o m e t e r . E a c h a e r o s o l s a m p l i n g p o i n t was p r e c e d e d i n the duct by a s e r i e s o f o r i f i c e p l a t e s f o r a e r o s o l m i x i n g . A v a r i a b l e - v o l t a g e , p o s i t i v e - g r o u n d DC power s u p p l y was c o n nected t o the w i r e s c r e e n e l e c t r o d e s . T h i s p r o v i d e d an e l e c t r i c f i e l d through t h e f i l t e r p a r a l l e l t o the d i r e c t i o n o f a i r flow. T h e r e was a s m a l l c u r r e n t , l e s s t h a n 0.25 m i c r o a m p e r e s , t h r o u g h t h i s c i r c u i t w h i c h was a t t r i b u t e d t o l e a k a g e t h r o u g h i n s u l a t i o n . The v o l t a g e s a p p l i e d w e r e t o o l o w t o g e n e r a t e a c o r o n a d i s c h a r g e b e t w e e n t h e e l e c t r o d e s . Had t h e r e b e e n a c o r o n a , t h e c u r r e n t would have been o f the order o f a few m i l l i a m p e r e s . The e x p e r i m e n t a l p r o c e d u r e i n v o l v e d t h e s i m u l t a n e o u s m e a s u r e ment o f f i l t e r p e n e t r a t i o n ( o r f i l t e r e f f i c i e n c y ) and p r e s s u r e d r o p i n t h e f i l t e r a t a number o f v o l t a g e s a n d a i r f l o w r a t e s . S t a r t i n g w i t h t h e lowest f l o w r a t e , the u n f i l t e r e d and f i l t e r e d a e r o s o l c o n c e n t r a t i o n s were measured f i r s t a t zero v o l t a g e and t h e n a t s u c c e s s i v e l y h i g h e r v o l t a g e s up t o a maximum o f 7 k v . T h i s p r o c e d u r e was r e p e a t e d a s a i r f l o w r a t e was i n c r e a s e d s t e p w i s e up t o t h e maximum a p p r o p r i a t e f o r t h e f i l t e r . Results The r e s u l t s o f t h e d i e l e c t r o p h o r e t i c f i l t r a t i o n s t u d y a r e p r e s e n t e d i n F i g u r e s 2 t h r o u g h 7. E a c h f i g u r e shows t h e p e r c e n t age o f a e r o s o l r e t a i n e d b y t h e f i l t e r a s a f u n c t i o n o f a i r v e l o c i ty (or p r e s s u r e drop) a t a p p l i e d v o l t a g e s from 0 t o 7 kv. For the 6.4 mm t h i c k n e s s o f t h e s e f i l t e r s t h e e l e c t r i c f i e l d t h r o u g h t h e f i l t e r ( i n kv/cm) was 1.57 t i m e s t h e a p p l i e d v o l t a g e . The e f f e c t o f t h e a p p l i e d e l e c t r i c f i e l d i n e n h a n c i n g f i l t r a t i o n e f f i c i e n c y h a s b e e n r a t e d n u m e r i c a l l y b y means o f a c a l c u l a t e d index c a l l e d the D i e l e c t r o p h o r e t i c Augmentation F a c t o r (DAF). T h i s number i s t h e r a t i o o f t h e p e r c e n t a e r o s o l p e n e t r a t i o n (100% - % r e t e n t i o n ) a t z e r o v o l t a g e t o t h e p e n e t r a t i o n a t the v o l t a g e o f i n t e r e s t . F o r example, i f a f i l t e r a t a g i v e n f l o w r a t e showed a p e n e t r a t i o n o f 1 0 % a t z e r o v o l t a g e a n d 1% a t 7 k v , t h e DAF f o r t h a t s e t o f c o n d i t i o n s w o u l d b e 10. V a l u e s o f t h e DAF a r e shown i n T a b l e s I I t h r o u g h V I I as a f u n c t i o n o f a p p l i e d v o l t a g e f o r each a i r f l o w r a t e s t u d i e d .

R E M O V A L O F T R A C E C O N T A M I N A N T S F R O M T H E AIR

72

Discussion Figures 2 and 3 show the a e r o s o l r e t e n t i o n by the HP-15 f i l ter when challenged with 0.3 and 1.0 micron DOP, r e s p e c t i v e l y . HP-15 has a f a i r l y open s t r u c t u r e ; hence, a e r o s o l r e t e n t i o n was r e l a t i v e l y low. At zero a p p l i e d voltage the a e r o s o l r e t e n t i o n i n creased as a i r v e l o c i t y increased. The r e l a t i v e increase of r e t e n t i o n with v e l o c i t y was greater f o r the l a r g e r a e r o s o l than f o r the s m a l l e r . This q u a l i t a t i v e l y agrees with the concept of i n e r t i a l d e p o s i t i o n i n c r e a s i n g with v e l o c i t y f o r these d i f f e r e n t s i z e d a e r o s o l p a r t i c l e s . A p p l i c a t i o n of the e l e c t r i c f i e l d had the greatest e f f e c t on e f f i c i e n c y at the lowest a i r flow r a t e s . The e f f e c t of the f i e l d decreased as a i r flow r a t e increased. This i s to be expected, s i n c e at higher v e l o c i t i e s the a e r o s o l has l e s s time to be i n f l u e n c e d by the f i e l d . One might expect that at extremely high v e l o c i t i e s the d i e l e c t r o p h o r e t i c e f f e c t would be n e g l i g i b l e compared to that of the i n e r t i a l mechanism. C a l c u l a t e d values of the DAF are presented i n Tables I I and I I I f o r F i l t e r HP-15 challenged with 0.3 and 1.0 micron DOP, r e s p e c t i v e l y . At the manufacturer's recommended flow r a t e of 44 cm/sec (0.35 i n . pressure drop) and with 7 kv a p p l i e d to the e l e c t r o d e s the DAF was 2 f o r 0.3 micron a e r o s o l and 4 f o r 1.0 micron a e r o s o l . Table I I . D i e l e c t r o p h o r e t i c augmentation f a c t o r as a f u n c t i o n of voltage and a i r v e l o c i t y i n HP-15 f i l t e r medium; 0.3 micron DOP a e r o s o l . Air

velocity, cm/sec 7 14 21 33 44 56

2 2 2 1 1 1 1

F i l t e r v o l t a g e , kv 3 5 5 3 6 2 3 2 3 2 2 1 2 1 2 1

7_ 9 5 3 3 2 2

Table I I I . D i e l e c t r o p h o r e t i c augmentation f a c t o r as a f u n c t i o n of voltage and a i r v e l o c i t y i n HP-15 f i l t e r medium; 1.0 micron DOP a e r o s o l . Air velocity, cm/sec 7 14 21 33 44 56

2 3 2 2 1 1 1

F i l t e r v o l t a g e , kv 3.5 5 6 11 3 5 3 4 2 4 2 3 2 2

7 23 9 7 5 4 3

6.

FIELDING E T A L .

Electrically

Augmented

Filtration

of

73

Aerosols

lOOr

0.10

Figure 2. Influence of applied voltage upon retention of 0.3-μ OOP aerosol by HP-15 filter medium

Figure 3. Influence of applied voltage upon retention of 1.0-μ DOP aerosol by Η Ρ-15 filter medium

0.30

0.20

(inches

Δ Ρ - FILTER 20 FACE

10

20 FACE

(cm /sec)

VELOCITY

0.10 0.20 ΔΡ-FILTER

v» g.) 40

30

0.30 (inches

30 VELOCITY

0.40 w.g.)

40 (cm / s e c )

74

R E M O V A L O F T R A C E C O N T A M I N A N T S F R O M T H E AIR

The r e t e n t i o n of 0.3 and 1.0 micron aerosols by F i l t e r HP-100 i s shown i n Figures 4 and 5, r e s p e c t i v e l y . The r e l a t e d DAF values are shown i n Tables IV and V. Performance of t h i s f i l t e r was Table IV. D i e l e c t r o p h o r e t i c augmentation f a c t o r as a f u n c t i o n of voltage and a i r v e l o c i t y i n HP-100 f i l t e r medium; 0.3 micron DOP a e r o s o l . Air

velocity, i/sec 3 5 8 13 18 26 37 46

2 8 3 3 2 2 2 2 1

F i l t e r voltage, 5 3.5 95 19 13 39 28 11 6 13 5 9 6 4 4 3 2 3

kv 7 330 120 100 42 27 14 9 6

Table V. D i e l e c t r o p h o r e t i c augmentation f a c t o r as a f u n c t i o n of voltage and a i r v e l o c i t y i n HP-100 f i l t e r medium; 1.0 micron DOP a e r o s o l . Air

velocity, L/sec 3 5 8 13 18 26 37 46

2 30 6 4 3 2 2 2 1

F i l t e r voltage, 5 3.5 300 110 95 30 50 18 20 10 13 6 8 4 5 3 3 2

kv 7 1100 360 170 50 35 18 11 7

q u a l i t a t i v e l y s i m i l a r to that of HP-15, but the e f f i c i e n c y was higher throughout. Again, the d i e l e c t r o p h o r e t i c e f f e c t was greatest a t the low flow r a t e s and decreased as v e l o c i t y increased. From Tables IV and V one can i n t e r p o l a t e a value of the DAF f o r the manufacturer's recommended flow r a t e of 20 cm/sec (0.40 i n . pressure drop). At t h i s flow r a t e and with an a p p l i e d v o l t a g e of 7 kv the DAF i s 21 f o r 0.3 micron a e r o s o l and 28 f o r 1.0 micron aerosol. The r e t e n t i o n of 0.3 and 1.0 micron aerosols by F i l t e r HP-200 i s shown i n Figures 6 and 7, r e s p e c t i v e l y . HP-200 was the most e f f i c i e n t f i l t e r of the three t e s t e d . S t i l l , the augmentation e f f e c t of the e l e c t r i c f i e l d was q u i t e s i g n i f i c a n t . At the manuf a c t u r e r ' s recommended flow r a t e of 17 cm/sec (0.40 i n . pressure drop) and with an a p p l i e d voltage of 7 kv the DAF i n t e r p o l a t e d from Tables VI and VII i s 19 f o r 0.3 micron a e r o s o l and 30 f o r 1.0 micron a e r s o l .

6.

FIELDING E T A L .

Electrically

Augmented

Filtration

of

0.50

0.25

Figure 4. Influence of applied voltage upon retention of 0.3-μ DOP aerosol by HP-100 filter medium

(inches w.g.)

Δ P-FILTER

FACE

VELOCITY

30 (cm/sec)

0.75

0.50

0.25

Figure 5. Influence of applied voltage upon retention of 1.0-μ DOP aerosol by HP-100 filter medium

75

Aerosols

ΔΡ-

FILTER 20 VELOCITY

(inches

«.g.)

30

40 (cm/sec)

76

REMOVAL OF TRACE CONTAMINANTS F R O M

0.25 Δ Ρ - FILTER 10 FACE

0.7 w.g.)

20 VELOCITY

0.50 (in

w. g.)

T H E AIR

Figure 6. Influence of applied voltage upon retention of 0.3-μ DOP aerosol by HP-200 filter medium

Figure 7. Influence of applied voltage upon retention of l.O-μ DOP aerosol by HP-200 filter medium

6.

FIELDING E T A L .

Electrically

Augmented

Filtration

of

77

Aerosols

Table V I . D i e l e c t r o p h o r e t i c augmentation f a c t o r as a f u n c t i o n o f v o l t a g e a n d a i r v e l o c i t y i n HP-200 f i l t e r medium; 0.3 m i c r o n DOP a e r o s o l . Air

velocity, L/ s e c 2 4 6 11 15 21 29 37

1 5 4 3 2 2 1 1 1

2 8 5 5 4 3 2 2 1

Filter 3.5 11 12 10 9 7 5 3 2

voltage, 5 18 15 15 16 13 10 6 4

kv 7 28 22 22 24 20 18 13 8

Table V I I . D i e l e c t r o p h o r e t i c augmentation f a c t o r as a f u n c t i o n o f v o l t a g e and a i r v e l o c i t y i n HP-200 f i l t e r medium; 1.0 m i c r o n DOP a e r o s o l . Air

velocity t/sec 2 4 6 11 15 21 29 37

1 6 5 2 2 2 1 1 1

2 26 11 7 5 4 3 2 1

Filter 3.5 66 34 21 12 10 6 4 2

voltage, 5 127 65 43 23 19 13 7 4

kv 7 380 138 50 37 43 26 18 8

The r e l a t i v e i m p r o v e m e n t i n f i l t r a t i o n p e r f o r m a n c e due t o t h e a p p l i e d e l e c t r i c f i e l d was n o t a b l y g r e a t e r f o r t h e HP-100 f i l t e r t h a n f o r t h e HP-15. The HP-100 b l e n d c o n t a i n s more f i n e f i b e r s t h a n t h e HP-15 a n d i s more d e n s e l y c o n s t r u c t e d . T h i s would have o f f e r e d more o p p o r t u n i t y f o r d i e l e c t r o p h o r e s i s t o o c c u r , a l l o t h e r things being equal. I n t e r m s o f t h e DAF, t h e r e l a t i v e i m p r o v e ment shown by F i l t e r HP-100 was a b o u t t h e same a s t h a t shown b y F i l t e r HP-200 a t t h e i r r e s p e c t i v e r a t e d f l o w c o n d i t i o n s . B e cause o f d i f f e r e n c e s i n i n i t i a l f i l t r a t i o n e f f i c i e n c y , t h e r e l a t i v e improvement c a u s e d b y d i e l e c t r o p h o r e s i s was g r e a t e r a t l o w f l o w r a t e s f o r F i l t e r HP-100 t h a n f o r F i l t e r HP-200. The p o s s i b l e e f f e c t o f c h a r g e d a e r o s o l p a r t i c l e s h a s n o t b e e n addressed i n t h i s study. I f any a e r o s o l p a r t i c l e s h a d been i n a d v e r t e n t l y c h a r g e d , t h e f i l t r a t i o n improvement a t t r i b u t e d h e r e e n t i r e l y t o d i e l e c t r o p h o r e s i s w o u l d h a v e b e e n due i n p a r t t o c o u lombic forces. Conclusions A p p l i c a t i o n of an e l e c t r i c f i e l d

through a glass f i b e r

dust

R E M O V A L OF

78

TRACE

CONTAMINANTS F R O M T H E

AIR

f i l t e r medium e f f e c t s a s u b s t a n t i a l i m p r o v e m e n t i n f i l t r a t i o n e f ­ f i c i e n c y by means o f d i e l e c t r o p h o r e s i s . F u r t h e r work i s r e q u i r e d t o l e a r n t h e most e f f e c t i v e c o n d i t i o n s o f a i r f l o w r a t e , f i b e r b l e n d , d e n s i t y , and a p p l i e d v o l t a g e . Further investigation i s a l s o needed t o t e s t t h e a p p l i c a b i l i t y o f d i e l e c t r o p h o r e s i s t o f i l t e r m e d i a o t h e r t h a n g l a s s f i b e r and t o a e r o s o l s o t h e r t h a n DOP. Literature Cited 1. 2.

3. 4. 5. 6. 7. 8 9. 10. 11. 12. 13. 14.

P o h l , Η. Α., J . Appl. P h y s . , ( 1 9 5 1 ) , 22, 869-871. Billings, C. E., D e n n i s , R., and S i l v e r m a n , L., " P e r f o r m a n c e of the Model Κ Electro-Polar Filter," Air Cleaning Laboratory, Harvard University School of Public Health, B o s t o n , M a s s a c h u s e t t s , R e p o r t NYO-1592, 1954. Thomas, J. W., and W o o d f i n , E. J., A . I . E . E . T r . , Pt. II, ( 1 9 5 9 ) , 78, 276-278. R i v e r s , R. D., A.S.H.R.A.E.J., ( 1 9 6 2 ) , 37-40. Dahlman, V., "Electrical Gas C l e a n e r Unit," U. S. P a t e n t No. 2,502,560, 1950. H a v l i c e k , V., Int. J. Air and W a t e r Poll., ( 1 9 6 1 ) , 4, 225 -236. W a l k e n h o r s t , W., and Zebel, G., S t a u b , ( 1 9 6 4 ) , 24, 444-448. Z e b e l , G., J. Colloid Sci., ( 1 9 6 5 ) , 20, 522-543. Z e b e l , G., S t a u b , ( 1 9 6 6 ) , 26, 18-22. Z e b e l , G., S t a u b , ( 1 9 6 9 ) , 29, 21-27. W a l k e n h o r s t , W., Aerosol Science, ( 1 9 7 0 ) , 1, 225-242. W a l k e n h o r s t , W., S t a u b , ( 1 9 6 9 ) , 29, 1-13. D a v i e s , C. Ν., Filtration and Separation, ( 1 9 7 0 ) , 692-694. F a r r Company, "HP Air Filters," Technical Data Bulletin B-1300-4K, L o s A n g e l e s , California, 1969.