20 Oxidative Intercalation of Graphite by Fluoroanionic Species Downloaded by UNIV OF ARIZONA on October 2, 2015 | http://pubs.acs.org Publication Date: May 5, 1989 | doi: 10.1021/ba-1990-0226.ch020
Evidence for Thermodynamic Barrier Neil Bartlett, Fujio Okino, Thomas E . Mallouk, Rika Hagiwara, Michael Lerner, Guy L . Rosenthal, and Kostantinos Kourtakis Department of Chemistry, University of California, Berkeley, CA 94720 Materials and Chemical Sciences Division, Lawrence Berkeley Laboratory, Berkeley, CA 94720
Whether oxidative intercalation of graphite byfluoroanionscanoccur may be estimated from the electron affinity, Ε (-ΔΗ in kcal mol ), of the oxidizing half reaction. Forfirst-stagesalts withMF -guests, Ε must exceed 120 kcal mol . The values of E(e + / MF --> M F 6- + / MF ) for AsF and PF (125 and 87 kcal mol , respectively) account for the spontaneous intercalation of graphite by AsF and the failure of PF to do so. Spontaneous intercalation by PF + F occurs because E(e + PF + / F --> PF6-) = 165 kcal mol . The thermodynamic nature ofthe barrier to intercalation is dem onstratedby the reduction of C PF salts by PF : C PF + / PF --> xC + 3/2 PF . Chlorine with certain fluoroacids can also bring about intercalation of fluoroanions. Polarizable neutral molecules, by improving the lattice energetics of graphite salts, may also be spontaneously intercalated (e.g., C AsF + / AsF --> C AsF 1 / 2 A S F ) . When high positive charge at carbon occurs, F is trans ferred from the fluoroanion to the carbon and novel graphite fluor ides(e.g., C F) are formed. -1
298
6
-1
1
5
5
2
3
-
5
3
2
-1
5
5
5
-
2
1
5
2
2
-1
x
6
x
3
6
1
2
3
5
14
6
1
2
5
14
6·
-
5
1.3
^flL OST O F T H E REACTANTS T H A T BRING ABOUT INTERCALATION of g r a p h i t e
are e i t h e r strong oxidants o r reductants such as n i t r i c a c i d o r alkali m e t a l (1-3). T h e oxidation o r r e d u c t i o n o f the graphite that accompanies t h e i n tercalation was clearly shown b y U b b e l o h d e a n d co-workers (4-6) to b e 0065-2393/90/0226-0391$06.00/0 © 1990 American Chemical Society
In Electron Transfer in Biology and the Solid State; Johnson, M., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1989.
392
E L E C T R O N T R A N S F E R IN B I O L O G Y A N D T H E S O L I D S T A T E
a c c o m p a n i e d b y a n increase i n the i n - p l a n e resistivity of the graphite. T h i s resistivity was c o m m o n l y an o r d e r of m a g n i t u d e smaller i n f u l l y i n t e r c a l a t e d m a t e r i a l than i n the p r i s t i n e graphite from w h i c h the intercalation c o m p o u n d s h a d b e e n obtained. T h e graphite b a n d structures of C o u l s o n a n d co-workers (7, 8) n i c e l y account for the c o n d u c t i v i t y i n t e r m s of increase i n the n u m b e r of e l e c t r o n carriers i n the c o n d u c t i o n b a n d of the r e d u c e d graphite or a n increased n u m b e r o f e l e c t r o n holes i n the valence b a n d o f o x i d i z e d graphite. T h e preparation of C F salts (9) a n d the d e r i v a t i o n from t h e m o f p o l y c y c l i c cation salts (10,11) suggested that v e r y h i g h positive charges m i g h t be sustainable i n graphite b y A s F " a n d o t h e r stable perfluoroanions a n d that excellent e l e c t r i c a l conductors made of high-oxidation-state c a r b o n c o u l d t h e r e b y be o b t a i n e d . T h i s d e v e l o p m e n t l e d to synthesis of graphite f l u o roarsenates v i a i n t e r a c t i o n o f graphite w i t h 0 A s F " a n d to the d i s c o v e r y (12) that the guests i n the p r o d u c t of the i n t e r a c t i o n of graphite w i t h A s F suggested that A s F acts as a n electron o x i d i z e r a c c o r d i n g to e q u a t i o n 1. 6
6
+
Downloaded by UNIV OF ARIZONA on October 2, 2015 | http://pubs.acs.org Publication Date: May 5, 1989 | doi: 10.1021/ba-1990-0226.ch020
6
2
+
6
5
5
e"
+ % A s F - » A s F " + î4AsF 5
6
(1)
3
T h e g r a p h i t e - A s F intercalation c o m p o u n d was p r e p a r e d first b y C h u n - H s u et a l . (13). T h e c o m p o u n d aroused m u c h interest because of the finding (14) that the i n - p l a n e specific c o n d u c t i v i t y of some of the g r a p h i t e - A s F materials e x c e e d e d that of c o p p e r . A l t h o u g h the ( g r a p h i t e ) A s F " salts a p p e a r e d to i n v o l v e h i g h e r e l e c t r o n w i t h d r a w a l from the graphite, h i g h e r c o n d u c t i v i t i e s than those of t h e i r g r a p h i t e - A & F relatives w e r e not o b s e r v e d (15). I n d e e d , w h e n the (graphite) A s F " salts w e r e p r e p a r e d from the i n t e r a c t i o n o f g r a p h ite w i t h A s F - F gaseous mixtures (16), the p r o d u c t salts w e r e often less c o n d u c t i v e than t h e i r partially o x i d i z e d relative, g r a p h i t e - A s F . 5
5
+
6
5
+
5
6
2
5
It appeared that the p o o r e l e c t r i c a l c o n d u c t i v i t y m u s t b e associated w i t h b o n d i n g of fluorine to carbon throughout the graphite s t r u c t u r e , the fluorine m i g r a t i o n throughout the galleries b e i n g facilitated b y the intercalated s p e cies. D i r e c t e v i d e n c e (15) for a decrease i n c o n d u c t i v i t y was o b t a i n e d i n the case of graphite intercalation b y I r F w h e n the first stage was reached. T h i s a n d the finding f r o m Môssbauer spectroscopy (17) that the first-stage C I r F salt c o n t a i n e d some Ir(V) i n l o w e r than octahedral site s y m m e t r y w e r e c o n sistent w i t h transfer o f F " from the a n i o n to the carbon. 6
x
6
A s i d e from this matter of the transfer of fluorine to the h i g h l y o x i d i z e d c a r b o n , it a p p e a r e d to B a r t l e t t a n d M c Q u i l l a n (18) that the intercalation of graphite b y o x i d i z i n g fluorospecies was t h e r m o d y n a m i c a l l y d e t e r m i n e d . A l t h o u g h B o r n - H a b e r cycles have l o n g b e e n a p p l i e d to intercalation c o m p o u n d s of graphite [e.g., see G . R . H e n n i g r e v i e w (I)], a salt f o r m u l a t i o n for graphite c o m p o u n d s f o r m e d w i t h guests capable of y i e l d i n g fluoroanions (e.g., A s F ) was not generally accepted at that t i m e . B a r t l e t t a n d M c Q u i l l a n (18) n o t e d that, at least for M F ~ salts, w h e r e the n e a r l y i s o d i m e n s i o n a l 5
6
In Electron Transfer in Biology and the Solid State; Johnson, M., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1989.
20.
393
Oxidative Intercalation of Graphite
BARTLETT E T AL.
nature of M F " w o u l d result i n s i m i l a r lattice energetics for a g i v e n l e v e l o f 6
charge, the free energy of formation w i t h change i n m e t a l atom ( M ) w o u l d d e p e n d most u p o n the electron affinity of the o x i d i z i n g h a l f reaction. T h e y estimated a t h r e s h o l d electron affinity of approximately 125 k c a l m o l , b u t - 1
they d i d not establish the t h e r m o d y n a m i c nature of that t h r e s h o l d . T h i s chapter provides f u r t h e r e v i d e n c e for the i m p o r t a n c e of the e l e c t r o n affinity of the o x i d i z i n g h a l f reaction i n the intercalation of graphite b y rospecies.
M o r e o v e r , the s i m p l e t h e r m o d y n a m i c m o d e l that accounts
fluofor
the oxidative intercalation of graphite b y fluoroanions is c o n f i r m e d b y r e versal of the intercalation i n reactions of k n o w n e n t h a l p y change. T h r e s h o l d Downloaded by UNIV OF ARIZONA on October 2, 2015 | http://pubs.acs.org Publication Date: May 5, 1989 | doi: 10.1021/ba-1990-0226.ch020
values of electron affinity (£) for the onset of intercalation a n d for Brst-stage intercalation b y M F ~ have also b e e n assessed. 6
C e r t a i n salts (e.g., C
2 8
+
A s F ~ ) p r o v i d e for the access of f l u o r i n e t h r o u g h 6
out the galleries of the graphite a n d its extensive f l u o r i n a t i o n . T h i s f l u o r i n e access has r e s u l t e d i n the separation of a C F phase that has p r o v e d to b e X
fluorinated graphite, r e t a i n i n g s p carbon. T h a t phase, w h i c h is an insulator, 2
can have a fluorine content as h i g h as C
L 3
F.
Discussion E l e c t r o n Affinity Values. T h e hexafluorides of the t h i r d t r a n s i t i o n series elements ( M ) have i n t e r a t o m i c distances that change o n l y slightly w i t h atomic n u m b e r (19), a n d t h e i r effective p a c k i n g v o l u m e s (20) are s i m i l a r . T h e r e f o r e , w e assume that the w o r k d o n e i n separating the graphite-atom sheets (W) w i l l be the same for a l l M i n m a k i n g a salt of g i v e n c o m p o s i t i o n C j M ^ e " . I n a d d i t i o n , the lattice energies (17) for a l l M w o u l d b e a l i k e . Because the w o r k function (i) w o u l d be the same for a g i v e n l e v e l of c h a r g i n g ( C ) , w e can expect the e n t h a l p y change for reaction 2 to change i n step w i t h the electron affinity, E, of M ^ e , i n accord w i t h the cycle i l l u s t r a t e d i n F i g u r e 1. 1
1
1
I
+
AH? [xC(graphite) + Μ Ψ - ^ C / M ^ - ] 98
(2)
1
6
G e o r g e a n d B e a u c h a m p (21) m e a s u r e d E ( W F ) as 81 k c a l m o l " a n d N i k i t i n et a l . (22) evaluated £ ( P t F ) to be 184 k c a l m o l " . Because the o b s e r v e d c h e m i s t r y (23) requires a smooth increase i n Ε w i t h atomic n u m b e r for these hexafluorides, the £ ( M F ) for the other fluorides can be o b t a i n e d b y i n t e r polation. T h e y p r o v i d e a n excellent basis for assessment of the t h r e s h o l d for intercalation to f o r m C / M ^ e " . M a g n e t i c data (15) for the O s a n d I r salts C M F have established the q u i n q u e v a l e n c e of the metals. M o r e o v e r , W F w i l l not b y itself b r i n g about intercalation, whereas b o t h O s F a n d I r F f o r m first-stage salts a n d R e F forms a higher-stage salt (24). T h e r e f o r e , the Ε ί Μ ^ β ) t h r e s h o l d for intercalation of graphite b y M F ~ has to be b e t w e e n 81 a n d 106 k c a l m o l " [the £ ( W F ) a n d E ( R e F ) values]. T h e t h r e s h o l d 1
6
1
6
6
X
l
6
6
6
6
6
1
6
6
In Electron Transfer in Biology and the Solid State; Johnson, M., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1989.
6
394
E L E C T R O N T R A N S F E R IN BIOLOGY A N D T H E SOLID STATE
Ionization work, I - ne Lattice energy, L
η MFg
Expansion Electron affinity, Ε
Downloaded by UNIV OF ARIZONA on October 2, 2015 | http://pubs.acs.org Publication Date: May 5, 1989 | doi: 10.1021/ba-1990-0226.ch020
work, W
n«
+ ne
MF " 6
ΔΗ F - ) are B F , 92 a n d P F , 101 k c a l m o l " ) . Therefore, 4
1
3
F + 1
ΔΗ£» ( K P F
6
+ BF —» K B F 3
+ PF ) «
4
1
5
- 1 kcal m o l "
5
(5)
1
A l t h o u g h t h e entropy change is slightly unfavorable, i t is n o t sufficient t o r e n d e r AC|98 positive (36). F o r fluorides, S| is p r o p o r t i o n a l to f o r m u l a u n i t v o l u m e ( V ) , w i t h S298 (in entropy units) equal to 0.42 V (in A ) . O n the other h a n d , i n the case o f the [ ( n - b u t y l ) N ] salts, the lattice energy favors the B F " m u c h less than i n the Κ case. T h e e n t r o p y change is n e a r l y the same as i n t h e Κ salt situation. T h e consequences are dramatic to t h e c h e m i s t r y . K P F is quantitatively c o n v e r t e d (37) to K B F b y B F at 2 0 ° C , whereas t h e m i x e d b u t y l a m m o n i u m salts are i n e q u i l i b r i u m w i t h B F a n d P F at o r d i n a r y pressures. 98
F U
F
4
3
U
+
+
4
+
6
4
3
3
5
G r a p h i t e has a m u c h smaller effective radius t h a n [ ( n - b u t y l ) N ] , at least n o r m a l to t h e sheet ( r ~ 1.7 À). Therefore, t h e i m p a c t o f v o l u m e o f the a n i o n u p o n the lattice energy is important. T h u s t h e graphite hexafluo4
eff
In Electron Transfer in Biology and the Solid State; Johnson, M., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1989.
+
398
E L E C T R O N T R A N S F E R IN B I O L O G Y A N D T H E S O L I D STATE
rophosphate salt, l i k e K P F
6
a n d u n l i k e [(n-butyl) N] P F
c o n v e r t e d (37) b y B F to the 3
e,PF
, is q u a n t i t a t i v e l y
6
fluoroborate.
+ (y + 1 ) B F - » C B F
6
+
4
3
I
4
· t/BF . + P F 3
(6)
5
A s e q 6 demonstrates, m o r e B F is taken u p t h a n P F is l i b e r a t e d . T h i s 3
5
result is a n o d d i t y o f the graphite salt situation. H e r e , i n contrast to t h e Κ a n d b u t y l a m m o n i u m salts, t h e anions are exposed to o n e another i n t h e galleries b e t w e e n t h e carbon sheets. E v i d e n t l y the a d d i t i o n a l B F u p t a k e provides for increased s c r e e n i n g o f a n i o n from a n i o n . I n d e e d , y can b e as great as 3 w i t h o r d i n a r y pressures (approximately 1 atm) o f B F a n d a s e c o n d stage C J P F salt c a n y i e l d a first-stage salt C BF · 3 B F . +
3
Downloaded by UNIV OF ARIZONA on October 2, 2015 | http://pubs.acs.org Publication Date: May 5, 1989 | doi: 10.1021/ba-1990-0226.ch020
3
X
6
4
3
Nestled Salts. A m o r e dramatic instance o f t h e effect o f " d i e l e c t r i c spacers" i n graphite salts is p r o v i d e d (32) b y t h e first-stage fluoroarsenate o f c o m p o s i t i o n C A s F . T h i s m a t e r i a l is p r e p a r e d b y t h e routes s h o w n i n S c h e m e I a n d is i d e n t i c a l to t h e first-stage c o m p o n e n t o f the v a c u u m - s t a b l e 1 4
6
+CF
C F AsF +
e
e
e
e
+14C (graphite) -> C *AsF
or
14
2
0 *AsF e
e
+ 0,
or 1/2 F + AsF 2
5
Scheme I p r o d u c t o f the i n t e r a c t i o n o f graphite a n d A s F gas. T h e A s F " ions are n e s t l e d i n o r d e r e d domains w i t h i n t h e graphite galleries, as s h o w n i n F i g u r e 4. T h i s arrangement is a n accidental c o n s e q u e n c e o f the F - F n e a r e s t - n e i g h b o r distance i n A s F ~ b e i n g similar to t h e distance b e t w e e n t h e centers of contiguous hexagons i n t h e graphite-sheet structure. F i g u r e 4 shows that closer p a c k i n g o f t h e n e s t l e d A s F " is not possible. T h i s a r r a n g e m e n t is i n h a r m o n y w i t h t h e o b s e r v e d c o m p o s i t i o n o f this phase, C A s F . W h e n t h e solid is exposed to a sustained pressure o f A s F (approximately 1 a t m at approximately 2 0 °C), t h e X - r a y diffraction p a t t e r n changes d r a m a t i c a l l y a n d the c o m p o s i t i o n changes i n accord w i t h e q 7. 5
6
6
6
1 4
6
5
C
1 4
+
A s F - + V i A s F -> C 6
5
1 4
+
AsF ~ · %AsF
T h e X - r a y data show that this uptake o f A s F
6
5
b y the C
1 4
(7)
5
AsF
6
expands t h e
In Electron Transfer in Biology and the Solid State; Johnson, M., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1989.
Downloaded by UNIV OF ARIZONA on October 2, 2015 | http://pubs.acs.org Publication Date: May 5, 1989 | doi: 10.1021/ba-1990-0226.ch020
20.
BARTLETT E T AL.
399
Oxidative Intercalation of Graphite
Figure 4. The idealized nestled structural model for a single layer of AsF ' guests in C AsF . The unit cell is outlined. 6
14
6
carbon-sheet separation from 7.6 Â i n the n e s t l e d salt to 8.1 Â i n the C A s F · /2AsF . E v i d e n t l y the d i e l e c t r i c s c r e e n i n g effect [or b o n d i n g of the A s F to y i e l d a μ-fluoro-bridged species (38) s u c h as ( F A s - F - A s F ) ~ ] provides sufficient favorable e n e r g y to m o r e than compensate for the d i m i n i s h e d attraction energy, w h i c h m u s t accompany the expansion, a n d the unfavorable e n t r o p y change associated w i t h the uptake of gaseous A s F . T h e o b s e r v e d diffraction p a t t e r n of the C A s F " is satisfactorily accounted for (32) w i t h the structure illustrated i n F i g u r e 4. T h i s structure r e q u i r e s that adjacent carbon-atom sheets be i n staggered relationship to each other. A s atoms, of course, always reside m i d w a y b e t w e e n e c l i p s e d carbon atoms of these adjacent staggered sheets. 1 4
1
6
5
5
5
5
5
1 4
+
6
W i t h the uptake of A s F (to c o m p o s i t i o n C A s F · VfeAsFs), the c a r b o n atom sheets m o v e into registry w i t h one another, as w e l l as farther apart. T h e o b s e r v e d diffracted X - r a y intensities r e q u i r e that the A s atoms b e p l a c e d m i d w a y b e t w e e n the e n c l o s i n g carbon sheets. I n the ab p l a n e , a l l o f the 5
1 4
6
In Electron Transfer in Biology and the Solid State; Johnson, M., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1989.
400
E L E C T R O N T R A N S F E R IN BIOLOGY A N D T H E SOLID STATE
guest atoms are fully d i s o r d e r e d i n this phase. I n C
i AsF · 4
6
V2ASF5 the
guests
are therefore l i k e a t w o - d i m e n s i o n a l l i q u i d . R e m o v i n g the A s F restores t h e 5
nestled, relatively ordered, C
1 4
AsF
phase.
6
M u c h t h e same sort o f s t r u c t u r a l change as o b s e r v e d for C C
1 4
AsF
1 4
AsF
6
to
· V 4 A s F occurs w h e n A s F is a d d e d to the n e s t l e d salt. O n r e m o v a l
6
5
3
of volatiles, A s F is o b s e r v e d as a consequence of the r e d u c t i o n o f the carbon 5
already a l l u d e d to, a n d t h e r e s u l t i n g s o l i d is a m i x t u r e o f first- a n d s e c o n d stage C j A s F
6
nestled A s F
salts.
6
V2AsF + A s F " - > % A s F 6
Downloaded by UNIV OF ARIZONA on October 2, 2015 | http://pubs.acs.org Publication Date: May 5, 1989 | doi: 10.1021/ba-1990-0226.ch020
3
5
+ e"
(8)
Perhaps t h e most unexpected aspect o f
Fluorinated Graphite.
graphite fluorosalt c h e m i s t r y was the finding that salts such as C ^ A s F e r a p i d l y consume a d d i t i o n a l gaseous fluorine (16, 32) at approximately 20 ° C . T h i s uptake is a c c o m p a n i e d b y a m a r k e d loss o f e l e c t r i c a l c o n d u c t i v i t y . O k i n o (32) f o u n d that this m a t e r i a l o f c o m p o s i t i o n C A s F · ~ 2 F was less c o n d u c t i v e t h a n the graphite from w h i c h it was made. Because the c a r b o n sheets i n C A s F , w h i c h i t s e l f shows a specific c o n d u c t i v i t y comparable w i t h that of a l u m i n u m m e t a l , bear a charge C , they are u n l i k e l y to b e attacked b y e l e m e n t a l f l u o r i n e , w h i c h is a n e l e c t r o p h i l e . T h e attack to generate C - F bonds p r o b a b l y involves transfer o f F " to a positive carbon atom. T h e f l u o r i nation o f C A s F a n d o t h e r C ^ A s F g salts m a y therefore occur v i a a species A s F " . T h i s , l i k e most seven-coordinate species (39) (e.g., I F a n d R e F ) w o u l d u n d e r g o i n t r a m o l e c u l a r a n d i n t e r m o l e c u l a r fluorine-ligand exchange. T h e latter, v i a transient f l u o r i n e - b r i d g e d species to A s F " (i.e., [ F A s F - A s F J " ) , c o u l d p r o v i d e for t h e o b s e r v e d facile d i s t r i b u t i o n o f f l u o r i n e throughout the graphite galleries. S u c h mechanisms c o u l d also i n part p r o v i d e a p l a u s i b l e basis for u n d e r s t a n d i n g the formation o f a fluorinated g r a p h ite o f c o m p o s i t i o n C F , w h i c h is f o r m e d (40) as a black first-stage s o l i d c o n c u r r e n t l y w i t h first-stage fluorinated graphite salt C A s F · x F , w h e n second- o r third-stage C y A s F e salts are fluorinated at —20 ° C i n the presence of anhydrous h y d r o g e n fluoride ( A H F ) . H o w e v e r , t h e separation o f the C F phase i n t h e presence o f A H F m u s t also i n v o l v e fluoride i o n transport as ( H F ) „ F " species. 1 4
1 4
6
1 4
1 4
7
6
+
6
2
7
7
6
6
3
L 3
1 4
6
X
T h e C F is a m o r e h i g h l y fluorinated relative o f the s p c a r b o n fluorides first d e s c r i b e d b y R u d o r f f a n d R u d o r f f (41). It possesses r e m a r k a b l e k i n e t i c stability, a n d its resistance to oxidation b y p e r c h l o r i c a c i d at 160 ° C p r o v i d e s for its separation from C A s F · acF, w h i c h t h e a c i d d e s t r u c t i v e l y oxidizes at that t e m p e r a t u r e . Because t h e X - r a y diffraction data (40) for C F show the hexagonal carbon-atom array to b e o n l y slightly e x p a n d e d relative to graphite itself, w i t h a g r a p h i t e - c e l l a e q u a l to 2.46 Â , most o f the fluorine ligands i n this m a t e r i a l m u s t have neighbors at 2.46 A . T h i s distance is r e m a r k a b l y short. I n h a r m o n y w i t h t h e use o f so m a n y o f the ττ-system electrons i n b i n d i n g F ligands (each C to w h i c h F is b o u n d m u s t b e an i n s u l a t i n g L
2
3
1 4
6
1
Q
In Electron Transfer in Biology and the Solid State; Johnson, M., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1989.
3
20.
BARTLETT E T AL.
Oxidative Intercalation of Graphite
p o i n t i n the network), C ΙΟ" Ω " 7
1
1
3
F is an insulator. Its specific c o n d u c t i v i t y , σ
401 ~
c m " , is attributable to F " transport i n the gallery. 1
Conclusions E v i d e n t l y the s p carbon n e t w o r k is r e m a r k a b l y stable to e l e c t r o n oxidation 2
to h i g h charge levels (at least C
1 4
+
) . G o o d conductors are t h e r e b y generated.
F o r h i g h positive charge d e v e l o p m e n t , h o w e v e r , i t is essential to have anions of v e r y l o w fluorobasicity; o t h e r w i s e , F " transfers to the carbon. T h e s p
2
Downloaded by UNIV OF ARIZONA on October 2, 2015 | http://pubs.acs.org Publication Date: May 5, 1989 | doi: 10.1021/ba-1990-0226.ch020
b o n d i n g of graphite persists e v e n w h e n 7 0 % of the TT b o n d i n g electrons are c o n s u m e d i n b o n d i n g F ligands, as i n the insulator C
1 3
F.
Acknowledgments T h i s w o r k was s u p p o r t e d b y the D i r e c t o r , Office of E n e r g y R e s e a r c h , Office of B a s i c E n e r g y Sciences, C h e m i c a l Science D i v i s i o n of the U . S . D e p a r t m e n t of E n e r g y , u n d e r C o n t r a c t N o . D E - A C 0 3 - 7 6 S F 0 0 0 9 8 .
References 1. Hennig, G. R. Prog. Inorg. Chem. 1959, 1, 125. 2. Rudorff, W. Ado. Inorg. Chem. Radiochem. 1959, 1, 224. 3. Herold, A. In Mater. Sci. Eng. 1977, 31, 1; and In Physics and Chemistry of Materials with layered Structures, Intercalated Layered Materials; Levy, F. A., Ed; Reidel: Dordrecht, Netherlands, 1979; Vol. 6, pp 323-421. 4. Bottomley, M . J . ; Parry, G. S.; Ubbelohde, A. R. Proc. Roy. Soc. (London) 1964, A279, 291. 5. McDonnell, F. R. M.; Pink, R. C.; Ubbelohde, A. R. J. Chem. Soc. 1951, 191. 6. Ubbelohde, A. R. Nature 1971, 232, 43. 7. Coulson, C. Α.; Taylor, R. Proc. Phys. Soc. (London) 1952, 65, 815. 8. Coulson, C. Α.; Duncanson, W. E . Proc. Phys. Soc. (London) 1952, 65, 825. 9. Richardson, T. J . ; Bartlett, N. J. Chem. Soc., Chem. Commun. 1974, 427. 10. Richardson, T. J . ; Tanzella, F. L.; Bartlett, N. J. Am. Chem. Soc. 1986 108, 4937. 11. Richardson, T. J . ; Tanzella, F. L.; Bartlett, N. In Polynuclear Aromatic Com -pounds; Ebert, L. B., Ed; Advances in Chemistry 217; American Chemical Society: Washington, D C , 1988; ρ 169. 12. Bartlett, N.; Biagioni, R. N.; McQuillan, B. W.; Robertson, A. S.; Thompson, A. C. J. Chem. Soc., Chem. Commun. 1978, 200. 13. Chun-Hsu, L . ; Selig, H . ; Rabinovitz, M . ; Agranat, I.; Sarig, S. Inorg. Nucl. Chem. Lett. 1975, 11, 601. 14. Falardeau, E . R.; Foley, G. M . T.; Zeller, C.; Vogel, F. L. J. Chem. Soc., Chem. Commun. 1977, 389. 15. Bartlett, N.; MeCarron, Ε. M . ; McQuillan, B. W.; Thompson, T. E . Synth. Met. 1979-80, 1, 221. 16. Thompson, T. E.; MeCarron, Ε. M . ; Bartlett, N. Synth. Met. 1981, 3, 255. 17. Kaindl, G.; Mallouk, T. E.; Bartlett, N., unpublished.
In Electron Transfer in Biology and the Solid State; Johnson, M., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1989.
Downloaded by UNIV OF ARIZONA on October 2, 2015 | http://pubs.acs.org Publication Date: May 5, 1989 | doi: 10.1021/ba-1990-0226.ch020
402
E L E C T R O N T R A N S F E R IN B I O L O G Y A N D T H E S O L I D STATE
18. Bartlett, N.; McQuillan, B. W. In Intercalation Chemistry; Whittingham, S.; Jacobson, Α., Eds.; Academic: New York, 1982; pp 19-53. 19. Kimura, M . ; Schomaker, V; Smith, D. W.; Weinstock, B. J. Chem. Phys. 1968, 48, 4001. 20. Siegel, S.; Northrop, D. A. Inorg. Chem. 1966, 5, 2187. 21. George, P. M . ; Beauchamp, J. L. Chem. Phys. 1979, 36, 345. 22. Nikitin, M. I.; Sidorov, L. N.; Korobov, M . V. Int. J. Mass Spectrom. Ion. Phys. 1981, 37, 13. 23. Bartlett, N. Angew. Chem. Int. Ed. Engl. 1968, 7, 433. 24. Selig, H . ; Vaknin, D.; Davidov, D.; Yeshurun, Y. Synth. Met. 1985, 12, 479. 25. Interatomic Distances and Supplement (Special Publications Nos. 11 and 18); The Chemical Society: London, 1958, 1965. 26. Ebert, C. B.; Selig, H . Mater. Sci. Eng. 1977, 31, 177. 27. Ebert, C. B.; Selig, H . Synth. Met. 1981, 3, 53. 28. McCarron, E . M . ; Grannec, Y. J . ; Bartlett, N. J. Chem. Soc., Chem. Commun. 1980, 890. 29. Rosenthal, G. L . ; Mallouk, T. E.; Bartlett, N. Synth. Met. 1984, 9, 433. 30. Mallouk, T. E.; Rosenthal, G. L . ; Muller, G . ; Brusasco, R.; Bartlett, N. Inorg. Chem. 1984, 23, 3167. 31. Rosenthal, G. L. Ph.D. Thesis, University of California—Berkeley, 1984. 32. Okino, F. Ph.D. Thesis, University of California—Berkeley, 1983; Okino, F.; Bartlett, N., to be submitted to Chemistry of Materials. 33. Hagiwara, R.; Lerner, M . ; Bartlett, N., to be published. 34. Zachariasen, W. H. J. Am. Chem. Soc. 1948, 70, 2147. 35. Kapustinskii, A. F. Zh. Fiz. Khim. 1934, 5, 59. 36. Mallouk, T. E . Ph.D. Thesis, University of California—Berkeley, 1984. 37. Kourtakis, K. Ph.D. Thesis, University of California—Berkeley, 1987. 38. Dean, P. A. W.; Gillespie, R. J . ; Hulme, R. J. Chem. Soc., Chem. Commun. 1969, 990. 39. Bartlett, N . ; Beaton, S.; Reeves, L. W.; Wells, E . J. Can. J. Chem. 1964, 42, 2531. 40. Hagiwara, R.; Lerner, M . ; Bartlett, N. J. Chem. Soc, Chem. Commun. 1989, 573. 41. Rudorff, W.; Rudorff, G. Chem. Ber. 1947, 80, 413. RECEIVED
1989.
for review June 7, 1989.
ACCEPTED
revised manuscript September 27,
In Electron Transfer in Biology and the Solid State; Johnson, M., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1989.