11 Electron Transfer Pathways in Blue Copper Proteins
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on April 9, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0162.ch011
ISRAEL PECHT, OLE FARVER, and MICHEL
GOLDBERG
Department of Chemical Immunology, The Weizmann Institute of Science, Rehovot, Israel
Several structural and functional aspects of blue copper pro teins have been investigated. The systematic study of the ultraviolet spectroscopic properties of blue single copper proteins (azurins and stellacyanin) brings evidence for sul fur as a ligand of the copper ion. The energy profile of the electron transfer equilibrium between Ps. Aeruginosa azurin and Fe(CN) was obtained by combined analysis of chemical relaxation times and amplitudes along with micro calorimetry and spectrophotometric titrations. The super -oxide(O ) reduces the type 1 Cu(II) in Rhus laccase. A relatively fast, full reoxidation of the partially reduced en zyme takes place in the presence of oxygen. Rhus laccase reacts specifically and with high affinity with H O to form a stable product which man be a functional intermediate. 3-/4-
6
-
2
2
^pwo
c e n t r a l themes a r e e n c o u n t e r e d
2
i n s t u d y i n g t h e m e c h a n i s m of
a c t i o n of r e d o x p r o t e i n s : ( 1 ) T h e d e t a i l e d p a t h w a y s of r e d o x e q u i v a l e n t s t o a n d f r o m trie a c t i v e centers ( 2 ) T h e i n t r a m o l e c u l a r events i n t h e m u l t i c e n t e r oxidases, w h i c h e n a b l e t h e f u n c t i o n a l c o o p e r a t i o n of t h e different a c t i v e sites i n c a r r y i n g o u t r e d u c t i o n o r o x i d a t i o n of specific substrates, n o t a b l y those w h e r e m u l t i p l e e l e c t r o n transfer steps a r e f a v o r e d p a t h w a y s T h e function of the electron-mediating proteins w h i c h contain a single r e d o x a c t i v e site (e.g., r u b r e d o x i n , a z u r i n s , c y a n i n s ) is m a i n l y r e l a t e d t o t h e first aspect. ficity
flavodoxins,
plasto-
S t i l l , the p r o n o u n c e d s p e c i -
encountered i n their function i n biological energy conversion proc-
esses i n d i c a t e s t h a t t h e i r r e d o x center, often a t r a n s i t i o n m e t a l i o n , is embedded
i n an evolutionarily optimized polypeptide
envelope.
179
Raymond; Bioinorganic Chemistry—II Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
The
180
BIOINORGANIC
CHEMISTRY
d e t a i l e d t h r e e - d i m e n s i o n a l structures of a n i n c r e a s i n g n u m b e r of
II
these
e l e c t r o n m e d i a t o r s , a l o n g w i t h k i n e t i c studies of t h e i r reactions, h a v e l e d to n e w insights i n t o t h e r e d o x p a t h w a y s of the c - t y p e c y t o c h r o m e s some of the n o n - h e m e i r o n proteins ( J ).
and
Unfortunately no direct struc-
t u r a l i n f o r m a t i o n is yet a v a i l a b l e f o r those e l e c t r o n - m e d i a t i n g proteins w h e r e c o p p e r serves as the a c t i v e center. It is r e m a r k a b l e that a l l m e m bers of this g r o u p h a v e t h e i r s i n g l e c o p p e r b o u n d i n a site w h i c h confers
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on April 9, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0162.ch011
u p o n t h e m the u n i q u e b l u e state.
T h e y are w i d e l y f o u n d i n n a t u r e ,
r a n g i n g f r o m the p l a s t o c y a n i n s i n the p h o t o s y n t h e t i c a p p a r a t u s to s t e l l a cyanin
a n d u m e c y a n i n , w h i c h are f o u n d
i n nonphotosynthetic
plant
tissues, to the l a r g e f a m i l y of a z u r i n s f r o m different b a c t e r i a l sources
(2).
T h i s g r o u p of b l u e single c o p p e r proteins is a c o n v e n i e n t system for p r o b i n g s t r u c t u r a l features of the m e t a l - b i n d i n g site. E a r l y
suggestions
that a s u l f u r l i g a n d is i n v o l v e d i n the c o o r d i n a t i o n sphere ( 2 )
received
f u r t h e r s u p p o r t r e c e n t l y f r o m the s p e c t r a l i n v e s t i g a t i o n s of d e r i v a t i v e s i n w h i c h the c o p p e r w a s r e p l a c e d b y C o ( I I ) ions ( 3 )
and from
resonance
Raman and E S C A
(4,5,6).
We
studies o n the n a t i v e proteins
have
a d o p t e d a different a p p r o a c h to this p r o b l e m , m o n i t o r i n g the i n t r i n s i c p r o b e s of these p r o t e i n s , b y e x a m i n i n g the s p e c t r a l properties i n the u v range. C h a r a c t e r i s t i c alterations w e r e f o u n d w h i c h are p r o b a b l y b y the C u ( I ) - S c h r o m o p h o r e
a l o n g w i t h changes f r o m
caused
conformational
differences b e t w e e n the r e d u c e d a n d o x i d i z e d states of the p r o t e i n . T h e e l e c t r o n transfer m e c h a n i s m of a z u r i n , a w e l l k n o w n
example
for this t y p e of p r o t e i n s , has b e e n s y s t e m a t i c a l l y s t u d i e d u s i n g the c h e m i c a l r e l a x a t i o n m e t h o d a n d a w e l l d e f i n e d i n o r g a n i c outer sphere couple.
redox
I n p a r a l l e l , the investigations of the r e a c t i o n w i t h its p r e s u m e d
p h y s i o l o g i c a l p a r t n e r , c y t o c h r o m e c, w e r e p u r s u e d ( 7 ) .
T h e specificity
of the i n t e r a c t i o n b e t w e e n a z u r i n a n d c y t o c h r o m e c P - 5 5 1 is expressed i n h i g h e r specific rates a n d i n the c o n t r o l of the e l e c t r o n transfer e q u i l i b r i u m b y c o n f o r m a t i o n a l transitions of b o t h p r o t e i n s . I n the b l u e oxidases, the t y p e 1 c o p p e r is o n l y one of at least t h r e e a c t i v e centers.
T h e s t r i k i n g feature of this class of p r o t e i n s , a p a r t f r o m
the c o m p l e x i t y of the different c o p p e r b i n d i n g sites p e r se is the i n t r i c a t e r e l a t i o n s h i p a m o n g these sites. E q u i l b r i u m m e a s u r e m e n t s p r o d u c e d e v i d e n c e for the effect of e x t e r n a l l i g a n d b i n d i n g to t y p e 2 C u ( I I ) o n t h e r e d o x potentials of b o t h t y p e 1 a n d t y p e 3 sites ( 8 ) .
F r o m the k i n e t i c
d a t a it b e c a m e clear that rates of r e d u c t i o n a n d o x i d a t i o n of one site are r a t h e r sensitive to the r e d o x states of the other sites ( 9 ) .
T h i s is f u n c -
t i o n a l l y r e l e v a n t , since a l l three r e d o x sites of laccase are s u p p o s e d undergo
r e v e r s i b l e v a l e n c e changes
d u r i n g the c a t a l y t i c c y c l e
of
to the
e n z y m e . W e h a v e e x a m i n e d the r e d u c t i o n a n d o x i d a t i o n of Rhus laccase u n d e r c o n d i t i o n s w h e r e a r a t h e r s m a l l f r a c t i o n of its sites w a s
reduced
u s i n g 0 " r a d i c a l s as r e d u c t a n t i n o x y g e n - s a t u r a t e d solutions. T h e t y p e 1 2
Raymond; Bioinorganic Chemistry—II Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
11.
P E C H T
E T
181
Blue Copper Proteins
AL.
C u ( I I ) ions w e r e r e d u c e d a n d f u l l y r e o x i d i z e d w i t h i n 1-2 sec, a l t h o u g h u n d e r these c o n d i t i o n s n o m o r e t h a n a s i n g l e r e d u c t i o n e q u i v a l e n t m a y b e i n those m o l e c u l e s . T h i s is not the case w h e n r e d u c t i o n of these sites take p l a c e a n a e r o b i c a l l y b y , for e x a m p l e , the C 0 " r a d i c a l i o n . 2
Interaction between o x i d i z e d f u n g a l laccase a n d h y d r o g e n peroxide added
i n excess,
occurs
v i a its t y p e 2 C u ( I I )
site.
T h i s b i n d i n g is
m a n i f e s t e d b y b o t h the E S R a n d a b s o r p t i o n s p e c t r a , y e t t h e affinity of
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on April 9, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0162.ch011
this c o m p l e x is r a t h e r l o w , a n d i t d e c o m p o s e s r a p i d l y ( J O ) . I n contrast w e f o u n d that tree laccase forms a r e l a t i v e l y stable a n d h i g h affinity c o m p l e x w i t h one m o l e of H 0 2
2
w h i c h m a y b e r e d u c e d together w i t h t h e
e n z y m e sites a n d c o u l d b e of m e c h a n i s t i c s i g n i f i c a n c e i n t h e r e d u c t i o n of d i o x y g e n to w a t e r . Experimental Materials. L a c c a s e a n d s t e l l a c y a n i n w e r e p r e p a r e d f r o m the acetone extract of Rhus vernicifera l a c q u e r a c c o r d i n g to the p r o c e d u r e of R e i n h a m m a r (11) a n d w e r e k e p t at — 2 0 ° i n salt-free solutions. A z u r i n f r o m Pseudomonas aeruginosa a n d Alcaligenes faecalis w a s i s o l a t e d a n d p u r i fied b y t h e m e t h o d of A m b l e r (12) a n d w a s s t o r e d at 4 ° i n 0 . 0 5 M s o d i u m acetate buffer ( p H 3.9). T h e p r o t e i n solutions w e r e e x t e n s i v e l y d i a l y z e d against p o t a s s i u m p h o s p h a t e buffer b e f o r e b e i n g u s e d i n the e x p e r i m e n t s a n d , w h e n necessary, w e r e c o n c e n t r a t e d b y v a c u u m d i a l y s i s . T h e p u r i t y of t h e p r o t e i n s w a s d e t e r m i n e d b y c h e c k i n g t h e r e s p e c t i v e a b s o r p t i o n ratios b e t w e e n the b l u e b a n d a n d the 2 8 0 - n m b a n d ; t h e y w e r e a l w a y s i n g o o d a g r e e m e n t w i t h the l i t e r a t u r e v a l u e s . I n a d d i t i o n , t h e q u a l i t y of the laccase p r e p a r a t i o n was assayed b y m e a s u r i n g its e n z y m a t i c a c t i v i t y w i t h N , N - d i m e t h y l - p - p h e n y l e n e d i a m i n e (11). S t e l l a c y a n i n a n d the t w o a z u r i n s w e r e r e d u c e d b y t h e f o l l o w i n g m e t h o d s — b y ascorbate, f o l l o w e d b y a n a e r o b i c d i a l y s i s ; b y h y d r o g e n , u s i n g p l a t i n u m b l a c k as catalyst ( 7 ) ; b y s o d i u m b o r o h y d r i d e ; or b y d i t h i o n i t e . A l l of these m e t h o d s l e d to the same p r o d u c t as c o n c l u d e d f r o m the a b s o r p t i o n s p e c t r a of the n a t i v e , r e d u c e d , a n d r e o x i d i z e d p r o teins. A p o p r o t e i n s w e r e p r e p a r e d b y d i a l y s i s against 0 . 0 5 M N a C N i n 0 . 1 M p h o s p h a t e buffer p H 7.4, f o l l o w e d b y r e p e a t e d d i a l y s i s against t h e buffer. T h e c o n c e n t r a t i o n s of the n a t i v e p r o t e i n s w e r e d e t e r m i n e d u s i n g €6i4 = 5700 M " c m " f o r laccase (13), c 5 = 4080 M " c m " a n d e o = 1
23,200 M
1
cm
1
1
for s t e l l a c y a n i n (13),
1
G 0
e«
2 5
=
5700 M
1
cm'
1
1
(14),
28
and c
2 8 0
= 10,700 M " c m " ( 1 5 ) for Ps. aeruginosa a z u r i n a n d e 25 = 4620 M " c m " for A. faecalis a z u r i n (16). A l l m a t e r i a l s u s e d w e r e of a n a l y t i c a l g r a d e . A l l solutions w e r e p r e p a r e d i n d o u b l y d i s t i l l e d w a t e r . T h e c o n c e n t r a t i o n of h y d r o g e n p e r o x i d e stock s o l u t i o n w a s d e t e r m i n e d i o d o m e t r i c a l l y (17) b e f o r e a n d after e a c h peroxide titration. Methods. M e a s u r e m e n t s of a b s o r p t i o n s p e c t r a a n d s p e c t r o p h o t o m e t r i c t i t r a t i o n s w e r e c a r r i e d o u t o n a C a r y 15 s p e c t r o p h o t o m e t e r e q u i p p e d w i t h a t h e r m o s t a t e d c e l l c o m p a r t m e n t . C i r c u l a r d i c h r o i c spect r a w e r e r e c o r d e d o n a C a r y 60 s p e c t r o p o l a r i m e t e r e q u i p p e d w i t h a 6001 C D attachment. Fluorescence spectra were measured on a H i t a c h i 1
1
G
1
Raymond; Bioinorganic Chemistry—II Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
1
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on April 9, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0162.ch011
182
BIOINORGANIC C H E M I S T R Y
Π
P e r k i n E l m e r M P F - 3 spectrofluorometer. X - a n d Q - b a n d measurements of E P R spectra w e r e c a r r i e d o u t at l i q u i d n i t r o g e n a n d l i q u i d h e l i u m temperatures. M i c r o c a l o r i m e t r i c measurements were performed o n a L K B 10700 b a t c h m i c r o c a l o r i m e t e r . T e m p e r a t u r e - j u m p r e l a x a t i o n k i n e t ics w e r e m e a s u r e d u s i n g a d o u b l e b e a m i n s t r u m e n t (18) w i t h a c e l l a d a p t e d f o r a n a e r o b i c w o r k . T h e r e l a x a t i o n signals w e r e f e d i n t o a n H . P . 2 1 0 0 c o m p u t e r a n d a n a l y z e d as d e s c r i b e d i n R e f . 7. T h e p u l s e r a d i o l y s i s e x e p r i m e n t s w e r e c a r r i e d o u t o n t h e 5 - M e V l i n e a r accelerator at t h e H e b r e w U n i v e r s i t y . D e t a i l s o f t h e system h a v e b e e n p u b l i s h e d p r e v i o u s l y (19). SPECTROSCOPIC STUDIES. A l l measurements w e r e m a d e a t 2 5 ° i n 0 . 0 5 M o r 0.1 M p o t a s s i u m p h o s p h a t e buffer, p H 7.0. E a c h s p e c t r u m w a s r e c o r d e d w i t h s e v e r a l samples, w h i c h g e n e r a l l y d i f f e r e d i n c o n c e n t r a t i o n , a n d w a s s c a n n e d t w o or three times. C i r c u l a r d i c h r o i s m is expressed as m o l a r e l l i p t i c i t y [Θ] i n u n i t s of degrees c m · d m o l e " . R E L A X A T I O N KINETICS. T h e details of t h e e x p e r i m e n t a l p r o c e d u r e h a v e b e e n d e s c r i b e d e a r l i e r (14). 0 . 1 M p h o s p h a t e buffer, p H 7.0, c o n t a i n i n g 2 Χ 10" M E D T A was u s e d i n a l l r e l a x a t i o n e x p e r i m e n t s . T h e s e w e r e p e r f o r m e d w i t h solutions of different i n i t i a l reagent c o m p o s i t i o n — either ferrocyanide was a d d e d to o x i d i z e d azurin or ferricyanide to r e d u c e d a z u r i n . T e m p e r a t u r e j u m p s o f 2.9° o r 4.7° w e r e a p p l i e d to t h e r e a c t i o n s o l u t i o n . T h e s u b s e q u e n t t r a n s m i s s i o n changes w e r e m o n i t o r e d at 625 n m ( a b s o r p t i o n of o x i d i z e d a z u r i n ) o r 420 n m ( a b s o r p t i o n of f e r r i c y a n i d e ). E a c h p l o t t e d v a l u e o f the r e l a x a t i o n t i m e o r a m p l i t u d e r e p r e sents t h e average o f at least f o u r measurements. P U L S E RADIOLYSIS. A d e t a i l e d a c c o u n t o f the e x p e r i m e n t a l p r o c e d u r e has b e e n g i v e n elsewhere (19). Solutions o f tree laccase w e r e p r e p a r e d i n t r i p l y d i s t i l l e d w a t e r a n d c o n t a i n e d f e r f - b u t a n o l as scavenger f o r O H r a d i c a l s . T h e s o l u t i o n was s a t u r a t e d w i t h a r g o n o r o x y g e n b y p r o l o n g e d b u b b l i n g ( > 20 m i n ) i n l a r g e glass syringes e q u i p p e d w i t h s t a n d a r d c a p i l l a r y t a p e r joints. B u b b l i n g w a s d o n e p r i o r t o t h e a d d i t i o n o f t h e r e q u i r e d v o l u m e o f c o n c e n t r a t e d p r o t e i n s o l u t i o n , thus m i n i m i z i n g d e naturation b y foaming. 2
1
5
ANAEROBIC O X I D A T I O N - R E D U C T I O N TITRATIONS.
Oxidation-reduction
titrations of Rhus laccase w e r e c a r r i e d out i n a s p e c i a l l y c o n s t r u c t e d o p t i c a l c e l l d e s c r i b e d i n R e f . 20. T h e solutions w e r e f r e e d f r o m o x y g e n b y a l t e r n a t i v e e v a c u a t i o n a n d flushing w i t h w a t e r - s a t u r a t e d a r g o n f r o m w h i c h traces of o x y g e n w e r e r e m o v e d b y p a s s i n g t h e gas t h r o u g h f o u r c o l u m n s o f m e t h y l v i o l o g e n . D u r i n g t h e titrations a s l i g h t excess a r g o n p r e s s u r e w a s m a i n t a i n e d to a v o i d diffusion of o x y g e n i n t o the c e l l . T i t r a n t was a d d e d through a serological cap w i t h a H a m i l t o n micro syringe. T h e t i t r a t e d solutions w e r e s t i r r e d b y a s m a l l m a g n e t i c b a r . E x p e r i m e n t a l values w e r e c o r r e c t e d f o r d i l u t i o n o f p r o t e i n o n a d d i n g t i t r a n t , f o r r e s i d u a l a b s o r b a n c e of t h e f u l l y r e d u c e d c h r o m o p h o r e , a n d w h e n necessary, f o r a b s o r b a n c e o f the o x i d i z e d a n d r e d u c e d forms of the titrants u s e d . Spectroscopy of Blue Single Copper in the Ultraviolet
Proteins
Region
T h e n a t u r e o f the b l u e c o p p e r site m i g h t b e c o n c e i v e d as t h e r e s u l t of a c o m p r o m i s e b e t w e e n the free energy r e q u i r e m e n t s f o r the p r e f e r r e d
Raymond; Bioinorganic Chemistry—II Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
11.
183
Blue Copper Proteins
PECHT E T A L .
c o o r d i n a t i o n s t r u c t u r e of t h e m e t a l i o n i n its t w o r e d o x states a n d t h e o p t i m a l c o n f o r m a t i o n of t h e p o l y p e p t i d e f o r m i n g i t . I t is therefore ex p e c t e d that changes i n t h e state of t h e c o p p e r w o u l d also b e expressed i n some of the properties of a m i n o a c i d residues, n o t a b l y those w h i c h are r e l a t e d to t h e b i n d i n g site. T h u s a n earlier s t u d y f r o m this l a b o r a t o r y has s h o w n a c o r r e l a t i o n b e t w e e n t h e r e d o x state of t y p e 1 c o p p e r a n d the i n t r i n s i c
fluorescence
of Rhus laccase (20).
H e r e w e have compared
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on April 9, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0162.ch011
the u v s p e c t r a l properties of three b l u e s i n g l e - c o p p e r proteins monas aeruginosa a z u r i n , Alcaligenes
(Pseudo-
faecalis a z u r i n , a n d Rhus s t e l l a c y
a n i n ) i n t h e i r o x i d i z e d , r e d u c e d , a n d copper-free states, u s i n g a b s o r p t i o n , difference a b s o r p t i o n , c i r c u l a r d i c h r o i s m , a n d
fluorescence
measurements.
T h e c o m p a r i s o n b e t w e e n t h e t w o a z u r i n species is of s p e c i a l significance as t h e y a r e h o m o l o g o u s p r o t e i n s , y e t c e r t a i n residues w h i c h are of p a r t i c u l a r interest (e.g., t h e s i n g l e t r y p t o p h a n ) o c c u p y i n t h e a m i n o a c i d sequence
π — ι — ι — ι — ι — ι
260
different positions
(21).
280
ι
300 Wavelength
ι
320
ι
ι
I
340
(nm)
Figure 1. Reduced-minus-oxidized difference absorption spectrum of P s . a e r u g i n o s a azurin. Sample and reference cell contained 6.8 Χ ΙΟ M solutions of reduced and oxi dized protein, respectively. Hydrogen, with platinum black as catalyst, was used as reductant (7). Medium: 0.1 M potassium phospate buffer, pH 7.0 5
F i g u r e 1 shows t h e difference a b s o r p t i o n s p e c t r u m b e t w e e n r e d u c e d a n d o x i d i z e d Ps. aeruginosa
azurin.
A s is w e l l k n o w n , i n the v i s i b l e
r e g i o n t h e t y p i c a l b l u e b a n d disappears u p o n r e d u c t i o n , a n d n o other changes a r e o b s e r v e d .
H o w e v e r , p r o n o u n c e d a n d c o m p l e x changes a r e
seen i n t h e u v r e g i o n . U p o n r e d u c t i o n a decrease is f o u n d a b o v e 330 n m , w h e r e a s b e l o w this w a v e l e n g t h t h e r e d u c e d a z u r i n has t h e h i g h e r e x t i n c -
Raymond; Bioinorganic Chemistry—II Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
184
BIOINORGANIC C H E M I S T R Y
Table I.
II
Ultraviolet Extinction of Reduced Copper Proteins Value Measured (Mr cm- )
Protein
1
Ps. aeruginosa azurin A. faecalis azurin Stellacyanin C u — thionein +
a
1
e
red
e
ox
e
red
e
ox
€
red
c
ox
*red
Wavelength (nm) 250
260
270
5050 4250 5150 3650
3450 3050 4300 3050
3200 2950 4250 2650
2350 2250 3500 2200
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on April 9, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0162.ch011
° Values calculated from spectral data reported by Rupp and Weser (24). tion.
T h i s is consistent w i t h t h e result o f a p r e l i m i n a r y e x p e r i m e n t r e -
p o r t e d b y Y a m a n a k a et a l . ( 2 2 ) . T h e p e a k i n t h e difference s p e c t r u m at 294 n m is c a u s e d b y a s m a l l r e d shift of t h e w e l l r e s o l v e d fine s t r u c t u r e p e a k of t r y p t o p h a n at 292 n m ( 2 2 ) . A m o n o t o n o u s increase i n t h e e x t i n c t i o n of t h e r e d u c e d p r o t e i n r e l a t i v e t o t h e o x i d i z e d takes p l a c e t o w a r d s
240
260
280 300 Wavelength (nm)
320
340
Figure 2. CD spectra of oxidized ( ) and reduced ( ) Ps. aeruginosa azurin. The samples contained 1.2 X 10~ M protein in 0.05M potassium phosphate, pH 7.0. Reduction was achieved with ascorbate, followed by extensive dialysis. Optical pathlength, 10 mm. 4
Raymond; Bioinorganic Chemistry—II Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
11.
Blue Copper Proteins
PECHT E T AL.
185
l o w e r w a v e l e n g t h s , p r o d u c i n g a difference of ~ 5000 M " c m " at 250 n m . 1
1
T h i s increase is m o d u l a t e d b y s l i g h t , b u t d i s t i n c t , v a r i a t i o n s i n the s t r u c t u r e of t h e a r o m a t i c a b s o r p t i o n b a n d s s h o u l d e r at 270 n m .
(275-290nm)
fine
andby a
E s s e n t i a l l y s i m i l a r difference s p e c t r a b e t w e e n r e
d u c e d a n d o x i d i z e d p r o t e i n h a v e also b e e n m e a s u r e d f o r A. faecalis a z u r i n a n d s t e l l a c y a n i n . T h e isosbestic p o i n t s a r e s o m e w h a t s h i f t e d t o t h e b l u e ( 3 2 4 n m f o r t h e f o r m e r , 304 n m f o r the l a t t e r ) , a n d the p e a k a t
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on April 9, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0162.ch011
294 n m is o n l y a flat s h o u l d e r , w h i c h is s i m p l y a c o n s e q u e n c e o f t h e t r y p t o p h a n t r a n s i t i o n at 292 n m n o t b e i n g r e s o l v e d i n these p r o t e i n s . B u t a m a r k e d increase of the e x t i n c t i o n difference w i t h d e c r e a s i n g w a v e l e n g t h a n d a s h o u l d e r a t 270 n m is i n a c c o r d w i t h t h e p r e v i o u s over, t h e ( c
r e d
findings.
More
— cox) values f o u n d are a l t o g e t h e r q u i t e s i m i l a r ( T a b l e I ) .
T h e s o m e w h a t h i g h e r values for s t e l l a c y a n i n at 260 a n d 270 n m are c a u s e d b y a m u c h m o r e p r o n o u n c e d s h o u l d e r a t 270 n m .
ο Ε ο
•ë CM* E o σ> 3 Ό
0
I
—I
I
260
280
I
300
ι
320
ι
340
I
Wavelength(nm)
Figure 3. CD spectra of oxidized ( ), reduced ( ), and copper-free (- ' -) stellacyanin. Protein solutions: 5 Χ ΙΟ" M in 0.1 M potassium phosphate, pH 7.0. The reduced sample was prepared by catalytic reduction with hydrogen; the oxidized sample by aerobic reoxidation of the same reduced sample. The apoprotein was prepared as described under "Experimental." Optical pathlength, 10 mm. 5
C D spectra of the oxidized a n d reduced f o r m have been measured for a l l t h r e e p r o t e i n s ; the s p e c t r a o f t w o of t h e m are p r e s e n t e d i n F i g u r e s 2 a n d 3. T h e c o m p l e x set o f d i c h r o i c b a n d s i n the r e g i o n o f the a r o m a t i c transitions is i n a l l cases f u l l y c o n s e r v e d u p o n r e d u c t i o n , w i t h o n l y t h e m a g n i t u d e o f t h e e l l i p t i c i t i e s b e i n g affected.
T h e small b u t significant
differences at 310 a n d at 293 n m as w e l l as the l a r g e increase of t h e e l l i p t i c i t y a t 2 8 0 n m f o u n d f o r Ps. aeruginosa
a z u r i n ( F i g u r e 2 ) are e x a c t l y
analogous to changes f o u n d f o r r e d u c e d A. faecalis a z u r i n c o m p a r e d w i t h
Raymond; Bioinorganic Chemistry—II Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
186
BIOINORGANIC
CHEMISTRY
II
the o x i d i z e d p r o t e i n . T h e C D s p e c t r a of o x i d i z e d Ps. aeruginosa a z u r i n a n d A. faecalis a z u r i n ( F i g u r e s 2 a n d 4 )
are essentially s i m i l a r .
They
e x h i b i t exactly the same b a n d p a t t e r n , except for some s m a l l shifts a n d differ o n l y i n the e l l i p t i c i t i e s of the v a r i o u s b a n d s . T h e o n l y m a j o r difference i n the C D p r o p e r t i e s of these t w o proteins is the response of the p o s i t i v e b a n d at 260 n m to r e d u c t i o n . W h e r e a s i n A. faecalis a z u r i n this b a n d changes l i t t l e u p o n r e d u c t i o n , a p r o n o u n c e d c h a n g e t o w a r d s n e g a -
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on April 9, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0162.ch011
t i v e e l l i p t i c i t y occurs i n the case of Ps. aeruginosa a z u r i n ( F i g u r e 2 ).
The
effect of r e d u c t i o n o n the C D s p e c t r u m of s t e l l a c y a n i n ( F i g u r e 3 ) is also l i m i t e d to the a m p l i t u d e s of the different b a n d s , t h e i r p o s i t i o n r e m a i n i n g p r a c t i c a l l y u n a l t e r e d . T h e increase of m o r e t h a n t w o - f o l d i n t h e e l l i p t i c i t y of the b r o a d n e g a t i v e b a n d a r o u n d 265 is p r o b a b l y r e l a t e d to t h e same t r a n s i t i o n w h i c h p r o d u c e s a p r o n o u n c e d s h o u l d e r at 270 n m i n t h e r e d u c e d - m i n u s - o x i d i z e d difference a b s o r p t i o n s p e c t r u m .
260
280 300 Wavelength
320
340
(nm)
Figure 4. CD spectra of native ( ) and copper-free (- · -) A . faecalis azurin. The apoprotein was prepared as described under "Experimental." Solutions: 9 X JO" M in 0.1 M potassium phosphate, pH 7.0. Optical pathlength, 10 mm. 5
T h e s p e c t r a l p r o p e r t i e s of the three proteins i n the u v are s t r o n g l y i n f l u e n c e d b y the redox state of the c o p p e r .
A l t h o u g h this is p r o b a b l y
t r u e for a l l b l u e c o p p e r p r o t e i n s , v e r y l i t t l e a t t e n t i o n has b e e n p a i d to these changes.
T h e o v e r a l l s i m i l a r i t y of t h e r e d o x - r e l a t e d changes
a b s o r p t i o n a n d C D s p e c t r a s t r o n g l y suggests that most of the
in
changes
are c o m m o n to a l l three proteins a n d are therefore r e l a t e d to some c o m m o n s t r u c t u r a l p r o p e r t y , most p r o b a b l y i n v o l v i n g t h e c o p p e r site. results of v a r i o u s s p e c t r o s c o p i c
The
a n d c h e m i c a l studies h a v e b e e n i n t e r -
Raymond; Bioinorganic Chemistry—II Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
11.
PECHT E T A L .
187
Blue Copper Proteins
p r e t e d to i n d i c a t e that b l u e c o p p e r is c o o r d i n a t e d to s u l f u r (3, 4, 5, 6,23). T h e findings of this s t u d y are consistent w i t h s u c h a c o n c e p t . T h e g e n e r a l course
of the r e d u c e d - m i n u s - o x i d i z e d
difference
a b s o r p t i o n s p e c t r a is
s i m i l a r to the a b s o r p t i o n s p e c t r u m of the C u ( I ) - S c h r o m o p h o r e , as seen f r o m e x t i n c t i o n values ( T a b l e I ) d e r i v e d f r o m C u ( I ) - t h i o n e i n s p e c t r a H o w e v e r , the c h e m i c a l f o r m of the s u l f u r l i g a n d i n the b l u e p r o -
(24).
teins is n o t f u l l y e s t a b l i s h e d , b u t it has g e n e r a l l y b e e n p r o p o s e d to b e
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on April 9, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0162.ch011
the s u l f h y d r y l g r o u p of a cysteine r e s i d u e . Y e t one s h o u l d also c o n s i d e r t h e p o s s i b i l i t y that m e t h i o n i n e m a y serve as a l i g a n d . S o m e s u p p o r t f o r this h y p o t h e s i s comes f r o m a m o d e l s t u d y w h e r e the chelate c o m p l e x of a t h i a e t h e r w i t h C u ( I I ) has b e e n f o u n d to e x h i b i t a n intense b l u e a b s o r p t i o n b a n d , s i m i l a r to that f o u n d i n b l u e c o p p e r proteins (26). ferent a z u r i n species
( f r o m Pseudomonas,
Bordetella,
In nine dif-
and
Alcaligenes
a n d i n eight different p l a s t o c y a n i n species ( b e a n , potato, a n d g r e e n
(21))
algae (27)), m e t h i o n i n e 121 ( i n the p l a s t o c y a n i n n u m b e r i n g M e t 97) is i n v a r i a n t , a n d the s e q u e n c e a r o u n d it contains some f u r t h e r residues w h i c h h a v e c o n s e r v e d t h e i r a r o m a t i c or h y d r o p h o b i c c h a r a c t e r [ T y r 108 (85),
P h e / T y r 110 ( 8 7 ) ,
P h e / T y r 111 ( 8 8 ) ,
L e u / V a l / I l e 125
(101),
L e u / V a l 127 ( 1 0 3 ) ] a p a r t f r o m the i n v a r i a n t G l y 123 ( 9 9 ) a n d the single cysteine r e s i d u e 112 ( 8 9 ) .
T h i s m a y i n d i c a t e the i n v o l v e m e n t of
both
cysteine a n d m e t h i o n i n e i n the c o o r d i n a t i o n sphere of the b l u e c o p p e r , as far as t h e y are a v a i l a b l e . T h e a d d i t i o n a l effects i n the a r o m a t i c r e g i o n of the difference spect r u m ( 2 5 0 - 3 0 0 n m ) are p r o b a b l y c a u s e d b y a r o m a t i c transitions w h i c h are i n f l u e n c e d b y the r e d o x state of the c o p p e r . T h e s h o u l d e r at 270 n m , w h i c h occurs i n a l l three p r o t e i n s , c o u l d result f r o m a n increase i n t y r o s i n e a b s o r p t i o n . I n this context, it is i n t e r e s t i n g to r e c a l l that T y r 108 ( a z u r i n n u m b e r i n g ) , w h i c h is r e l a t i v e l y close to the p r o p o s e d
copper ligands
C y s 112 a n d M e t 121, is c o m p l e t e l y i n v a r i a n t b o t h i n a z u r i n a n d p l a s t o c y a n i n a n d m a y therefore b e a n o b l i g a t o r y constituent of the c o p p e r site. T h e r e d o x - i n d u c e d changes
i n the C D s p e c t r u m of the a r o m a t i c
r e g i o n d o not seem to b e r e l a t e d to a c o p p e r c h r o m o p h o r e b e c a u s e t h e y are not u n i f o r m i n the three p r o t e i n s . I n s t e a d , t h e y p r o b a b l y arise f r o m differences i n the d i r e c t or i n d i r e c t ( c o n f o r m a t i o n a l )
effects of the r e d o x
state of the c o p p e r o n the d i c h r o i s m of v a r i o u s a r o m a t i c t r a n s i t i o n s . T h e c o m p a r a t i v e l y s m a l l changes i n the 2 8 5 - 2 9 5 - n m r a n g e suggest t h a t t h e t r y p t o p h a n transitions are less affected t h a n those of t y r o s i n e a n d p h e n y l a l a n i n e . T h e changes a r o u n d 250 n m m a y i n v o l v e d i s u l f i d e groups w h i c h p r o d u c e C o t t o n effects at this w a v e l e n g t h s . F o r certain blue single-copper that a C u ( I I ) (28),
proteins it w a s p r o p o s e d
or C u ( I I ) - r e l a t e d b a n d is present b e t w e e n
long
ago
300-350 n m
b u t i t has a t t r a c t e d o n l y v e r y l i m i t e d a t t e n t i o n i n spite of the p o t e n -
t i a l i m p l i c a t i o n s for the s t u d y of b l u e c o p p e r - c o n t a i n i n g oxidases. A s u m -
Raymond; Bioinorganic Chemistry—II Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
188
BIOINORGANIC
CHEMISTRY
II
m a r y of the s p e c t r a l m e a s u r e m e n t s i n t h e 3 0 O - 3 5 0 - n m r e g i o n is p r e s e n t e d i n F i g u r e 5. R e m o v i n g t h e c o p p e r almost abolishes t h e a b s o r p t i o n i n this region.
T h i s is confirmed b y t h e C D spectra where t h e p r o b l e m of
a c h i e v i n g s p e c t r a l l y v e r y c l e a n solutions o r m a t c h i n g t h e concentrations of h o l o - a n d a p o p r o t e i n s is less c r u c i a l t h a n f o r a b s o r p t i o n o r difference a b s o r p t i o n spectra. T h e e x t i n c t i o n o f t h e n a t i v e proteins i n this r e g i o n is i n t h e r a n g e 2 0 0 - 7 0 0 M " c m " c o m p a r e d w i t h extinctions o f a b o u t 1 X 1
1
1 0 ( a z u r i n ) or 2.3 Χ 1 0 M " c m " ( s t e l l a c y a n i n ) at 280 n m . S u c h e x p e r i 4
4
1
1
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on April 9, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0162.ch011
m e n t a l p r o b l e m s m a d e i t difficult to o b t a i n r e l i a b l e d a t a o n t h e shape of the C u ( I I ) b a n d b e l o w 305 n m , w h e r e the a r o m a t i c a b s o r p t i o n b e g i n s . ABS: OX/APO
CD: ox/APo
ABS: RED-ox
CD:OX/RED
EMISSION: ox
Azurin
RED - 12%
from
^
Pseudomonas
\
330
'^^^v;—
aeruginosa Azurin
RED:~O%
from
V
324
Alcaligenes faecalis Stelacyanin
RED'.+18%
from
304
Rhus
i
vernicrfera
/^^^^
Figure 5. Optical properties of three blue copper proteins in the range 300-350 nm. The various protein samples were prepared as indicated under "Experimental." Medium: 0.05 or 0.1M potassium phosphate, pH 7.0, 25°. ( ) oxidized protein, ( ) reduced or copper-free protein. Abscissa: The wavelength range extends from 300 to 350 nm. Ordinate: All absorption spectra were drawn to the same scale, as was done for the CD spectra. Fluorescence emission spectra: the scale is different for each protein. All spectra were recorded in the ratio mode with λ = 280 nm. The effect of reduction is indicated as percentage change of the maximum emission intensity of the oxidized protein. β
χ
F r o m measurements where reconstituted azurin was compared w i t h apoa z u r i n , w e estimate that the c o p p e r - d e p e n d e n t
e x t i n c t i o n does n o t e x c e e d
450 M " c m " at 280 n m , b u t i t r e m a i n s to b e d e t e r m i n e d w h e t h e r i t passes 1
1
t h r o u g h a m a x i m u m b e t w e e n this w a v e l e n g t h a n d 320 n m . A l i k e l y c a n d i date f o r the l i g a n d , w h i c h i n c o n j u n c t i o n w i t h C u ( I I ) gives rise t o t h e a b s o r p t i o n i n this r e g i o n , is p e p t i d e n i t r o g e n . V a r i o u s complexes i n v o l v i n g the coordination of a deprotonated peptide nitrogen to C u ( I I )
were
f o u n d t o absorb i n this r e g i o n (15, 2 9 ) . T h e m o d e r a t e l y intense b a n d has b e e n a s c r i b e d t o a l i g a n d - m e t a l charge transfer t r a n s i t i o n . A n i n t e r e s t i n g
Raymond; Bioinorganic Chemistry—II Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
11.
189
Blue Copper Proteins
PECHT E T A L .
m o d e l system e x h i b i t i n g a s i m i l a r b a n d is the C u ( I I ) - p o l y - L - h i s t i d i n e complex
formed
i n n e u t r a l - t o - s l i g h t l y - a c i d solutions
(30).
This
gains
s p e c i a l significance i n v i e w of N M R d a t a of single b l u e c o p p e r p r o t e i n s (31)
s u g g e s t i n g b o t h p e p t i d e a n d i m i d a z o l e n i t r o g e n s as l i g a n d s to t h e
copper. Considering now
the r e d u c e d - m i n u s - o x i d i z e d
different
absorption
spectra, i t b e c o m e s clear t h a t the isosbestic p o i n t shifts to a shorter w a v e -
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on April 9, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0162.ch011
l e n g t h w h e n g o i n g f r o m the a z u r i n s to s t e l l a c y a n i n , b e c a u s e the a b s o r b a n c e of o x i d i z e d s t e l l a c y a n i n i n this r e g i o n is h i g h e r t h a n that of
the
o x i d i z e d a z u r i n s . U n d e r l y i n g , of course, is the a s s u m p t i o n that the C u ( I ) s p e c t r u m has a s i m i l a r i n t e n s i t y i n a l l three p r o t e i n s , at least i n this r e g i o n . T h e response of t h e
fluorescence
e m i s s i o n i n t e n s i t y to the r e d u c -
t i o n of the c o p p e r c a n b e e x p l a i n e d o n the same basis. Ps. aeruginosa a z u r i n has its e m i s s i o n c e n t e r e d a r o u n d 308 n m .
W h e n the p r o t e i n is
r e d u c e d , the a b s o r b a n c e i n this w a v e l e n g t h r e g i o n increases.
Therefore
a n y q u e n c h i n g effect o r i g i n a t i n g f r o m i n t e r n a l n o n r a d i a t i v e e n e r g y t r a n s fer b e t w e e n the e x c i t e d t r y p t o p h a n r e s i d u e a n d the c o p p e r is e x p e c t e d
to b e c o m e l a r g e r , t h e r e b y
chromophore
d e c r e a s i n g the q u a n t u m y i e l d .
E x a c t l y the o p p o s i t e h a p p e n s w i t h s t e l l a c y a n i n . H e r e the r e d u c e d
pro-
t e i n absorbs less i n the r e g i o n of the e m i s s i o n m a x i m u m , e n h a n c i n g its intensity.
T h e emission spectrum ( A
e x
= 280 n m ) of A. faecalis a z u r i n
h a r d l y changes o n r e d u c t i o n , p r o b a b l y b e c a u s e q u e n c h i n g a n d e n h a n c i n g effects
approximately
compensate.
R e c a l l that the s i n g l e
tryptophan
r e s i d u e of A. faecalis a z u r i n is not h o m o l o g o u s to the s i n g l e t r y p t o p h a n of Ps. aeruginosa a z u r i n (21), different
fluorescence
a fact w h i c h m a y c o n t r i b u t e b o t h to the
spectra of the n a t i v e proteins a n d to the different
response to r e d u c t i o n . R e m o v a l of the c o p p e r i o n o n l y m o d e r a t e l y effects the a r o m a t i c p a r t of the C D s p e c t r u m ( F i g u r e s 3, 4 ) , a s p e c t r a l r e g i o n w h i c h is i n g e n e r a l less affected b y r e m o v i n g the c o p p e r t h a n b y r e d u c i n g i t . T h i s i n d i c a t e s t h a t the s t r u c t u r a l i n t e g r i t y of b l u e s i n g l e - c o p p e r p r o t e i n s d e p e n d s l i t t l e o n the presence of the c o p p e r i o n as f a r as these a r o m a t i c residues are concerned.
A s i m i l a r result has b e e n o b t a i n e d f r o m the c o m p a r i s o n
the t r y p t o p h a n a z u r i n (23).
fluorescence
of
i n n a t i v e a n d c o p p e r - f r e e Ps. fluorescence
T h e c o n c l u s i o n is that the i n t e r a c t i o n b e t w e e n the c o p p e r
i o n a n d the p r o t e i n , as discussed at the outset, is l a r g e l y d o m i n a t e d b y the c o n f o r m a t i o n of the latter. Electron
Transfer
Profile
of Ps. aeruginosa
Azurin
A n effective a p p r o a c h to r e s o l v i n g the e l e c t r o n p a t h w a y to a n d f r o m t h e redox center of a z u r i n is the systematic i n v e s t i g a t i o n of its e q u i l i b r i a a n d k i n e t i c s of i n t e r a c t i o n s w i t h i n o r g a n i c r e d o x c o u p l e s . ferrate ( I I / H I )
Hexacyano-
is a w e l l d e f i n e d r e d o x c o u p l e , k n o w n to react v i a a n
Raymond; Bioinorganic Chemistry—II Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
190
BIOINORGANIC
CHEMISTRY
II
outer sphere p a t h . F u r t h e r m o r e , it is r e l a t e d i n its e l e c t r o n i c s t r u c t u r e to Fe(II/III)
h e m e , the r e d o x center of a l l c y t o c h r o m e s , i n c l u d i n g c y t o
c h r o m e c P 5 5 1 , the n a t u r a l p a r t n e r of a z u r i n ( 7 ) . the a z u r i n - h e x a c y a n o f e r r a t e ( I I / I I I ) l a x a t i o n spectroscopy
(32),
T h u s w e have studied
system b y t e m p e r a t u r e - j u m p r e
spectrophotometric
titrations, a n d
micro-
calorimetry. T h e r e l a x a t i o n s p e c t r u m consists of a single r e l a x a t i o n m o d e .
The
r e l a x a t i o n t i m e , τ, was m e a s u r e d u p to h i g h concentrations of p r o t e i n ( 1 Χ ΙΟ" M ) a n d h e x a c y a n o i r o n
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on April 9, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0162.ch011
3
t i t r a t e d w i t h f e r r i c y a n i d e , τ" (Figure 6b).
( 8 Χ ΙΟ" M ).
W h e n azurin ( I )
2
was
l e v e l e d off w i t h i n c r e a s i n g c o n c e n t r a t i o n
1
T h i s b e h a v i o r reveals t h a t the e l e c t r o n transfer b e t w e e n
azurin and F e ( C N )
6
4 - / 3
~ is not a s i m p l e one-step process as the s i n g l e
relaxation observed might have indicated. T h e limiting dependence
on
f e r r i c y a n i d e c o n c e n t r a t i o n suggested a k i n e t i c s c h e m e i n v o l v i n g the fast r e v e r s i b l e f o r m a t i o n of a n a z u r i n ( I ) - f e r r i c y a n i d e c o m p l e x f o l l o w e d a
slower
electron
transfer step.
azurin (II)-ferrocyanide of m i c r o s c o p i c
The
formation
of
a
by
corresponding
c o m p l e x is to b e e x p e c t e d f r o m the p r i n c i p l e
r e v e r s i b i l i t y , yet the c o n c e n t r a t i o n d e p e n d e n c e
of
the
r e l a x a t i o n t i m e p r o v i d e d n o e v i d e n c e for i t ; w h e n a z u r i n ( I I ) w a s t i t r a t e d w i t h i n c r e a s i n g a m o u n t s of f e r r o c y a n i d e , τ"
showed a monotonous i n
1
crease u p to v e r y h i g h concentrations ( F i g u r e 6 a ) .
Direct evidence
for
the i n v o l v e m e n t of a n a z u r i n ( I I ) - f e r r o c y a n i d e c o m p l e x w a s o b t a i n e d b y a n a l y z i n g the r e l a x a t i o n a m p l i t u d e s . T h e s e constitute a f u r t h e r source of i n f o r m a t i o n a b o u t the m e c h a n i s m of r e a c t i o n , a p a r t f r o m t h e k i n e t i c d a t a d e r i v e d f r o m the analysis of the r e l a x a t i o n times
(33).
A s s u m i n g the f o l l o w i n g S c h e m e A , the " n o r m a l " e n t h a l p y of
the
r e l a x a t i o n m o d e o b s e r v e d , Δ Η , w h i c h c a n b e c a l c u l a t e d f r o m the r e l a x a -
Az(II) +
Fe(II)
^
Az(II) · Fe(II)
JÎ
Az(I) · Fe(III)
Az(I)
+
ks (fast)
Fe(III) (A)
(slow)
(fast)
t i o n a m p l i t u d e s , is l i n e a r l y r e l a t e d to the i n d i v i d u a l e n t h a l p y changes, as d e s c r i b e d b y E q u a t i o n 1, w h e r e
ά
Η
- Κ
χ
>
([Az(II)] +
is the i n d i v i d u a l r e a c t i o n e n -
AHi°
[Fe(II]) + l
A
H
l
°
K
2
tf
2
+
[Az(I)] +
t h a l p y of the i - t h step, a n d K i a n d K ~
[Fe(III)]
2
steps 1 a n d 2, r e s p e c t i v e l y (14).
l
+
AH ° 2
+
ΔΗ ° 3
(1)
are t h e a s s o c i a t i o n constants o f
I n the e x p e r i m e n t s i n v o l v i n g a d d i t i o n of
f e r r o c y a n i d e to o x i d i z e d a z u r i n ( I I ) , t h e c o n c e n t r a t i o n s of a z u r i n ( I ) a n d
Raymond; Bioinorganic Chemistry—II Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
191
Blue Copper Proteins
PECHT E T A L .
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on April 9, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0162.ch011
11.
Figure 6. Ps. aeruginosa azurin-hexacyanoiron (II/HI) equilibrium-concentration dependence of the reciprocal relaxation time, (a) Azurin (II) reacted with ferrocyanide (24-860-fold excess), 6.5° C. (b) Azurin (I) (2-5 X 10~ M) reacted with ferricyanide, 16.8° C. τ has a minimal value at [Fe] ^ [Az] and increases again at lower [Fe] . Points in the region [Fe]
10kcal/mole)
s h o u l d b e of a d v a n t a g e i n o v e r -
c o m i n g the b a r r i e r s i n the r e d u c t i o n step. P r e l i m i n a r y experiments w h e r e h a l f - r e d u c e d laccase w a s r e a c t e d w i t h d i o x y g e n seem to s u p p o r t this hypothesis.
We
h a v e f o u n d that a r a p i d l y f o r m e d
intense transient
a b s o r p t i o n decays w i t h a h a l f - l i f e of ~ 27 m i n ( a t 2 5 ° ) to a stable spect r u m s t r i k i n g l y s i m i l a r to the l a c c a s e - p e r o x i d e s p e c t r u m , w i t h the same specific e x t i n c t i o n of the extra b a n d at ~ 330 n m . T h e E P R s p e c t r u m at 10° Κ is the same as for n a t i v e or p e r o x i d e - t r e a t e d laccase, a n d at least
Raymond; Bioinorganic Chemistry—II Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
204
BIOINORGANIC CHEMISTRY II
five reducing equivalents are needed for the full reduction of this new species. It has recently been reported (45) that reoxidation of fully reduced Rhus laccase with oxygen is characterized by a second-order rate constant of about 5 · 10 M" s" for both type 1 and type 3 copper. We have inves tigated the kinetics of the reaction between reduced Rhus laccase and hydrogen peroxide spectrophotometrically under anaerobic conditions at 10° and 25 °C by following the changes in absorbance at 330 and 615 nm (39). The rate of reoxidation of the type 1 Cu(I) was found to be first order, independent of either concentration of H 0 or the state of reduction of other sites in the enzyme (10°C, A: = 4.6 · lO^s' ; 25°C, k ~ 0.015 s" ). The oxidation of the type 3 site by hydrogen peroxide is significantly faster (τ < 10 s at 25°C). At 10°C we found the rate to befirstorder both in reduced type 3 site and in hydrogen peroxide, with an overall second-order rate constant k = 1.8 Χ 10 M" s". These find ings indicate that the primary step in this reaction is the reoxidation of the type 3 site by H 0 , in parallel with a slower intramolecular oxidation of the type 1. The reoxidation of type 2 copper cannot be monitored spectrophotometrically, but from the overall stoichiometry as well as from the above equilibrium titrations, it is obvious that this site is also involved in the reaction. A more extensive kinetic investigation of the reduction of H 0 is presently being carried out.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on April 9, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0162.ch011
6
1
1
2
2
1
1
1/2
3
2
2
1
1
2
2
Concluding Remarks We have used a range of different physical and chemical approaches in the effort to better understand how the different blue copper proteins function. With the relatively simpler, electron-mediating proteins like azurin, the ultraviolet chromophores were shown to be informative in terms of copper-protein interactions. These proteins are also a useful system for detailed examination of the electron transfer pathways to and from their single copper site. The elaborate mechanism by which blue oxidases react with dioxy gen to produce water was tackled by studying the possible role of H 0 . We have observed the formation of a stable and high affinity complex between tree laccase and H 0 . Moreover, thefindingthat the oxidation of the reduced enzyme with H 0 follows a pattern which is different from that operative in the reduction of the oxidized enzyme may have important implications for the mechanism of action of laccase. 2
2
2
2
2
2
Literature Cited 1. Dickerson, R. E., Timkovich, R., in "The Enzymes," Boyer, P. B., Ed., 3rd ed., Vol. XI, Academic, New York, 1975.
Raymond; Bioinorganic Chemistry—II Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on April 9, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0162.ch011
11. PECHT ET AL.
Blue Copper Proteins
205
2. Fee, J. Α., Struct. Bonding (1975) 23, 1. 3. McMillin, D. R., Rosenberg, R. C., Gray, Η. B., Proc. Nat. Acad. Sci. U.S.A. (1974) 71, 4760. 4. Siiman, O., Young, Ν. M., Carey, P. R., J. Am. Chem. Soc. (1976) 98, 744. 5. Solomon, E. I., Clendening, P. J., Gray, H. B., J. Am. Chem. Soc. (1975) 97, 3878. 6. Miskowski, V., Tang, S.-P. W., Spiro, T. G., Shapiro, E., Moss, T. H., Biochemistry (1975) 14, 1244. 7. Rosen, P., Pecht, I., Biochemistry (1976) 15, 775. 8. Reinhammar, B., Vänngard, T., Eur. J. Biochem. (1971) 18, 463. 9. Andréasson, L.-E., Malmström, B. G., Strömberg, C., Vänngard, T., Eur. J. Biochem. (1973) 34, 434. 10. Brandén, R., Malmström, B. G., Vänngard, T., Eur. J. Biochem. (1971) 18, 234. 11. Reinhammar, B., Biochim. Biophys. Acta (1970) 205, 35. 12. Ambler, R. P., Brown, L. H., Biochem. J. (1967) 104, 784. 13. Malmström, B. G., Reinhammar, B., Vänngard, T., Biochim. Biophys. Acta (1970) 205, 48. 14. Goldberg, M., Pecht, I., Biochemistry (1976) 15, 4197. 15. Tang, S.-P. W., Coleman, J. E., Myer, Y. P., J. Biol. Chem. (1968) 243, 4286. 16. Rosen, P., Pecht, I, Israel J. Med. Sci. (1977) in press. 17. Kolthoff, I. M., Sandell, Ε. B., "Textbook of Quantitative Inorganic Analy sis," 3rd edition, p. 600, Macmillan, New York, 1961. 18. Rigler, R., Rabl, C. R., Jovin, T. M., Rev. Sci. Instrum. (1974) 45, 580. 19. Faraggi, M., Pecht, I., J. Biol. Chem. (1973) 248, 3146. 20. Goldberg, M., Pecht, I., Proc. Natl. Acad. Sci. U.S.A. (1974) 71, 4684. 21. Ambler, R. P., in "Recent Developments in the Chemical Study of Protein Structures," A. Previero, J.-F. Pechere, and M.-A. Coletti-Previero, Eds., p. 289, Inserm, Paris, 1971. 22. Yamanaka, T., Kijimoto, S., Okunuki, K., J. Biochem. (Tokyo) (1963) 53, 256. 23. Finazzi-Agro, Α., Rotilio, G., Avigliano, L., Guerrieri, P., Boffi, V., Mon dovi, B., Biochemistry (1970) 9, 2009. 24. Rupp, H., Weser, U., FEBS Lett. (1974) 44, 293. 25. Briving, C., Deinum, J., FEBS Lett. (1975) 51, 43. 26. Jones, T. E., Rorabacher, D. B., Ochrymowycz, L. Α., J. Am. Chem. Soc. (1975) 97, 7485. 27. Ryden, L., Lundgren, J.-O., Nature (1976) 261, 344. 28. Peisach, J., in "The Biochemistry of Copper," J. Peisach, P. Aisen, and W. E. Blumberg, Eds., p. 404, Academic, New York, 1966. 29. Zuberbuhler, Α., Kaden, Th., Helv. Chim. Acta (1968) 51, 1805. 30. Levitzki, Α., Pecht, I., Berger, Α., J. Am. Chem. Soc. (1972) 94, 6844. 31. Markley, I. L., Ulrich, Ε. L., Berg, S. P., Krogmann, D. W., Biochemistry (1975) 14, 4428. 32. Eigen, M., De Maeyer, L., in "Techniques of Chemistry," A. Weissberger, Ed., 3rded.,vol. II, part II, p. 63, John Wiley, New York, 1974. 33. Thusius, D., Foucault, G., Guillain, F., in "Dynamic Aspects of Conforma tional Changes in Biological Macromolecules," C. Sadron, Ed., p. 271, D. Reidel, Dordrecht/Boston, 1973. 34. Wherland, S., Holwerda, R. Α., Rosenberg, R. C., Gray, Η. B., J. Am. Chem. Soc. (1975) 97, 5260. 35. Beattie, J. K., Fensom, D. J., Freemann, H. C., Woodcock, E., Hill, H. A. O., Stokes, A. M., Biochim. Biophys. Acta (1975) 405, 109. 36. Holwerda, R. Α., Gray, Η.B.,J. Am. Chem. Soc. (1974) 96, 6008. 37. Pecht, I., Goldberg, M., in "Fast Processes in Radiation Chemistry and Biology," G. E. Adams, M. Fielden, and B. D. Michael, Eds., p. 277, John Wiley, London, 1975.
Raymond; Bioinorganic Chemistry—II Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on April 9, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0162.ch011
206
BIOINORGANIC CHEMISTRY II
38. Pecht, I., Abstracts from Sixth FEBS Meeting, Madrid, 1969, 150. 39. Farver, O., Goldberg, M., Lancet, D., Pecht, I.. Biochem. Biophys. Res. Commun. (1976) 73, 494. 40. Ilan, Υ. Α., Meisel, D., Czapski, G., Israel J. Chem. ( 1974) 12, 891. 41. Wood, P. M., FEBS Lett. (1974) 44, 22. 42. Jencks, W. P., Adv. Enzymol. (1975) 43, 219. 43. Reinhammar, B., Biochim. Biophys. Acta (1972) 275, 245. 44. Revzin, Α., Neumann, E., Katchalsky, Α., J. Mol. Biol. (1973) 79, 95. 45. Makino, N., Ogura, Y.,J.Biochem. (Tokyo) (1971) 69, 91. 46. Andréasson, L.-E., Brandén, R., Reinhammar, B., Biochim. Biophys. Acta (1976) 438, 370. RECEIVED July 26, 1976.
Raymond; Bioinorganic Chemistry—II Advances in Chemistry; American Chemical Society: Washington, DC, 1977.