14 Electronic Structure of the Actinide Elements MARK FRED
Downloaded by UNIV OF ARIZONA on November 12, 2012 | http://pubs.acs.org Publication Date: June 1, 1967 | doi: 10.1021/ba-1967-0071.ch014
Argonne National Laboratory, Argonne, Ill.
The 5f, 6d, and 7s electrons of the elements from actinium to curium, all having about the same energy, produce many low levels. The spectra are complex, and analysis is complicated by the existence of two sets of low parent terms built on f and f d, having opposite parities and responsible for two almost independent sets of transitions. Within the past several years considerable progress has been made in the analysis with the aid of new data, especially Zeeman data, and the further help of theoretical predictions. It is now possible to describe the variation of binding energies of different types of electrons as a function of atomic number and degree of ionization, which can be correlated with chemical behavior. N
N-1
T n t e r e s t i n the e l e c t r o n i c structure of t h e actinides existed before t h e * ·* t r a n s u r a n i c elements b e c a m e a v a i l a b l e . T h i s w a s s t i m u l a t e d b y the h o p e that k n o w l e d g e of t h e structure c o u l d l e a d to p r e d i c t i o n s chemical behavior.
about
S i n c e the s t r u c t u r e w a s difficult to e s t a b l i s h , t h e
c h e m i c a l b e h a v i o r w a s e s t a b l i s h e d first a n d d e d u c t i o n s w e r e t h e n m a d e a b o u t t h e structure. T h e s e d e d u c t i o n s about a c t i n i d e atoms w e r e v a g u e because c h e m i c a l b e h a v i o r
is also i n f l u e n c e d b y n e i g h b o r i n g
atoms.
F i r s t , i t w o u l d b e d e s i r a b l e to k n o w t h e s t r u c t u r e of i s o l a t e d atoms. T h e m o s t precise i n f o r m a t i o n a b o u t this comes f r o m a t o m i c
spectroscopy.
H o w e v e r , a c t i n i d e spectra are v e r y c o m p l e x , a n d e a c h element c a n p r o d u c e tens of thosands of different lines. H e n c e , i t is difficult b o t h to d e t e r m i n e the e n e r g y levels w h i c h cause t h e transitions a n d to i d e n t i f y the levels i n terms of q u a n t u m n u m b e r s a n d e l e c t r o n configurations. A f t e r 20 years of effort w e h a v e b e e n able to a n a l y z e m a n y of these spect r a a n d extract definite i n f o r m a t i o n a b o u t t h e r e l a t i v e b i n d i n g energies of the v a l e n c e electrons. 180 In Lanthanide/Actinide Chemistry; Fields, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1967.
14.
F R E D
Electronic
Structure
181
Energy Levels L e v e l s are i d e n t i f i e d f r o m the f o l l o w i n g considerations.
Each kind
of e l e c t r o n c o n f i g u r a t i o n gives rise to a c e r t a i n n u m b e r of levels for e a c h v a l u e of J , the t o t a l a n g u l a r m o m e n t u m . T h e v a l u e of the energy for e a c h l e v e l is g i v e n i n p r i n c i p l e b y the s o l u t i o n of Schrôdinger's e q u a t i o n , expressed as a c o m b i n a t i o n of p o w e r s of r i n t e g r a t e d over the e l e c t r o n d e n s i t y . Since a n exact s o l u t i o n is i m p o s s i b l e i n p r a c t i c e , it is c u s t o m a r y to fit the levels e m p i r i c a l l y u s i n g the a n g u l a r parts of the integrals ( w h i c h Downloaded by UNIV OF ARIZONA on November 12, 2012 | http://pubs.acs.org Publication Date: June 1, 1967 | doi: 10.1021/ba-1967-0071.ch014
c a n b e d e t e r m i n e d e x a c t l y ) as coefficients for the r a d i a l integrals w h i c h are t r e a t e d as parameters.
T h e parameters c a n be d i v i d e d i n t o electro-
static interactions ( e l e c t r o n - n u c l e u s a n d e l e c t r o n - e l e c t r o n )
and spin-orbit
interactions, w h i c h are m a g n e t i c . T h e L S l e v e l scheme corresponds to t h e case i n w h i c h t h e electrostatic parameters are large c o m p a r e d w i t h the s p i n - o r b i t parameters. elements.
T h i s scheme is a g o o d a p p r o x i m a t i o n for l i g h t
T h e s p i n - o r b i t i n t e r a c t i o n increases r a p i d l y w i t h a t o m i c n u m -
ber, a n d the actinides are m o r e a p p r o p r i a t e l y d e s c r i b e d b y the /; c o u p l i n g scheme, i n w h i c h the electrostatic i n t e r a c t i o n is s m a l l c o m p a r e d w i t h the spin-orbit. I n the g e n e r a l case ( i n t e r m e d i a t e c o u p l i n g ) the different parameters are c o m p a r a b l e .
L e v e l s w i t h the same / interact, a n d the w a v e f u n c t i o n s
m i x . T h e properties w h i c h d e p e n d o n the w a v e f u n c t i o n s are c o n s e q u e n t l y i n t e r m e d i a t e , p a r t i c u l a r l y the g-factors a n d the r e l a t i v e intensities of transitions to these levels. It is a n i m p o r t a n t p o i n t that the g's a n d i n t e n s i ties c a n b e c a l c u l a t e d f r o m the same parameters w h i c h d e t e r m i n e the energies, so no a d d i t i o n a l parameters are r e q u i r e d . Configuration. I f w e find e x p e r i m e n t a l l y a set of levels w h o s e e n ergies c a n b e d e s c r i b e d b y the r i g h t n u m b e r of parameters, a n d these parameters also give the r i g h t g-factors a n d r e l a t i v e intensities, w e c a n b e confident i n a s s i g n i n g t h e m to a g i v e n configuration. T h e assignment w o u l d be d o u b t f u l i f i t r e q u i r e d m o r e parameters for this c o n f i g u r a t i o n because w e c a n fit a n y set of levels w i t h e n o u g h parameters. W e
could
o b t a i n c o r r o b o r a t i o n i f the g's fit a n d the parameters are consistent w i t h the systematics of these configurations.
T h i s is v a l u a b l e b e c a u s e often
configurations are p e r t u r b e d b y other configurations ( c o n f i g u r a t i o n i n t e r a c t i o n ) a n d d o not g i v e a n exact fit b u t a close fit. Sometimes the fit is not close i f the c o n f i g u r a t i o n i n t e r a c t i o n is large, i n w h i c h case b o t h configurations m u s t b e c o n s i d e r e d
together.
E v e n t h o u g h a p r o p e r d e s c r i p t i o n of a c o n f i g u r a t i o n m u s t be
made
i n i n t e r m e d i a t e c o u p l i n g , i t is often u s e f u l e x p e r i m e n t a l l y to i d e n t i f y the levels a c c o r d i n g to the nearest p u r e c o u p l i n g s c h e m e because the l e v e l separations, g-values, a n d intensities a p p r o x i m a t e l y
correspond.
T h e levels of v a r i o u s configurations c a n b e i d e n t i f i e d f r o m the a p p r o p r i a t e secular equations.
T h i s i d e n t i f i c a t i o n was m a d e i n the e a r l y
In Lanthanide/Actinide Chemistry; Fields, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1967.
182
LANTHANIDE/ACTINIDE CHEMISTRY
Table I.
Conf.
Spectrum
%
1%
21/2
3y
A c III Pal P u II Ami Pal Pull Pal Paï Ami
2 10 17 8 184 61 88 825
6 21 31 15 342 110 160 1548
1 7 28 42 19 457 141 203 2085
0
1
2 8 21 6 14 48 14 825
1 23 40 7 36 136 19 2373
f fV fs fs fd£ fds fdïs fdsp fdp l
2
Downloaded by UNIV OF ARIZONA on November 12, 2012 | http://pubs.acs.org Publication Date: June 1, 1967 | doi: 10.1021/ba-1967-0071.ch014
2
/%
Pall Pa II UI UI UI Pu I Pu I Cm I
2
fds /V fds fds
2 2
/%
2
fdsp
N u m b e r of L e v e l s of E a c h
4V2
51/2
6V2
1 7 30 50 19 516 149 212 2386
7 29 46 17 517 139 192 2443
5 26 42 13 466 113 154 2285
3 20 35 9 390 83 109 1971
305 52 66 1576
2
3
4
5
6
7
3 34 70 17 50 206 37 3633
1 38 71 13 59 251 37 4471
3 36 78 19 60 265 46 4829
1 30 61 14 54 252 37 4728
2 22 52 13 44 220 38 4256
14 31 7 31 176 24 3547
2
71/2 3 16 26
5
days of s p e c t r o s c o p y o n a n e m p i r i c a l basis w i t h o u t e x p l i c i t k n o w l e d g e of the e n e r g y equations, i n m u c h the same w a y that the e a r l y chemists e s t a b l i s h e d m o l e c u l a r structure a p p a r e n t l y b y i n t u i t i o n .
organic Com-
p a r i s o n w i t h t h e o r y is essential for spectra a r i s i n g f r o m a n u m b e r v a l e n c e electrons.
of
T h i s is p a r t i c u l a r l y necessary for the l a n t h a n i d e s a n d
actinides because of the presence of /-electrons, w h i c h results i n m a n y levels.
Instead of s o l v i n g h i g h order secular equations for these, i t is
m o r e a p p r o p r i a t e to use the f o r m a l i s m of m a t r i x m e c h a n i c s . v a l u e of / the levels are d e s c r i b e d b y the eigenvalues a n d
F o r each
eigenvectors
of the H a m i l t o n i a n operator, the m a t r i x elements b e i n g expressed b y the same Slater parameters a c c o r d i n g to the tensor a l g e b r a of R a c a h (25, 16, Racah's m e t h o d s , a l t h o u g h a p p e a r i n g abstract, p e r m i t a great
17, 18).
s i m p l i f i c a t i o n i n c a l c u l a t i n g the coefficients
appearing i n each matrix
element a n d m a k e i t feasible to calculate t h e m b y c o m p u t e r .
Computer
c a l c u l a t i o n is u s u a l l y necessary because there are s t i l l m a n y c a l c u l a t i o n s to p e r f o r m . S o m e t y p i c a l configurations w h i c h are f o u n d i n a c t i n i d e spectra are s h o w n i n T a b l e I, w h i c h lists the n u m b e r of levels to b e e x p e c t e d for e a c h /-value.
I n most cases the n u m b e r of levels is l a r g e a n d i n some cases
enormous.
F o r the f
configurations the s i t u a t i o n is not f o r m i d a b l e , a n d
In Lanthanide/Actinide Chemistry; Fields, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1967.
14.
Electronic
F R E D
183
Structure
J f o r Some A c t i n i d e C o n f i g u r a t i o n s
Downloaded by UNIV OF ARIZONA on November 12, 2012 | http://pubs.acs.org Publication Date: June 1, 1967 | doi: 10.1021/ba-1967-0071.ch014
8%
91/2
I0y
2
111/2 I21/2
131/2
141/2
151/2
16%
Total 2 41 198 327 107 3675 893 1229 18131
1 9 18 2 216 29 32 1170
5 11
3 5
1 3
1
139 12 11 803
79 4 2 505
40
18
5
1
288
147
66
25
7
1
8
9
10
11
12
14
15
16
7 21 7 19 129 20 2746
2 8 2 11 87 11 1973
4 2 5 52 8 1308
1 27 2 793
13 2 435
13
5
1
213
91
i t w i l l b e i n s t r u c t i v e to c o n s i d e r these
first.
32
8
17
Total
1
13 214 457 107 384 1868 295 36230
T h e s e configurations
are
o b s e r v e d i n s o l i d c o m p o u n d s a n d i n solutions of the 3 ions, a n d the same +
levels also o c c u r i n the n e u t r a l atoms i n the configurations / V since the ^-electrons f o r m a c l o s e d s h e l l a n d d o not c o n t r i b u t e to the structure. T h e 4f
N
configurations h a v e b e e n s t u d i e d for a l o n g t i m e i n the l a n t h a n i d e
elements a n d are n o w w e l l e s t a b l i s h e d . T h e same t e r m s t r u c t u r e is f o u n d i n the 5/* configurations of the a c t i n i d e s , a l t h o u g h the spacings are d i f ferent because the electrostatic parameters are s m a l l e r a n d the s p i n - o r b i t p a r a m e t e r larger. T h e l o w terms are s h o w n s c h e m a t i c a l l y i n F i g u r e 1. T h e n u m b e r of terms increases w i t h the n u m b e r of /-electrons u p to a h a l f - c l o s e d s h e l l a n d t h e n decreases s y m m e t r i c a l l y . T h e m a x i m u m m u l t i p l i c i t y also increases a n d t h e n decreases, so that b o t h factors c o n t r i b u t e i n the same d i r e c t i o n to the d i s t r i b u t i o n of levels s h o w n i n T a b l e I. F o r e a c h c o n f i g u r a t i o n the lowest t e r m , w h i c h is the most i m p o r t a n t , is g i v e n b y H u n d ' s r u l e that the lowest t e r m is the t e r m of h i g h e s t m u l t i p l i c i t y ( S-value) h a v i n g the largest L - v a l u e ( o r b i t a l a n g u l a r m o m e n t u m ) . x
The
LS d e s i g n a t i o n for the lowest t e r m , i n fact for a l l the terms, is a n a p p r o x i m a t i o n because the c o u p l i n g is i n t e r m e d i a t e . E a c h t e r m consists i n g e n e r a l of a n u m b e r of levels, a n d a g i v e n l e v e l interacts w i t h the levels of other terms h a v i n g the same / - v a l u e . T h e terms m i x a n d e a c h is i m p u r e .
In Lanthanide/Actinide Chemistry; Fields, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1967.
184
LANTHANIDE/ACTINIDE
CHEMISTRY
0
0|
—-5H
_ 5
- F, S — 4
4
-10
— F, S
1
5
-20-
— I 9
-50 -60
— 3 p
6
—V s
~"
-10
3h
—
5
G
-30
HSSp
01 ο ι Lu H Z
-40
4
20
~~
>
D3 by Nielson and Koster
(14),
there are six different P terms, a n d f o u r S terms. I f w e h a d a f a i r l y p u r e 3
1
c o u p l i n g scheme, e a c h l e v e l c o u l d b e c o n s i d e r e d i n d e p e n d e n t l y , a n d its e n e r g y i n z e r o ' t h a p p r o x i m a t i o n w o u l d b e g i v e n b y the v a l u e of the c o r r e s p o n d i n g d i a g o n a l m a t r i x element. c o m b i n a t i o n of
parameters.
E a c h s u c h e l e m e n t is g i v e n b y a
T h e r e are f o r m u l a s for the
off-diagonal
Downloaded by UNIV OF ARIZONA on November 12, 2012 | http://pubs.acs.org Publication Date: June 1, 1967 | doi: 10.1021/ba-1967-0071.ch014
elements w h i c h represent the i n t e r a c t i o n b e t w e e n the t w o different terms w h i c h e a c h one connects.
If the o f f - d i a g o n a l elements are s m a l l ( m o r e
a c c u r a t e l y i f t h e y are s m a l l c o m p a r e d w i t h the difference b e t w e e n the d i a g o n a l e l e m e n t s ) t h e n a c c o r d i n g to first-order p e r t u r b a t i o n t h e o r y the levels are r e p e l l e d , a n d e a c h is c h a n g e d i n e n e r g y b y a n a m o u n t g i v e n b y the s q u a r e of the o f f - d i a g o n a l element d i v i d e d b y the s e p a r a t i o n b e t w e e n the d i a g o n a l elements. T h i s amounts to t r e a t i n g e a c h p a i r of terms as a 2 X 2 m a t r i x . B y a p p r o p r i a t e m a t r i x m u l t i p l i c a t i o n the eigenvectors of a m a t r i x are a b l e to p r o d u c e a d i a g o n a l m a t r i x w h o s e elements are the eigenvalues.
I f t h e o r i g i n a l 2 X 2 m a t r i x is n e a r l y d i a g o n a l , e a c h
e i g e n v e c t o r consists of a l a r g e c o m p o n e n t a n d a s m a l l c o m p o n e n t , a n d the f r a c t i o n a l c o m p o s i t i o n of e a c h l e v e l is g i v e n b y t h e squares of these components.
T h e eigenvector c o m p o n e n t s are a measure of the m i x i n g
p r o d u c e d b y the p e r t u r b a t i o n . F o r T a b l e I I there are m a n y o f f - d i a g o n a l elements. S o m e are p u s h i n g u p o n a state, a n d others are p u s h i n g d o w n . for J =
0 Levels of f°s for P u I 2
46233 s
P4
42712 P5
3
9178 ?6
s
-435 814
456 1341 -1146
4936 -1319 -4133
-3723 -6578 -2430 50500 1058 -1861
1775 -9858 5886 1058 45127 -1548
19200 2612 -18548 -1861 -1548 40370
-1581 -3692 -4209
754
8151
-3502
131005
67757
*S1
'S2
-9906
-5195 -707 1066 -1581 754 8151
121739 -23334
-23334 56183 -3175 17260
62196
35881
>S3
'S4
-1651 -5953 -3692 -4209 -3502 -3175 61439 -2942
In Lanthanide/Actinide Chemistry; Fields, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1967.
17260 -2942 47022
186
L A N T H A N I D E / A C T I N I D E
Table III. Eigen value
0 7
Term
51430 D1
36.5
D1 >D2 D3
18.0
43.5
22.3
22.3
D3
5
P1 P2 P3 sp4
Downloaded by UNIV OF ARIZONA on November 12, 2012 | http://pubs.acs.org Publication Date: June 1, 1967 | doi: 10.1021/ba-1967-0071.ch014
s
?1
3
P3
3
P2
75.5
3
57.5 12.1
3
3
58542
77288
3
3
(Columns)
10.4 38.2
58.6
r
86414
5
5
7J? 5
20922
31405 D2
5
F
Percentage Composition
C H E M I S T R Y
15.2 16.9
13.1
P5 P6
10.9
11.1
*S1 !S2 *S3 *S4
19.3 17.0 16.8
10.8
T h e t o t a l effect is c o m p l i c a t e d a n d m u s t b e d e s c r i b e d b y the eigenvalues of the w h o l e m a t r i x . S o m e of the o f f - d i a g o n a l elements are l a r g e . C o n sider, for e x a m p l e , the states c a l l e d P 3 a n d P 6 . T h e d i a g o n a l elements 3
are a b o u t 8000 c m .
3
apart, b u t t h e y are c o n n e c t e d b y a n element of over
- 1
18,000 w h i c h w o u l d p r o d u c e a
first-order
p e r t u r b a t i o n of over
40,000.
T h i s w o u l d p u s h the P 6 state b e l o w the D states at a r o u n d 30,000. B u t 3
the
5
5
D states also i n t e r a c t w i t h P 6 , a n d the result of p u s h i n g the P 6 3
state t h r o u g h the
r ,
3
D states c a n b e t h o u g h t of as a n exchange, the P 6 3
b e c o m i n g a D . H o w e v e r , the D ' s also i n t e r a c t w i t h the g r o u n d state F , r ,
5
7
a n d the final result is a l a r g e m i x i n g of P 6 a n d F e v e n t h o u g h there is 3
7
?
no off-diagonal element directly connecting them. T h e c o m p o s i t i o n s of the levels are g i v e n i n T a b l e I I I . N o n e of the levels except the h i g h e s t is p u r e i n terms of L S basis states. T h e l e v e l c a l l e d P 6 a c t u a l l y contains m o r e of the 3
state.
7
F state t h a n does the g r o u n d
S i n c e the LS designations h a v e l i t t l e m e a n i n g , i t seems best to
r e t a i n the l a b e l F for the g r o u n d state because it t h e n corresponds better 7
w i t h the other
G
7
F levels of different / .
I n the same w a y the P 3 state 3
w h i c h is p u s h e d u p b e c o m e s m i x e d u p w i t h the S states a n d is q u i t e X
i m p u r e . F o r the r e m a i n i n g levels the largest c o m p o n e n t agrees w i t h the L S designations, b u t the i m p u r i t i e s are s t i l l a p p r e c i a b l e . T h e l e v e l p r o p erties are not s t r i c t l y those i m p l i e d b y the d e s i g n a t i o n . the L S selection r u l e AL =
F o r example,
0, ± : 1 f o r b i d s transitions f r o m Ρ states to F
states, b u t since the F l e v e l of P u I contains a l a r g e a m o u n t of D state 7
G
i t c a n c o m b i n e w i t h a Ρ state w i t h c o n s i d e r a b l e i n t e n s i t y .
In Lanthanide/Actinide Chemistry; Fields, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1967.
14.
Electronic
F R E D
for J =
0 L e v e l s of f V
46233
187
Structure
427J2
for P u I 9178
P5
131005
P6
3
3
67757
62196
'S2
*S3
35881 >S4
52.0
Downloaded by UNIV OF ARIZONA on November 12, 2012 | http://pubs.acs.org Publication Date: June 1, 1967 | doi: 10.1021/ba-1967-0071.ch014
13.7
11.3
15.9 11.1
20.5
19.4
11.6
48.8 52.1
18.2 87.4 13.3
20.3 18.3 19.8
10.5 A n o t h e r p r o p e r t y w h i c h is affected
54.9 19.0
b y i m p u r i t i e s is the
w h i c h is g i v e n b y the s u m of the squares of the eigenvector e a c h m u l t i p l i e d b y the L S g-factor for that c o m p o n e n t .
g-value,
components
I n g e n e r a l , the
g-value is not that of a p u r e L S state b u t a n i n t e r m e d i a t e state. T h i s is v a l u a b l e i n i d e n t i f y i n g e x p e r i m e n t a l levels w i t h c a l c u l a t e d levels, espe c i a l l y w h e r e there are a n u m b e r of close levels w h i c h c a n change w i t h s m a l l changes i n the parameters.
order
T h e converse is not necessarily
t r u e : i f a m e a s u r e d g-value is near a p u r e L S g-value, i t does not neces s a r i l y i m p l y that the l e v e l is n e a r l y p u r e . A n e x a m p l e of this is the lowest n o n z e r o l e v e l of P u I, F 7
U
w h i c h has an L S g-factor of 1.5012 a n d w a s
m e a s u r e d to h a v e a g-value of 1.4975 ( 9 ) . the l e v e l c a l l e d F 7
5
t
D e s p i t e this close agreement
is o n l y 6 5 % p u r e . M o s t of the r e m a i n d e r is D r>
P i , b o t h of w h i c h h a v e L S g-factors of 1.5012. A n y m i x t u r e of
7
and
t
F , Di, t
r >
a n d Ρχ has a g-value of 1.5012, a n d so the g-value i n this case gives no 3
i n f o r m a t i o n about the c o m p o s i t i o n of the l e v e l . T h e m e a s u r e d g-value of a l e v e l gives e v i d e n c e for the i n t e r p r e t a t i o n w h i c h is often necessary b u t sometimes insufficient a n d does not r e p l a c e c a l c u l a t i o n . T h e r e w i l l be a separate energy m a t r i x for e a c h / - v a l u e , s i m i l a r to T a b l e I I , i n v o l v i n g the same set of electrostatic a n d s p i n - o r b i t parameters b u t w i t h different coefficients for e a c h m a t r i x element.
F o r the m i d d l e
range of / there are m a n y levels. F o r e x a m p l e , there are 46 levels for f , 6
7 =
4, w h i c h means that the energies for / =
4 are g i v e n b y the e i g e n
values of a 46 X 46 m a t r i x , a n d the eigenvectors ponents.
A n average l e v e l i n the configuration f
6
h a v e u p to 46 c o m has m a n y
components
In Lanthanide/Actinide Chemistry; Fields, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1967.
188
L A N T H A N I D E / A C T I N I D E
w i t h no e s p e c i a l l y d o m i n a n t c o m p o n e n t , c a l l the l e v e l b y a n L S t e r m s y m b o l .
C H E M I S T R Y
a n d i t is meaningless to t r y to I t c a n o n l y b e d e s c r i b e d b y its
e n e r g y a n d a s t r i n g of n u m b e r s s p e c i f y i n g the m a g n i t u d e s of the c o m ponents.
T h e r e is n o t h i n g a m b i g u o u s a b o u t this d e s c r i p t i o n , a n d
one
c a n c a l c u l a t e p r o p e r t i e s of the c o n f i g u r a t i o n s u c h as g-values a n d i n t e n s i ties of transitions. It w o u l d b e u s e f u l a n d c o n v e n i e n t to h a v e a p h y s i c a l l y m o r e m e a n i n g f u l d e s c r i p t i o n for e a c h l e v e l , a n d i t is of interest to see i f another c o u p l i n g scheme m i g h t b e better—i.e., h a v i n g a n energy m a t r i x w h i c h is m o r e d i a g o n a l . Downloaded by UNIV OF ARIZONA on November 12, 2012 | http://pubs.acs.org Publication Date: June 1, 1967 | doi: 10.1021/ba-1967-0071.ch014
T h e energy
matrix shown i n T a b l e II can be
d i v i d e d into
sub-
matrices as i n d i c a t e d i n F i g u r e 2. T h e r e are square sub-matrices a l o n g the d i a g o n a l c o n t a i n i n g states of the same S a n d L h a v i n g d i a g o n a l a n d o f f - d i a g o n a l elements d e t e r m i n e d b y b o t h the electrostatic
parameters
a n d the s p i n - o r b i t p a r a m e t e r . T h e r e are r e c t a n g u l a r sub-matrices h a v i n g o n l y o f f - d i a g o n a l elements c o n n e c t i n g terms of adjacent S a n d L, deter m i n e d o n l y b y the s p i n - o r b i t p a r a m e t e r , a n d there are r e c t a n g u l a r s u b matrices w h i c h are f u r t h e r o f f - d i a g o n a l a n d c o n t a i n o n l y zeros. S i n c e the electrostatic parameters are i n g e n e r a l l a r g e r t h a n the s p i n - o r b i t p a r a m e ter, the l a r g e o f f - d i a g o n a l elements l i e w i t h i n the square s u b - m a t r i c e s , as i n the case of the P 3 - P 6 i n t e r a c t i o n m e n t i o n e d above. 3
3
another c o u p l i n g scheme for the c o n f i g u r a t i o n f
I n l o o k i n g for
one is h a n d i c a p p e d b y
the difficulty that the c o n f i g u r a t i o n contains o n l y i d e n t i c a l particles w h i c h m u s t b e t r e a t e d e q u i v a l e n t l y . H e n c e , the o n l y other c o u p l i n g p o s s i b i l i t y is /'/—i.e., the zero-order c o m b i n a t i o n s of / / Γ )
states are c o n s i d e r e d as m a d e u p of v a r i o u s
and f / 7
2
electrons.
2
T h e m a t r i x elements of
these
states l i e a l o n g the d i a g o n a l w i t h m a g n i t u d e s g i v e n b y v a r i o u s m u l t i p l e s of the s p i n - o r b i t s p l i t t i n g of one / - e l e c t r o n . actions b e t w e e n
the electrons
must b e
T h e n the electrostatic i n t e r
added, w h i c h will
contribute
o f f - d i a g o n a l elements not r e s t r i c t e d to s m a l l sub-matrices near the d i a g o n a l . T h e result for 5 f is a n e n e r g y m a t r i x i n w h i c h the d i a g o n a l elements v
are s m a l l e r a n d the o f f - d i a g o n a l elements l a r g e r t h a n for L S c o u p l i n g . T h i s m a t r i x is a t r a n s f o r m a t i o n of the L S m a t r i x a n d has the same e i g e n values, b u t because of the l a r g e r a n d m o r e n u m e r o u s o f f - d i a g o n a l
ele
ments the eigenvectors w i l l b e s p r e a d over m o r e components, w h i c h is not w h a t w e are l o o k i n g for.
It m u s t be c o n c l u d e d that the L S scheme
is the best that c a n be d o n e w i t h the 5f
configurations of the actinides.
F o r configurations w h i c h i n v o l v e several different types of electrons a d d e d to the f
core, s u c h as 5f 7s7p, 6
the g e n e r a l a p p r o a c h is s i m i l a r b u t
m o r e c o m p l i c a t e d . T h e r e are m o r e interactions a n d m o r e levels a n d also m o r e c o u p l i n g p o s s i b i l i t i e s . T h e outer electrons c a n be a d d e d to the core one at a t i m e , or first, t h e y c a n b e c o m b i n e d
f
together, a n d the
resultant a d d e d to the core. I n a n y case there are l a r g e e n e r g y m a t r i c e s w h o s e elements are g i v e n b y v a r i o u s c o m b i n a t i o n s of the electrostatic
In Lanthanide/Actinide Chemistry; Fields, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1967.
14.
F R E D
Electronic
189
Structure
a n d s p i n - o r b i t parameters. T h e p r o b l e m of i n t e r p r e t a t i o n is to find a set of p a r a m e t e r s g i v i n g eigenvalues w h i c h agree as closely as possible w i t h the e x p e r i m e n t a l energy levels a n d agree i n other p r o p e r t i e s s u c h as g-values, h y p e r f i n e s t r u c t u r e , a n d so o n . I f there is g o o d agreement, t h e levels c a n b e i d e n t i f i e d w i t h the c o n f i g u r a t i o n , a n d t h e values of t h e parameters t h e n d e s c r i b e the c o n f i g u r a t i o n . T h e first p r o b l e m is to
find
Downloaded by UNIV OF ARIZONA on November 12, 2012 | http://pubs.acs.org Publication Date: June 1, 1967 | doi: 10.1021/ba-1967-0071.ch014
the e x p e r i m e n t a l levels.
ELECTROSTATIC SPIN-ORBIT
Figure 2.
PARAMETERS
PARAMETER
Schematic algebraic energy matrix of î ,J = 6
0
Actinide Spectroscopy T h e spectroscopy of t h e actinides is difficult because these elements are u s u a l l y h a z a r d o u s , r e a c t i v e , scarce, a n d h a v e c o m p l e x spectra.
A
s u i t a b l e l i g h t source w h i c h has b e e n d e v e l o p e d is s h o w n i n F i g u r e 3. I t consists of a short l e n g t h of q u a r t z t u b i n g i n t o w h i c h is s u b l i m e d a b o u t 200 m i c r o g r a m s of t h e e l e m e n t as i o d i d e , after w h i c h the t u b e is sealed off u n d e r v a c u u m . M i c r o w a v e e x c i t a t i o n p r o d u c e s a b r i g h t source w h i c h lasts f o r m a n y h o u r s , gives s h a r p s p e c t r u m lines, a n d c a n also b e o p e r a t e d i n a m a g n e t f o r Z e e m a n exposures. quiring high resolving power
B e c a u s e there are m a n y l i n e s , r e -
a n d also h i g h a c c u r a c y i n w a v e l e n g t h
measurements, a l a r g e g r a t i n g s p e c t r o g r a p h is most s u i t a b l e . T h e A r -
In Lanthanide/Actinide Chemistry; Fields, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1967.
190
L A N T H A N I D E / A C T I N I D E
C H E M I S T R Y
g o n n e s p e c t r o g r a p h is c o n v e n i e n t , because it covers a l a r g e range i n one exposure.
M o s t w a v e l e n g t h measurements h a v e b e e n m a d e m a n u a l l y
w i t h t h e a i d of a d i g i t a l c o m p u t e r .
E x i s t i n g e q u i p m e n t c a n b e s a i d to
b e a d e q u a t e i n the p h o t o g r a p h i c r e g i o n , b u t there is a n e e d for better
Downloaded by UNIV OF ARIZONA on November 12, 2012 | http://pubs.acs.org Publication Date: June 1, 1967 | doi: 10.1021/ba-1967-0071.ch014
facilities i n the i n f r a r e d , w h i c h is a n i m p o r t a n t r e g i o n for the actinide
CM
-CAVITY
-MICROWAVES IN DISCHARGE TUBE LIGHT
ELECTRODELESS DISCHARGE in M I C R O W A V E C A V I T Y
OUT
TUBE
Figure 3. Light source commonly used to excite actinide spectra I n the e m p i r i c a l t e r m analysis of a s p e c t r u m , the lines are o r g a n i z e d i n t o a n a r r a y i n w h i c h the r o w s are c h a r a c t e r i z e d b y the t e r m values of o d d p a r i t y a n d the c o l u m n s b y the t e r m values of e v e n p a r i t y (or v i c e versa).
E a c h element of the a r r a y is defined b y the difference
between
a n o d d a n d a n e v e n t e r m a n d thus represents the w a v e n u m b e r of a transition.
T h e p r o b l e m i s : g i v e n the o b s e r v e d w a v e n u m b e r s ,
find
the
t e r m values. F o r spectra of o n l y m o d e r a t e c o m p l e x i t y this was d o n e b y l o o k i n g for constant differences—i.e.,
p a i r s of lines for w h i c h the differ-
ence i n w a v e n u m b e r is constant w i t h i n e x p e r i m e n t a l error. If a g i v e n d i f ference is r e p e a t e d a n u m b e r of times, i t c a n n o t be a t t r i b u t e d to c h a n c e b u t m u s t represent a t e r m difference—i.e., the pairs of transitions a l l e n d o n the same p a i r of terms. I n v e r y c o m p l e x spectra c o n t a i n i n g thousands of lines there are m i l l i o n s of possible differences f o r m i n g a p r a c t i c a l l y
In Lanthanide/Actinide Chemistry; Fields, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1967.
14,
F R E D
continuous
Electronic
191
Structure is r e p e a t e d m a n y times
by
c h a n c e w i t h i n e x p e r i m e n t a l error. H e n c e , the r e a l differences cannot
d i s t r i b u t i o n , a n d a n y difference
be
d i s t i n g u i s h e d a b o v e the noise.
M o r e i n f o r m a t i o n t h a n just
wavenumbers
is n e e d e d , a n d i n a d d i t i o n to the l a b o r of extensive w a v e l e n g t h
measure
ments the analysis of a c t i n i d e spectra requires d a t a o n the Z e e m a n effect, h y p e r f i n e structure, isotope shift, t e m p e r a t u r e
classification, intensities,
a b s o r p t i o n or self-reversal b e h a v i o r , a n d t h e o r e t i c a l p r e d i c t i o n s . Zeeman E f f e c t . of i n f o r m a t i o n .
T h e Z e e m a n effect is the most u s e f u l single source
T y p i c a l patterns are s h o w n i n F i g u r e 4.
I n most cases
Downloaded by UNIV OF ARIZONA on November 12, 2012 | http://pubs.acs.org Publication Date: June 1, 1967 | doi: 10.1021/ba-1967-0071.ch014
these p r o v i d e the / - v a l u e a n d g - v a l u e for e a c h l e v e l i n v o l v e d i n a t r a n s i t i o n . F o r e x a m p l e , one sees i m m e d i a t e l y that the U l i n e Λ6392 is a / ===== 6 ~* / =
6 t r a n s i t i o n , w h i l e the l i n e Λ6395 i s a / =
w i t h g's as d e t e r m i n e d b y m e a s u r i n g the patterns. g-value for the / =
6 -
>
/
=
7 transition,
It turns out that the
6 l e v e l of A6395 is i d e n t i c a l w i t h one of the g-values
for A6392 ( g == 0.751 ) w h i c h s t r o n g l y suggests that b o t h lines e n d o n the same / =
6 l e v e l . It is the l o w e s t l e v e l L 5
6
of U I. N o n e of this c o u l d be
guessed f r o m just l o o k i n g at the t w o no-field lines s h o w n i n the of the patterns.
center
I n a d d i t i o n to i n d i c a t i n g possible r e l a t i o n s h i p s b e t w e e n
v a r i o u s lines, the Z e e m a n
effect shows w h e t h e r
a l i n e belongs to
the
n e u t r a l a t o m or the first i o n . T h i s is because the / - v a l u e s m a y b e i n t e g r a l , i m p l y i n g a n even n u m b e r
of electrons,
i m p l y i n g a n o d d n u m b e r of electrons.
or t h e y m a y be h a l f - i n t e g r a l ,
T h e m i c r o w a v e source gives b o t h
types, b u t the e x c i t a t i o n is not h i g h e n o u g h for t h i r d spectra.
Figure 4. Zeeman patterns for two lines of U I The no-field lines are shown in the middle Hyperfine
Structure.
A n o t h e r source of i n f o r m a t i o n is
hyperfine
structure. F i g u r e 5 shows t w o lines f r o m the s p e c t r u m of s i n g l y i o n i z e d A m o r i g i n a t i n g f r o m a c o m m o n u p p e r l e v e l a n d e n d i n g o n the t w o lowest levels. It w i l l be seen that f r o m w e l l - r e s o l v e d patterns the l e v e l splittings c a n be d e r i v e d , a n d the / - v a l u e s c a n t h e n be d e d u c e d . O t h e r transitions
In Lanthanide/Actinide Chemistry; Fields, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1967.
192
L A N T H A N I D E / A C T I N I D E
C H E M I S T R Y
to the same levels m u s t g i v e the same l e v e l s p l i t t i n g s a n d / - v a l u e s , a n d so the h y p e r f i n e s t r u c t u r e c a n be u s e d i n the same w a y as Z e e m a n d a t a to find r e l a t e d lines. T h i s a p p r o a c h was u s e d to m a k e a p a r t i a l t e r m analysis of A m I a n d A m I I (7).
T h e m e t h o d is r e s t r i c t e d to lines s h o w i n g
h y p e r f i n e s t r u c t u r e i n the o d d Ζ elements. "/2
Downloaded by UNIV OF ARIZONA on November 12, 2012 | http://pubs.acs.org Publication Date: June 1, 1967 | doi: 10.1021/ba-1967-0071.ch014
22509 J - 3
:
I3
/o-
,
/
2
I
2
~\ 9/ 2
-9/
2
7/ 2
\-
3/ 2
X444I λ 5020
0
1000
Figure 5.
Hyperfine
-1000
-2000
structure of two lines of Am II
The bar diagram at the bottom (scale in 10~ cm.' ) has been calcu lated from the level splittings averaged from a number of lines 3
1
Isotope S h i f t . F u r t h e r i n f o r m a t i o n comes f r o m isotope shift, i l l u s t r a t e d i n F i g u r e 6 for a l i n e of U I. I n a n e m p i r i c a l t e r m analysis the isotope shift of a l e v e l c a n b e c o n s i d e r e d a c h a r a c t e r i s t i c p r o p e r t y i n the same w a y as the g-value or h y p e r f i n e s p l i t t i n g . O n e cannot d e t e r m i n e the isotope shifts of the t w o levels i n v o l v e d i n a t r a n s i t i o n f r o m the one
In Lanthanide/Actinide Chemistry; Fields, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1967.
14.
Electronic
F R E D
Structure
193
l i n e alone, i n contrast to g-values a n d h y p e r f i n e s p l i t t i n g s , b u t o n l y t h e difference
i n shifts b e t w e e n
the levels.
T h e s i t u a t i o n is the same
as
d e t e r m i n i n g energy levels f r o m a t r a n s i t i o n , w h i c h gives o n l y the e n e r g y difference b e t w e e n the levels. Isotope shifts present another i n d e p e n d e n t p r o p e r t y w i t h w h i c h to test for constant differences—i.e., the
difference
i n isotope shifts for p a i r s of lines e n d i n g o n the same p a i r of levels m u s t be constant, just l i k e the p a i r s of w a v e n u m b e r s of the lines.
Moreover,
the isotope shift of a l e v e l is i m p o r t a n t i n i n t e r p r e t i n g the l e v e l , as d i s cussed b e l o w . Downloaded by UNIV OF ARIZONA on November 12, 2012 | http://pubs.acs.org Publication Date: June 1, 1967 | doi: 10.1021/ba-1967-0071.ch014
Intensities.
F i n a l l y , there are intensities a n d the w a y t h e y v a r y u n d e r
different c o n d i t i o n s .
T h e s t r o n g lines t e n d to i n v o l v e l o w levels, b u t
the c o r r e l a t i o n is not close. I n a d d i t i o n the s t r o n g lines t e n d to l i e a l o n g the d i a g o n a l of a m u l t i p l e t so that t h e y d o not s h o w m a n y differences.
constant
F o r these reasons i t is not f r u i t f u l to attempt a n analysis
w i t h just the strong lines. A better a p p r o a c h is to b e g i n w i t h lines w h i c h m u s t i n v o l v e l o w levels because t h e y a p p e a r i n a b s o r p t i o n i n a f u r n a c e or are self-reversed i n a hot electrodeless d i s c h a r g e tube.
The number
of s u c h lines is u s u a l l y large, a n d one s t i l l r e q u i r e s the other i n f o r m a t i o n .
Figure 6.
Isotope shift in χ 4244 of U I
Assigning Configuration W i t h the a i d of a l l these d a t a a n d m u c h tedious w o r k one
makes
a n analysis, e n d i n g u p w i t h most of the strong lines classified a n d p e r h a p s h a l f of the w e a k lines. T h i s e m p i r i c a l analysis gives the positions of some h u n d r e d s of levels w i t h / - v a l u e s a n d other p r o p e r t i e s , the latter u s u a l l y far f r o m complete.
T h e p r o b l e m t h e n b e c o m e s one of i n t e r p r e t a t i o n . O f
course, o n the basis of p r e v i o u s experience a n d t h e o r e t i c a l p r e d i c t i o n s one
In Lanthanide/Actinide Chemistry; Fields, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1967.
194
L A N T H A N I D E / A C T I N I D E
C H E M I S T R Y
k n o w s w h a t configurations to expect a n d has a r o u g h i d e a of the o r d e r i n w h i c h t h e y w i l l l i e . H o w e v e r , the c o m p l e x i t y of the levels is so great that these expectations are l i t t l e h e l p i n assignments. T h e Z e e m a n d a t a , w h i c h are i n d i s p e n s a b l e i n the analysis, g i v e the / - v a l u e s a n d g-values, b u t t h e y say n o t h i n g about configurations.
It is i m p o s s i b l e to assign
configurations f r o m the Z e e m a n d a t a alone since e a c h c o n f i g u r a t i o n has m a n y levels, the configurations o v e r l a p , a n d t h e y often interact. T h e most u s e f u l i n f o r m a t i o n for a s s i g n i n g configurations comes f r o m
Downloaded by UNIV OF ARIZONA on November 12, 2012 | http://pubs.acs.org Publication Date: June 1, 1967 | doi: 10.1021/ba-1967-0071.ch014
isotope shifts. I n the h e a v y elements isotope shift is p u r e l y a n u c l e a r v o l u m e effect. W h i l e the size of the nucleus is s m a l l c o m p a r e d w i t h the size of a n a t o m , the C o u l o m b a t t r a c t i o n b e t w e e n e l e c t r o n becomes enormous
the nucleus a n d a n
at s m a l l distances, a n d deviations f r o m a
C o u l o m b p o t e n t i a l near the center of the a t o m h a v e a m e a s u r a b l e effect o n the average e n e r g y of the electron.
T h i s w i l l b e effective
o n l y for
those electrons h a v i n g a p r o b a b i l i t y d i s t r i b u t i o n w h i c h r e m a i n s finite as r —» 0, that is, ^-electrons.
T h e effect is a d d i t i v e a n d is a b o u t t w i c e as
m u c h for the c o n f i g u r a t i o n 7sr as for 7 s.
( T h e effect for the i n n e r s-elee-
trons is m u c h l a r g e r b u t u n o b s e r v a b l e since these r e m a i n u n d i s t u r b e d d u r i n g a n o p t i c a l t r a n s i t i o n . ) T h e m a g n i t u d e of the effect also
depends
o n w h a t other outer electrons are present because of s h i e l d i n g . If t w o 7s electrons are present, e a c h shields the other, i n c r e a s i n g the p r o b a b i l i t y d i s t r i b u t i o n p e r e l e c t r o n for l a r g e r a n d d e c r e a s i n g i t at s m a l l r. the isotope shift for 7s
2
Hence,
is o n l y a b o u t 1.6 that of a single 7s electron.
The
5f electrons are also effective i n s h i e l d i n g the 7s e l e c t r o n since the 5 f s stay i n s i d e the r a d o n core a n d t e n d to squeeze the 7s f u r t h e r outside, t h e r e b y r e d u c i n g the 7s charge d e n s i t y at the n u c l e u s .
T h e a m o u n t of
this s h i e l d i n g is p r o p o r t i o n a l to the n u m b e r of 5/ electrons present.
The
other outer electrons w h i c h m a y be present also c o n t r i b u t e to the s h i e l d i n g of the 7s e l e c t r o n b u t to a lesser extent t h a n the 5 f s because t h e y e x t e n d f u r t h e r out.
H e n c e , i f a 5f e l e c t r o n is c h a n g e d to a 6d electron,
the net s h i e l d i n g is decreased, a n d i f the 6d is c h a n g e d to a 7s or 7 p , it is s t i l l f u r t h e r r e d u c e d . H e n c e , the isotope shift is i n c r e a s e d i n this process: 5f7s
2
«! 14 2 12 ec Lu LU
h-
10 8 6 4 2 0
Figure
9.
Comparison of observed and levels of i s for Pu I G
take F
2
as the i n d e p e n d e n t p a r a m e t e r a n d to fix F
r a t i o to F . F o r the 5f e l e c t r o n i n h y d r o g e n F / F 2
0.0161.
4
4
and F
6
i n a constant
== 0.142 a n d F / F
2
6
2
==
If one uses the F's i n this r a t i o , one c a n fit the o b s e r v e d s p e c t r a
fairly well well).
calculated
2
(of
course, i t is necessary to a d d the s p i n - o r b i t e n e r g y as
T h e values of F
2
are s h o w n i n F i g u r e 8.
derived by Fields, Wybourne, and Carnall T h e linear dependence
(4)
o n a t o m i c n u m b e r is
s t r i k i n g a n d is the k i n d of r e l a t i o n s h i p one g e n e r a l l y hopes to o b t a i n for the a c t i n i d e s . H o w e v e r , these values of F t i o n of h y d r o g e n i c ratios for F
4
2
are b a s e d o n the a s s u m p
a n d F . T h e g o o d fit does not p r o v e the 6
h y d r o g e n i c r a t i o b u t just the i n s e n s i t i v i t y of the o b s e r v e d terms to the r a t i o . T h e h i g h e r terms o b s e r v e d i n the n e u t r a l atoms for f V d o not fit those c a l c u l a t e d for these ratios.
F i g u r e 9 shows the c o m p a r i s o n
P u I. It is s t i l l too e a r l y to g i v e better values for F
4
and F
6
for
i n most cases.
T h e h y d r o g e n i c a p p r o x i m a t i o n shows that H u n d ' s r u l e is o b e y e d for f Y , w h i c h is sufficient to i d e n t i f y the l o w e s t t e r m of the c o n f i g u r a t i o n .
In Lanthanide/Actinide Chemistry; Fields, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1967.
14.
F R E D
Electronic
Structure
199
B e c a u s e o f t h e d i f f i c u l t y i n i d e n t i f y i n g o b s e r v e d levels w i t h c a l c u l a t e d levels i n t h e configurations f V , i t is i n s t r u c t i v e to c o n s i d e r t h e c o n figurations
I n these configurations there are m o r e levels to b e fitted
fds . 2
a n d m o r e p a r a m e t e r s to b e d e t e r m i n e d , b u t o n e has t h e a d v a n t a g e of a m o d e l w h i c h is a f a i r l y g o o d a p p r o x i m a t i o n . T h i s m o d e l is J i / c o u p l i n g , t r e a t e d b y J u d d ( 1 0 ) . I t is a s s u m e d t h a t t h e s p i n - o r b i t i n t e r a c t i o n of the d - e l e c t r o n is l a r g e r t h a n t h e electrostatic f-d i n t e r a c t i o n . T h e n o n e has t w o levels, d / 3
2
each level of the f
a n d d >/ s e p a r a t e d b y t h e D i n t e r v a l , c o u p l e d t o r
angular momentum J
Downloaded by UNIV OF ARIZONA on November 12, 2012 | http://pubs.acs.org Publication Date: June 1, 1967 | doi: 10.1021/ba-1967-0071.ch014
2
2
core. T h e core or p a r e n t levels are c h a r a c t e r i z e d b y
N
L 9
w h i c h c o m b i n e s w i t h t h e / o f t h e ^ - e l e c t r o n to
p r o d u c e a t o t a l a n g u l a r m o m e n t u m / h a v i n g values f r o m | / i — /| to / i + /. F i g u r e 10 shows t h e l o w o d d levels of P u I a r r a n g e d a c c o r d i n g to this c o u p l i n g scheme.
The f
3
p a r e n t terms
6
H a n d °F are k n o w n f r o m
c r y s t a l s p e c t r a ( 2 ) , a n d t h e positions of these terms s h o u l d b e s i m i l a r i n the free a t o m . T h e o b s e r v e d levels o f P u I a p p e a r i n t w o groups
about
e a c h p a r e n t l e v e l . T h e lowest set consists of a d%/ e l e c t r o n c o u p l e d to a 2
β
Η / 2 p a r e n t , g i v i n g / - v a l u e s of 1 to 4. T h e levels w i t h i n e a c h set a r e Γ)
s p l i t b y t h e electrostatic f-d i n t e r a c t i o n , w h i c h is seen to b e s m a l l e r t h a n the m e a n d%/ -d / 2
5
2
separation.
T h e a d v a n t a g e of this m o d e l f o r t h e
a c t i n i d e s is that t h e e n e r g y m a t r i x is m o r e d i a g o n a l , t h e eigenvectors p u r e r , a n d t h e g-values closer to t h e J j l i m i t t h a n for t h e same levels x
d e s c r i b e d i n LS c o u p l i n g . T h i s is a r e a l a d v a n t a g e i n a t t e m p t i n g t o c o r r e late o b s e r v e d a n d c a l c u l a t e d levels. I t is t r u e t h a t i n p r a c t i c e t h e c o u p l i n g is i n t e r m e d i a t e , b u t i n t h e process of c h a n g i n g t h e p a r a m e t e r s to p r o v i d e
1/2
3/2
Figure 10.
5/2
7/2
The configuration
9/2
î ds
M/2
5
2
13/2
of Pu I in ] j t
coupling
In Lanthanide/Actinide Chemistry; Fields, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1967.
15/2
Downloaded by UNIV OF ARIZONA on November 12, 2012 | http://pubs.acs.org Publication Date: June 1, 1967 | doi: 10.1021/ba-1967-0071.ch014
200
L A N T H A N I D E / A C T I N I D E
Figure
11.
of f V and F M s and actinides
Approximate relative positions figurations of neutral lanthanides
a better fit b e t w e e n
C H E M I S T R Y
calculated and observed
con-
2
levels one has a better
i n s i g h t i n t o h o w the levels s h o u l d be o r g a n i z e d . I n the case of the c o n figuration
/ V , w h e r e o n l y LS c o u p l i n g a p p l i e s , the c o r r e l a t i o n is m o r e
difficult. T h e hj c o u p l i n g scheme is most a p p l i c a b l e for configurations h a v i n g one e l e c t r o n outside the f core ( other t h a n s ). I n P u I, for instance, one 2
c a n r e c o g n i z e the levels of f V p i n the same w a y as i n F i g u r e 10, f r o m the existence of groups because of the a d d i t i o n of a p\/
2
c o u p l e d to the f
core.
or p / 3
2
electron
F o r most elements the levels are s t i l l too i n c o m -
p l e t e at present to assign m a n y of t h e m w i t h confidence a c c o r d i n g to Jij q u a n t u m n u m b e r s for the a p p r o p r i a t e c o n f i g u r a t i o n , a n d the parameters r e m a i n u n d e t e r m i n e d . I n these cases w i t h o u t either a J j or a n L S a s s i g n t
m e n t of the e x i s t i n g levels one cannot b e c e r t a i n that they b e l o n g to a
In Lanthanide/Actinide Chemistry; Fields, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1967.
14.
Electronic
F R E D
given configuration.
201
Structure
T h e r e is one fortunate c i r c u m s t a n c e w h i c h makes
the i d e n t i f i c a t i o n of the lowest t e r m of a c o n f i g u r a t i o n q u i t e p r o b a b l e , n a m e l y the fact that for most configurations H u n d ' s r u l e is v a l i d . I n the case of fds
2
of P u I s h o w n i n F i g u r e 10 i n J i / c o u p l i n g , the lowest l e v e l
r e s u l t i n g f r o m c o u p l i n g a 4 / 2 e l e c t r o n to e a c h l e v e l of the lowest p a r e n t t e r m , H / - i 5 / 2 , is also a m e m b e r of the lowest fds 6
5
t e r m expressed i n
2
2
L S coupling, K . i . 7
4
T h u s , i n spite of the fact that for most levels J i /
0
c o u p l i n g is closer t h a n L S , for the lowest t e r m the t w o d e s c r i p t i o n s are e q u i v a l e n t . T h e p u r i t y is h i g h for each l e v e l of the H u n d s r u l e t e r m , Downloaded by UNIV OF ARIZONA on November 12, 2012 | http://pubs.acs.org Publication Date: June 1, 1967 | doi: 10.1021/ba-1967-0071.ch014
a n d the o b s e r v e d g-value is close to the p u r e L S g-factor.
The
lowest
t e r m of a configuration c a n u s u a l l y be r e c o g n i z e d , a n d the r e l a t i v e p o s i tions of different configurations established. F o r the p h y s i c a l a n d c h e m i c a l properties of atoms the e l e c t r o n c o n figurations
of most interest are the lowest.
there is a c o m p e t i t i o n b e t w e e n 5f 7s N
2
I n the n e u t r a l a c t i n i d e atoms
a n d 5 ~ 6d7s . N
1
2
Some actinides h a v e
one of these as the l o w e r a n d some h a v e the other. A n analogous s i t u a t i o n exists for the configurations 4 f 6 s v
a n d 4*~ 5