Excess Enthalpies of I-Heptanol + n-Alkane + Normal Alcohol Mixtures

FOlix Sarmiento, Maria I. Paz Andrade,' Josefa Fernbndez, Ramen Bravo,. Departamento de Fbica Fundamental, Facultad de Fkica, Universidad de Santiago,...
0 downloads 0 Views 334KB Size
J. Chem. Eng. Data 1985, 30, 321-323

321

+

Excess Enthalpies of I-Heptanol n-Alkane and Di-n-propylamine Normal Alcohol Mixtures at 298.15 K

+

FOlix Sarmiento, Maria I. Paz Andrade,' Josefa Fernbndez, Ramen Bravo, and Mercedes Pintos Departamento de Fbica Fundamental, Facultad de Fkica, Universidad de Santiago, Santiago de Compostela, Spain Table I. Densities ( p ) of Pure Components at 298.15 K

The excess molar enthalples of the blnary llquld mlxtures I-heptanol n-alkane (CI-C,o) and dl-n-propylamine normal alcohd (C,-C,) have been determined at atmospherlc pressure and 298.15 K as a functlon of mole fractlon. The apparatus used was a standard Calvet mkrocalorlmeter equipped wlth a devlce allowing the exclurlon of a vapor phase. The mixtures I-heptanol n-alkane are endothermlc (HE> 0), and the values of the excess mdar enthalples Increase wlth length of the hydrocarbon chain of the alkane. For dl-n-propylamlne normal alcohol mlxtures the excess enthalpy HEIs negatlve (hlghly exothennlc) and lts absolute value dlmlnlshes very sllghtly wlth the Increase of length of the hydrocarbon chain of the alcohol.

+

+

+

+

I ntroductlon Although the thermodynamic properties of binary liquid mixtures of alcohols with alkanes have lately been the subject of a considerable amount of research (7-5), only the initial members of the alkane series have been investigated with Iheptanol. I n order to make available more systematic data concerning these systems, we have determined the excess molar enthalpies of mixtures of I-heptanol wlth higher order alkanes (n-hexane, n-heptane, n-octane, n-nonane, and n decane). The second part of the work presented here is one of the few studies so far made of liquid mixtures of alcohols wlth amines. The complexity of these systems has hitherto discouraged their systematic investigation. As a step toward understanding such aspects as the possible associations between amlne and alcohol groups, we have determined the excess molar enthalpies of the binary mixtures di-n -propylamine (+ 1-butanol, I-pentanol, I-hexanol, 1-heptanol, l-octanol).

+

+

+

+

Experimental Section

The chemical products used were supplied by Fluka (Buchs, Switzerland). All were better than 99 mol % pure as supplied except the 1-pentanol, which was purified before use by triple distillation in a rectifying column, the final purity being 99.5 mol % The densities of all the chemicals were measured with an Anton Paar Model DMA 602 oscillatory densimeter and their refractive indices at 298.15 K with a Zeiss Model 67097 refractometer. In both cases the temperature was kept constant to within f5 X K. All chemicals were kept under molecular sieves (Union Carbide Type 4A, 2.5-1.4 mm; beads from FJuka) and were partially degasified before use. The purity of the substances is shown by the measured values agreeing with published densities (6, 7), and refractive indices (6, 8), to within f0.04% and f0.014%, respectively (Tables I and

.

I I). Excess molar enthalpies were determlned by using a Calvet calorimeter (9) with a 10cm3stainless steel cell and a device (70) allowing the exclusion of a vapor phase during use. The 0021-9568/85/1730-0321$01.50/0

pl(kg

liauid n-hexane n-heptane n-octane n-nonane n-decane 1-butanol 1-pentanol 1-hexanol 1-heptanol 1-octanol di-n-propylamine

lit. at 298.15 K 654.81 (6) 679.51 (6) 698.49 (6) 713.81 (6) 726.25 (6) 806.0 (6) 811.5 (6) 815.9 (6) 818.6 (7) 822.09 (6) 732.9 (6)

this work 654.72 679.58 698.73 714.03 726.51 806.07 811.50 815.68 818.96 822.07 733.21

Table 11. Refractive Indices (nD)of Pure Components at 298.15 K liquid n-hexane n-heptane n-octane n-nonane n-decane 1-butanol 1-pentanol 1-hexanol 1-heptanol 1-octanol di-n-propylamine

this work 1.372 15 1.38503 1.38498 1.40308 1.409 56 1.397 22 1.407 94 1.41584 1.42257 1.427 45 1.402 0

nD lit. at 298.15 K 1.37226 (6) 1.38511 (6) 1.39505 (6) 1.403 11 (6) 1.40967 (6) 1.397 26 (6) 1.40796 (6) 1.41580 (6) 1.4249 (8)" 1.427 50 (6) 1.4018 (6)

"Value at 293.15 K.

temperature of the calorimeter was thermostated to within f5 X K and its response to mixing, proportional to the heat developed in the cell, was obtained with a Hewlett-Packard 3373 B integrator. The calorimeter was calibrated electrically by Joule effect, and chemicaUy by determining the excess molar enthalpy at 298.15 K of the hexane cyclohexane mixture proposed by Stokes et al. ( 7 1 ) as a calorimetric standard and adopted by the IUPAC (72). The discrepancy between our results and those of Stokes et al. ( 7 7 ) was less than 1%.

+

Results and Dlscusslon The results of our measurements of HE for the five l-heptanol n-alkane mixtures studied are shown in Table 111, and those of the di-n-propyiamine normal alcohol mixtures in Table IV. I n Table 111 x represents the mole fraction of I-heptanol, and in Table IV the mole fraction of di-n-propylamine. A variabledegree empirical equation of the form

+

+

n-1

HE/(J.mol-l) = x(1 - x)

i=o

A&

(1)

has been f i e d to the resutts, where, following Jones et al. (73), z = xl'* for the 1-heptanol n-alkane systems, whose curves are asymmetrical, and z = 2x - 1 for the di-n-propylamine normal alcohol systems, as suggested by Redlich and Kister (74) (x being the mole fraction of the unchanging component in each series). The number of parameters A, employed in

+

0 1985 American Chemical Society

+

322 Journal of Chemical and Engineering Data, Vol. 30, No. 3, 1985 Table IV. Molar Excess Enthalpy H Efor Di-n -propylamine Normal Alcohol at 298.15 K

+

600

400

-

h

‘5200

E

.

7

v

W

rL

0

0 0

0.2

0.6

0.L

0.8

1

Table 111. Molar Excess Enthalpy HEfor 1-Heptanol n -Alkane at 298.16 K

0.0698 0.0957 0.1220 0.1702 0.2652 0.2863 0.3135

323 381 418 445 477 483 475

0.0242 0.0413 0.0837 0.1377 0.1841 0.2327 0.2582 0.2686

249 294 386 448 475 500 508 502

0.0376 0.0915 0.1493 0.1821 0.2526 0.2893 0.3109

334 444 500 519 553 564 572

0.0326 0.0926 0.1563 0.2191 0.2754 0.3058 0.3324

292 461 539 571 587 592 598

0.0409 0.1051 0.1660 0.2385 0.2935 0.3292 0.3512

364 503 562 607 635 643 648

xC,H,SOH 0.3578 0.4143 0.4646 0.5382 0.5574 0.6421

+

+ (1 - x)CsH,, 469 461 444 413 406 350

0.6511 0.6829 0.7326 0.7509 0.8255 0.8632

343 325 294 259 180 149

zC~H~SOH + (1 - ~)C7H18 0.2912 518 0.4910 0.3180 516 0.5665 0.3223 508 0.6158 0.3367 517 0.6709 0.3766 511 0.7220 0.3942 507 0.7727 504 0.8229 0.4240 0.4450 500 0.8736

478 449 417 366 313 258 199 142

X C ~ H ~ ~+O(1H- X)CgHig 0.3644 570 0.6470 0.3978 566 0.6963 0.4698 557 0.7483 0.5049 539 0.7934 0.5153 531 0.8358 0.6002 481 0.8843

444 383 332 275 233 165

T C ~ H I ~ O+H(1 - ~)CsH20 0.3673 602 0.6653 0.4182 599 0.7155 0.4900 584 0.7617 0.5128 575 0.8074 0.5462 551 0.8537 0.6251 495 0.9017

446 397 344 283 223 151

xC7Hl50H + (1 - x)CloHzz 0.3827 649 0.6176 0.4058 650 0.6367 0.4508 636 0.6888 0.4603 638 0.7324 0.5164 617 0.7775 0.5470 595 0.8224 0.5782 565 0.8639

542 525 480 423 363 296 231

-1

0.0638 0.1037 0.1467 0.1912 0.2374 0.2662 0.2923 0.3203

x(C3H7)ZNH + (1- x)C6H,,OH -622 0.3276 -2382 0.5587 -1044 0.3688 -2445 0.5925 -1382 0.3770 -2485 0.6243 -1739 0.4075 -2460 0.6674 -1990 0.4275 -2498 0.7284 -2146 0.4615 -2494 0.7834 -2251 0.4948 -2450 0.8421 -2341 0.5246 -2412 0.8964

0.0726 0.1198 0.1642 0.2130 0.2633 0.3098 0.3199 0.3499

x ( C ~ H ~ ) ~+N(1 H - ~)CsH130H -717 0.3814 -2346 0.5891 -1133 0.4113 -2377 0.6453 -1485 0.4381 -2370 0.7009 -1785 0.4448 -2374 0.7494 -2037 0.4927 -2378 0.8062 -2174 0.5012 -2363 0.8626 -2227 0.5306 -2253 0.9124 -2296 0.5550 -2280

-2 156 -1994 -1776 -1557 -1233 -914 -613

0.0844 0.1316 0.1844 0.2366 0.2856 0.3201 0.3570 0.3821

x(C3HT)ZNH + (1 - x)C~H~EOH -772 0.4141 -2315 0.6959 -1172 0.4411 -2336 0.7244 -1536 0.4745 -2333 0.7723 -1861 0.5312 -2261 0.8237 -2030 0.5648 -2169 0.8746 -2144 0.5919 -2104 0.9252 -2237 0.6212 -2051 -2308 0.6676 -1865

-1759 -1634 -1398 -1115 -828 -516

0.0859 0.1471 0.2006 0.2226 0.2611 0.3102 0.3414 0.3446

x(C~H,)~NH + (1- x)CgH170H -770 0.3759 -2137 0.6315 -1242 0.4101 -2207 0.6785 -1561 0.4172 -2220 0.7077 -1681 0.4420 -2231 0.7474 -1804 0.4708 -2205 0.7914 -2005 0.5036 -2191 0.8383 -2124 0.5852 -2102 0.8806 -2115 0.6156 -2018

-1961 -1783 -1651 -1493 -1287 -1041 -752

X

Figwe 1. Excess enthalpy HEw e d against mole fraction of n-alkane at 298.15 K for the mixtures 1-heptanol with n-alkane: (0)hexane, (A)heptane, (0)octane, (V)nonane, (0) decane.

HE/

0.0497 0.0873 0.1263 0.1664 0.2087 0.2322 0.2579 0.2871

0

0

PI

(J-mol-’) x (J-mol-’) x x(CQH?)INH+ (1 - x)CAHoOH -554 ” 0.3115 -2317 0.5474 -914 0.3366 -2378 0.5763 -1249 0.3659 -2407 0.6177 -1556 0.3775 -2457 0.6506 -1847 0.4230 -2480 0.6993 -1986 0.4499 -2469 0.7542 -2122 0.4874 -2424 0.8161 -2245 0.5151 -2410 0.8902

x

(Jemol-I) -2349 -2276 -2142 -2008 -1810 -1532 -1201 -752 -2322 -2238 -2109 -1944 -1673 -1386 -1055 -713

each case was determined by using an F test to estimate the significance of the additional term (75). The values of A, calculated and the corresponding standard deviations @(HE)for each mixture are shown in Table V. Fwes 1 and 2 show the enthalpy-composition curves of, respectively, the lheptanol n-alkane and di-n-propylamine 4- normal alcohol mlxtures. The three main characteristics of the alcohol alkane series are the positive excess enthalpies, which show bond breaking to be the predominant phenomenon, the increase in HEwith the length of the alkane chain, and the asymmetry of the enthalpy-composition curves, whose maxima occur where the concentration of alcohol is less than that of alkane. Similar resutts have been reported by Nguyen et ai. (16) for binary mixtures of butanol and octand with the alkanes from hexane to decane, and by Brown et al. ( 77) for mixtures of octanol with hexane, heptane, and nonane. The asymmetry of the enthalpy-composition curves may be interpreted as reflecting the fact that whereas the addition of a small quantity of aldohol to an “Inert” liquid may break all the hydrogen bonds present in the alcohol, a proportion of hydrogen bonds may remain unbroken when the mixture is rich in alcohol. According to puMished data (18, 19), for a given alkane at a fixed temperature the excess enthalpy

+

+

Journal of Chemicaland Engineering Data, Voi. 30, No. 3, 1985 323 Table

V.

Coefficients

Ai and Standard D e v i a t i o n s .(HE) f o r Representation o f Excess E n t h a l p i e s HEat 298.15 K by Eq 1 A0 11316 25 277 22 896 19 874 23 237 -9 -9 -9 -9 -8

A1

A2

-43

A4

A5

-32 974

-16 335 -645 880 -196 101 -126 950 -185 741

496 460 67 348 39 752 62 976

-153 949

-106 261 -82 525 -104 373

39 008 429 850 213 827 151 461 205 972

2 899 3 108 2 490 2 348 1652

234 -297 -107 252 477

-151 066

730 752 383 192 852

n

0 0 0

-763

-1 667 -864

-1 108

1661 543 563

.(HE/)

(Jemol-') 6 6

6 4 6 12 15 18 14 18

occur where the composition of amlne is slightly less than that of alcohol. This may be interpreted as due to two factors, the symmetric rupture of alcohol-alcohol interactions, and the formation of 1: 1 alcohol-amine complexes like those we have previously observed in analogous mixtures (23).

0 L

L

-650

.

7

v

W E

Llterature Cited

I

-1300

-1950:

-2600

0

0.2

04

06

0.8

1

Flgwo 2. Excess enthalpy H E plottedagainst mole fraction of normal alcohol at 298.15 K for the mixtures dl-n-propylamine with normal alcohol: (0)l-butanol, (A)lpentand, (0)l-hexanol, (V)lheptanol, (0) loctanoi.

falls with the number of alcohol carbons, showing that the shorter the alcohol chain, the stronger are the interactions between the alcohol molecules. Our results fit in with this pattern. For example, the excess enthalpy HEof the l-heptanol nhexane mixture Is intermediate between published values n-hexane and 1-octanol n-hexane. Acfor lhexanol cording to published data, HErises with temperature for a given mixture. The secondary amine alcohol mixtures have large negative excess enthalpies, reflecting the exothermic predominance of the formation of 0-H.a.N and N-H*.*O bonds over the rupture of the O-H...O and N-Ha .N interactions present in the pure amine and alcohols. Similar results have been reported by others (20-22). The second noteworthy feature is that HEis hardly affected by increasing the length of the alcohol chain, which shows that the variation in energy due to addition of a CH, unit is negligible compared with the factors mentioned above. Lastly, the maxima of the enthalpy-composition curves

+

+

+

+

Paz Andrade, M. I.; Garcia, M.; Garcia Fente, F. An. Qulm. 1975, 75, 451. Hanks, R. W.; ONeiil. T. K.; Christensen, J. J. Ind. Eng. Chem. Process. Des. D e v . 1979, 18, 408. Muensch, E. Thermochlm. Acta 1979, 37, 109. Christensen, J. J.; Ireit, R. M.; StM, B. D.; Hanks, R. W. J. Chem. Thermodyn. 1979, 7 7 , 1029. Collins, S. 0.; Christensen, J. J.; Izalt, R. M.; Hanks, R. W. J. Chem. Thwmodyn. 1980. 12, 009. Riddlck, J. A.; Bunger, W. B. "Organic Solvent Techniques of Chemistry", 3rd ed.; Wiley-Interscience: New York, 1970; Voi. 11. "Selected Values of Properties of Chemical Compounds"; Manufacturing Chemists Association Research Project: Texas A 8 M University: College Station, TX, 1906. Weast, R., Ed. "Handbook of Chemistry and Physics". 61st ed.;CRC Press: Bca Raton, FL, 1980-81. Caivet, E.; PratI, H. "Microcalorimetrle, Applications Physico-Chimiques et Biologiques"; Masson: Paris, 1965. Paz Andrade, M. I . Les D6veloppments Recents de la Microcalorlmetrie"; CNRS: Paris, 1967; p 243. Stokes, R. H.; Marsh, K. N.; Tomiins, R. P. J. Chem. Thermodyn. 1969, I , 211. Westrum, E. F. Jr., Ed. Bull. Thermodyn. Thermochem. 1970, 73, 507. Jones, D. E. G.; Weeks, 1. A.; Subhash, C. A.; Wetmore, R. W.; Benson, G. C. J. Chem. Eng. Data 1972, 77, 501. Redlich, 0.; Kister, A. T. Ind. Eng. Chem. 1948, 40. 341. Bevington. P. "Data Reduction and Error Analysis for the Physical Sciences"; McGraw-Hill: New York. 1969; p 200. Nguyen, T. H.; Ratcliff, 0. A. J. Chem. Eng. Data 1975, 2 0 , 252. Brown, I.; Fock, W.; Smith, F. Aust. J. Chem. 1964, 77, 1106. Van Ness, H. C.; Abbott, M. M. Int. DATA Ser., Sei. Data Mlxtures, Ser. A 1976, 7 , 11. Saiamon, T.; Llszl, J.; Ratkovics, F. Acta Chlm. Acad. Sci. Hung. 1975, 8 7 , 137. Ratkovics, F.; Guti, 2s. Acta Chlm. (Budapest) 1974, 83, 63. Ratkovics, F.; Saiamon, T. Acta Chlm. (Budapest) 1977, 9 4 , 93. Rao, D. N.;Naidu, P. R. J. Chem. Thermodyn. 1981, 73, 691. Fernindez, J.; Paz Andrade, M. I.; Pintos, M.; Sarmiento, F.; Bravo, R. J. Chem. Thermodyn. 1983, 15, 581. Received for review July 13,1964. Accepted December 3, 1964.