Enantioselective Pd-Catalyzed Hydrogenation of Fluorinated Imines

ACS eBooks; C&EN Global Enterprise .... This material is available free of charge via the Internet at http://pubs.acs.org. ..... Convenient Access to ...
0 downloads 0 Views 196KB Size
ORGANIC LETTERS

Enantioselective Pd-Catalyzed Hydrogenation of Fluorinated Imines: Facile Access to Chiral Fluorinated Amines

2010 Vol. 12, No. 21 5075-5077

Mu-Wang Chen, Ying Duan, Qing-An Chen, Duo-Sheng Wang, Chang-Bin Yu, and Yong-Gui Zhou* State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China [email protected] Received August 26, 2010

ABSTRACT

An enantioselective hydrogenation of simple fluorinated imines has been developed using Pd(OCOCF3)2/(R)-Cl-MeO-BIPHEP as a catalyst, and up to 94% ee was achieved. This method provides an efficient route to enantioenriched fluorinated amines.

Because of the unusual and often profound effects on physical and biological properties imparted by introduction of the fluorine atom into organic molecules,1 perfluoroalkylamines have become important building blocks in various fluorinated biologically active compounds, and asymmetric synthesis of chiral perfluoroalkylamines is a significant task of organic synthesis.2 In the past decades, some progress on asymmetric synthesis of perfluoroalkylamines has been (1) (a) Mikami, K.; Itoh, Y.; Yamanaka, M. Chem. ReV. 2004, 104, 1. (b) Asymmetric Fluoroorganic Chemistry; Ramachandran, P. V., Ed.; ACS Symposium Series; American Chemical Society: Washington, DC, 2000. (c) Kirsch, P. Modern Fluoroorganic Chemistry: Synthesis, ReactiVity, Applications; Wiley-VCH: Weinheim, 2004. (d) Muller, K.; Faeh, C.; Diederich, F. Science 2007, 317, 1881. (e) Fluorine in Medicinal Chemistry and Chemical Biology; Ojima, I., Ed.; Blackwell: Oxford, 2009. (f) Krska, S. W.; Mitten, J. V.; Dormer, P. G.; Mowrey, D.; Machrouhi, F.; Sun, Y.; Nelson, T. D. Tetrahedron 2009, 65, 8987. (2) For recent reviews, see: (a) Fluorine-Containing Synthons; Soloshonok, V. A., Ed.; ACS Symposium Series 911; American Chemical Society: Washington, DC, 2005. (b) Current Fluoroorganic Chemistry. New Synthetic Directions, Technologies, Materials and Biological Applications; Soloshonok, V. A., Mikami, K., Yamazaki, T., Welch, J. T., Honek, J., Eds.; ACS Symposium Series 949; American Chemical Society: Washington, DC, 2006. (c) Uneyama, K. Organofluorine Chemistry; Blackwell: Oxford, 2006. (d) Bucsi, I.; To¨ro¨k, B.; Marco, A. I.; Rasul, G.; Prakash, G. K. S.; Olah, G. A. J. Am. Chem. Soc. 2002, 124, 7728. (e) Ma, J.-A.; Cahard, D. Chem. ReV. 2004, 104, 6119. 10.1021/ol1020256  2010 American Chemical Society Published on Web 10/04/2010

achieved by employing substrate transformation,3 catalytic asymmetric reduction,4 and enantioselective addition.5 We envision that asymmetric hydrogenation of the corresponding fluorinated ketimines is one of the most convenient routes (3) (a) Pirkle, W. H.; Hauske, J. R. J. Org. Chem. 1977, 42, 2436. (b) Wang, Y.; Mosher, H. S. Tetrahedron Lett. 1991, 32, 987. (c) Ishii, A.; Higashiyama, K.; Mikami, K. Synlett 1997, 1381. (d) Soloshonok, V. A.; Ono, T. J. Org. Chem. 1997, 62, 3030. (e) To¨ro¨k, B.; Prakash, G. K. S. AdV. Synth. Catal. 2003, 345, 165. (f) Soloshonok, V. A.; Yasumoto, M. J. Fluor. Chem. 2007, 128, 170. (g) Hughes, G.; Devine, P. N.; Naber, J. R.; O’Shea, P. D.; Foster, B. S.; McKay, D. J.; Volante, R. P. Angew. Chem., Int. Ed. 2007, 46, 1839. (h) Ni, C.; Liu, J.; Zhang, L.; Hu, J. Angew. Chem., Int. Ed. 2007, 46, 786. (i) Gauthier, J. Y.; Black, W. C.; Courchesne, I.; Cromlish, W.; Desmarais, S.; Houle, R.; Lamontagne, S.; Li, C. S.; Masse´, F.; McKay, D. J.; Ouellet, M.; Robichaud, J.; Truchon, J. F.; Truong, V. L.; Wang, Q.; Percival, D. Bioorg. Med. Chem. Lett. 2007, 17, 4929. (j) Soloshonok, V. A.; Catt, H. T.; One, T. J. Fluor. Chem. 2009, 130, 512. (4) Gosselin, F.; O’Shea, P. D.; Roy, S.; Reamer, R. A.; Chen, C.-Y.; Volante., R. P. Org. Lett. 2005, 7, 355. (5) (a) Prakash, G. K. S.; Mandal, M.; Olah, G. A. Angew. Chem., Int. Ed. 2001, 40, 589. (b) Kawai, H.; Kusuda, A.; Nakamura, S.; Shiro, M.; Shibata, N. Angew. Chem., Int. Ed. 2009, 48, 6324. (c) Li, Y.; Hu, J. Angew. Chem,. Int. Ed. 2005, 44, 5882. (d) Li, Y.; Hu, J. Angew. Chem., Int. Ed. 2007, 46, 2489. (e) Prakash, G. K. S.; Mandal, M.; Olah, G. A. Org. Lett. 2001, 3, 2847. (f) Truong, V. L.; Pfeiffer, J. Y. Tetrahedron Lett. 2009, 50, 1633. (g) Truong, V. L.; Me´nard, M. S.; Dion, I. Org. Lett. 2007, 9, 683. (h) Gosselin, F.; Roy, A.; O’Shea, P. D.; Chen, C.-Y.; Volante, R. P. Org. Lett. 2004, 6, 641. (i) Fries, S.; Pytkowicz, J.; Brigaud, T. Tetrahedron Lett. 2005, 46, 4761. (j) Fustero, S.; del Pozo, C.; Catala´n, S.; Alema´n, J.; Parra, A.; Marcos, V.; Ruano, J. L. G. Org. Lett. 2009, 11, 641.

to obtain chiral amines in terms of simplicity and atom efficiency. However, because of difficulties in the stereoselective synthesis and asymmetric hydrogenation of fluorinated imines, to date only a few examples of the metal-catalyzed asymmetric hydrogenation of perfluoroalkylimines have been reported.6 Uneyama6a,b and Mikami6c described the asymmetric hydrogenation of activated R-fluorinated iminoesters and N-Boc or N-Ac imines with moderate to high enantioselectivity, respectively. For the asymmetric hydrogenation of simple acyclic fluorinated imines, only low conversion and enantioselectivity were obtained using the chiral Ir- or Rh-complexes.6d,e Therefore, developing an efficient and general method to simple fluorinated ketimines and their asymmetric hydrogenation is highly desirable. Herein, we describe the enantioselective hydrogenation of simple fluorinated imines (Scheme 1).

Table 1. Optimization of the Asymmetric Hydrogenation of Imine 1aa

Scheme 1. Asymmetric Hydrogenation of Simple Fluorinated Imines

Perfluoroalkyl ketimines 1 were synthesized according to slightly modified literature procedures.7,8 It is noteworthy that the ketimines 1 are single (Z)-isomers except 1l with a difluoromethyl group. The formation of the single (Z)-isomer may be attributed to hyperconjugative interaction of a lone electron pair of nitrogen into the σ* orbital of the carbon-carbon bond between the imine and Rf group.9,6c Ketimine (1a) was chosen as a model substrate, and Pd(OCOCF3)2/(R)-SynPhos was used as a catalyst10,11 for optimization of reaction conditions. Initial investigations were concentrated on finding optimal solvents, and we found that solvent effect played a crucial role in obtaining both good activity and enantioselectivity (Table 1, entries 1-4), trif(6) (a) Abe, H.; Amii, H.; Uneyama, K. Org. Lett. 2001, 3, 313. (b) Suzuki, A.; Mae, M.; Amii, H.; Uneyama, K. J. Org. Chem. 2004, 69, 5132. (c) Mikami, K.; Murase, T.; Zhai, L.; Kawauchi, S.; Itoh, Y.; Ito, S. Tetrahedron Lett. 2010, 51, 1371. (d) Imamoto, T.; Iwadate, N.; Yoshida, K. Org. Lett. 2006, 8, 2289. (e) Goulioukina, N. S.; Bondarenko, G. N.; Lyubimov, S. E.; Davankov, V. A.; Gavrilov, K. N.; Beletskaya, I. P. AdV. Synth. Catal. 2008, 350, 482. (7) (a) Prakash, G. K. S.; Yudin, A. K. Chem. ReV. 1997, 97, 757. (b) Ohkura, H.; Handa, M.; Katagiri, T.; Uneyama, K. J. Org. Chem. 2002, 67, 2692. (c) Tam, N. T. N.; Magueur, G.; Oure´vitch, M.; Crousse, B.; Be´gue´, J.-P.; Bonnet-Delpon, D. J. Org. Chem. 2005, 70, 699. (d) Ruano, J. L. G.; Alema´n, J.; Catala´n, S.; Marcos, V.; Monteagudo, S.; Parra, A.; del Pozo, C.; Fustero, S. Angew. Chem., Int. Ed. 2008, 47, 7941. (8) (a) Tamura, K.; Mizukami, H.; Maeda, K.; Watanabe, H.; Uneyama, K. J. Org. Chem. 1993, 58, 32. (b) Li, C.-L.; Chen, M.-W.; Zhang, X.-G. J. Fluor. Chem. 2010, 131, 856. (c) Wu, Y.-M.; Li, Y.; Deng, J. J. Fluor. Chem. 2005, 126, 791. (9) Corey, E. J.; Link, J. O.; Sarsha, S.; Shao, Y. Tetrahedron Lett. 1992, 33, 7103. 5076

a Conditions: 0.125 mmol imine 1a, Pd(OCOCF3)2 (4 mol %), chiral ligand (4.8 mol %), 3 mL of solvent, 16 h, rt. b Isolated yield. c Determined by HPLC. d Determined by 1H NMR. e With 2 mol % catalyst. f With 40 mg 4 Å MS. g Conditions: 0.125 mmol imine 1a, [Ir(COD)Cl]2 (1 mol %), (S,S)-f-Binaphane (2.2 mol %), I2 (10 mol %), 24 h.

luoroethanol (TFE) being the most effective solvent. Some chiral bisphosphine ligands were tested, high enantioselectivities were obtained (entries 5-11), and the best result was achieved with (R)-Cl-MeO-BIPHEP L6 (entry 9, 93% ee). The use a lower catalyst loading (2 mol % Pd) did not affect the ee of 2a, but the yield was slightly lower (entry 12), the main reason for which may be the hydrolysis of fluorinated imines. Gratifyingly, when 4 Å MS was added,10b full conversion with the identical enantioselectivity was obtained (entry 13, 93% ee). The Ir/f-Binaphane/I2 system was also tested for the asymmetric hydrogenation of 1a with poor results.12,13 Under the optimized reaction conditions [Pd(OCOCF3)2/ (R)-Cl-MeO-BIPHEP, TFE, 600 psi H2, 4 Å MS and rt], a (10) For recent examples on Pd-catalyzed asymmetric hydrogenation developed by us, see: (a) Wang, Y.-Q.; Lu, S.-M.; Zhou, Y.-G. Org. Lett. 2005, 7, 3235. (b) Wang, Y.-Q.; Zhou, Y.-G. Synlett 2006, 1189. (c) Wang, Y.-Q.; Lu, S.-M.; Zhou, Y.-G. J. Org. Chem. 2007, 72, 3729. (d) Wang, Y.-Q.; Yu, C.-B.; Wang, D.-W.; Wang, X.-B.; Zhou, Y.-G. Org. Lett. 2008, 10, 2071. (e) Yu, C.-B.; Wang, D.-W.; Zhou, Y.-G. J. Org. Chem. 2009, 74, 5633. (f) Wang, D.-S.; Chen, Q.-A.; Li, W.; Yu, C.-B.; Zhou, Y.-G.; Zhang, X. J. Am. Chem. Soc. 2010, 132, 8909. (11) (a) Yang, Q.; Shang, G.; Gao, W.; Deng, J.; Zhang, X. Angew. Chem., Int. Ed. 2006, 45, 3832. (b) Nanayakkara, P.; Alper, H. Chem. Commum. 2003, 2384. (c) Rubio-Pe´rez, L.; Pe´rez-Flores, F. J.; Sharma, P.; Velasco, L.; Cabrera, A. Org. Lett. 2009, 11, 265. (12) 24% yield and 5% ee were obtained. Org. Lett., Vol. 12, No. 21, 2010

wide variety of imines 1 were tested to examine the reaction scope, as shown in Table 2. Different aryl groups on the

Table 2. Pd-Catalyzed Hydrogenation of Fluorinated Imines 1a

entry

PG

R

Rf

1 2 3 4 5 6 7 8 9 10d 11d 12 13 14 15 16d

4-MeO-C6H4 Ph 4-Me-C6H4 4-MeO-C6H4 4-MeO-C6H4 4-MeO-C6H4 4-MeO-C6H4 4-MeO-C6H4 4-MeO-C6H4 4-MeO-C6H4 4-MeO-C6H4 4-MeO-C6H4 4-MeO-C6H4 4-MeO-C6H4 4-MeO-C6H4 4-MeO-C6H4

Ph Ph Ph 4-Me-C6H4 3-Me-C6H4 2-Me-C6H4 4-MeO-C6H4 4-CF3-C6H4 3,5-F2-C6H3 n-Bu PhCH2CH2 Ph Ph Ph Ph Ph

CF3 CF3 CF3 CF3 CF3 CF3 CF3 CF3 CF3 CF3 CF3 CF2H CF2Et C2F5 C3F7 C6F13

yield (%)b ee (%)c 99 (2a) 91 (2b) 88 (2c) 92 (2d) 95 (2e) 90 (2f) 97 (2g) 95 (2h) 87 (2i) 99 (2j) 97 (2k) 88 (2l) 94 (2m) 95 (2n) 85 (2o) 97 (2p)

93 (R) 93 (R) 93 (R) 92 (R) 93 (R) 84 (R) 92 (R) 93 (R) 94 (R) 89 (R) 92 (R) 69 (R) 86 (R) 84 (R) 84 (R) 86 (R)

aryl substituents can be successfully hydrogenated to give the corresponding fluorinated amines with high ee’s. It is noteworthy that the enantioselectivities achieved with Pd catalyst for the hydrogenation of simple fluorinated imine 1 are the highest reported to date. Subsequently, alkylsubstituted fluorinated imines 1j and 1k were also tested, and 89% and 92% ee’s were obtained, respectively (entries 10 and 11). The imines 1n-1p bearing longer perfluoroalkyl chains were also hydrogenated smoothly with 84-86% ee’s (entries 14-16). Difluoroalkyl-substituted substrates were also subjected to asymmetric hydrogenation under the standard condition, giving 69% and 86% ee’s (entries 12 and 13). The p-methoxyphenyl (PMP) group of hydrogenated products can be readily removed under the known conditions.14 Oxidative cleavage of the hydrogenation product 2a with Ce(NH4)2(NO3)6 (CAN) gave 2,2,2-trifluoro-1-phenethyl-amine (R)-3a (Scheme 2). The (R)-stereochemistry was

Scheme 2. Removal of the p-Methoxyphenyl (PMP) Group of Fluorinated Amine 2a

a Conditions: 0.125 mmol imine 1, Pd(OCOCF3)2 (2 mol %), (R)-ClMeO-BIPHEP (2.4 mol %), 40 mg of 4 Å MS, 3 mL of TFE, 16 h, rt. b Isolated yield. c Determined by HPLC. d (R)-SynPhos as ligand.

nitrogen atom of imines can be tolerated with excellent enantioselectivities and full conversions (entries 1-3). Considering the ease with which the p-methoxylphenyl (PMP) group can be removed, PMP was selected for the additional studies. Substrates with electron-donating (entries 4-7) or electron-withdrawing (entries 8 and 9) groups on (13) For some recent examples of transition-metal-catalyzed asymmetric hydrogenation of imines, see: (a) Xiao, D.; Zhang, X. Angew. Chem., Int. Ed. 2001, 40, 3425. (b) Uematsu, N.; Fujii, A.; Hashiguchi, S.; Ikariya, T.; Noyori, R. J. Am. Chem. Soc. 1996, 118, 4916. (c) Yun, J.; Buchwald, S. L. J. Org. Chem. 2000, 65, 767. (d) Solinas, M.; Pfaltz, A.; Cozzi, P. G.; Leitner, W. J. Am. Chem. Soc. 2004, 126, 16142. (e) Moessner, C.; Bolm, C. Angew. Chem., Int. Ed. 2005, 44, 7564. (f) Zhu, S.-F.; Xie, J.-B.; Zhang, Y.-Z.; Li, S.; Zhou, Q.-L. J. Am. Chem. Soc. 2006, 128, 12886. (g) Ngai, M. Y.; Barchuk, A.; Krische, M. J. J. Am. Chem. Soc. 2007, 129, 12644. (h) Li, C.; Xiao, J. J. Am. Chem. Soc. 2008, 130, 13208. (i) Li, C.; Wang, C.; Villa-Marcos, B.; Xiao, J. J. Am. Chem. Soc. 2008, 130, 14450. (j) Mrsˇic´, N.; Minnaard, A. J.; Feringa, B. L.; de Vries, J. G. J. Am. Chem. Soc. 2009, 131, 8358. (k) Han, Z.; Wang, Z.; Zhang, X.; Ding, K. Angew. Chem., Int. Ed. 2009, 48, 5345. (l) Hou, G.; Gosselin, F.; Li, W.; McWilliams, C.; Sun, Y.; Weisel, M.; O’Shea, P. D.; Chen, C.-Y.; Davies, I. W.; Zhang, X. J. Am. Chem. Soc. 2009, 131, 9882. (m) Hou, G.; Tao, R.; Sun, Y.; Zhang, X.; Gosselin, F. J. Am. Chem. Soc. 2010, 132, 2124. (14) (a) Chi, Y.; Zhou, Y.-G.; Zhang, X. J. Org. Chem. 2003, 68, 4120. (b) Palacios, F.; Aparicio, D.; Garcia, J.; Rodriguze, E. Eur. J. Org. Chem. 1998, 1413.

Org. Lett., Vol. 12, No. 21, 2010

assigned by comparison of optical rotation with that in the literature ([R]20D -21.6 for 100% ee (c 3.1, EtOH)3b and [R]20D -17.7 for 81% ee (c 3.4, EtOH)3d). In summary, a direct approach to chiral perfluoroalkylamine has been successfully developed via Pd-catalyzed asymmetric hydrogenation of the simple fluorinated imines under mild conditions with up to 94% ee; simple fluorinated ketimines can be conveniently synthesized from the commercially available fluorinated carboxylic acids. Our ongoing experiments are focused on exploring other palladiumcatalyzed asymmetric hydrogenation reactions. Acknowledgment. The authors are grateful for financial support from NSFC (20921092 and 20872140), MOST (973 2010CB833300) Chinese Academy of Sciences (K2010F1). Supporting Information Available: Experimental, spectroscopic, computational, and crystallographic details. This material is available free of charge via the Internet at http://pubs.acs.org. OL1020256

5077