39 Formation and Structure of a Monomeric Oxygen Adduct of a Cobalt(II)-Ammonia Complex in a Co(II)Y Zeolite Downloaded by UNIV OF ARIZONA on March 12, 2017 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0121.ch039
12,
E. F. VANSANT and J. H. LUNSFORD Department of Chemistry, Texas A&M University, College Station, Tex. 77843 -
2+
The reversible formation of a low-spin [Co(III)(NH ) O ] complex within a Co(II) Y zeolite has been demonstrated by EPR spectroscopy. In this complexnis probably equal to five. A maximum of one cobalt complex per large cavity was formed. The cobalt hyperfine structure shows that the unpaired electro is only 3% on the metal ion. Experiments utilizing Oindi cate thatO enters the coordination sphere of the Co ions and that the unpaired electron is largely associated with the oxyge molecule. The oxygen-17 hyperfine structure reveals that th two oxygen atoms are not equivalent; hence, it is concluded that the oxygen is bonded as a peroxy-type superoxide ion. 3
n
17
2+
2
" e x c h a n g e a b l e c a t i o n s i n a zeolite m a y m o v e f r o m t h e i r u s u a l sites t o f o r m well-defined
t r a n s i t i o n m e t a l complexes i n t h e large c a v i t i e s (1-4)-
S u c h z e o l i t e - t r a n s i t i o n m e t a l complexes are p o t e n t i a l l y t h e heterogeneous analogs of i m p o r t a n t homogeneous c a t a l y s t s .
R e c e n t l y , M i k h e i k i n et al.
(4) a n d V a n s a n t a n d L u n s f o r d (3) h a v e s t u d i e d r e s p e c t i v e l y t h e h i g h - s p i n Co(H 0) 2
lites.
6
and the low-spin C o ( C H N C )
2 +
3
The
low -spin r
cobalt(II)
5 f
6
2 +
complexes i n C o ( I I ) Y zeo
complexes h a v e c h a r a c t e r i s t i c
electron
p a r a m a g n e t i c resonance s p e c t r a w h i c h are v e r y s i m i l a r t o t h e s p e c t r a of analogous complexes f o r m e d i n o t h e r m e d i a (δ, 6). S e v e r a l l o w - s p i n m o n o - a n d dicobalt(II) complexes of s i m p l e amines i n s o l u t i o n s were r e p o r t e d t o b i n d m o l e c u l a r o x y g e n r e v e r s i b l y (7).
The
best k n o w n e x a m p l e of the b i n u c l e a r p e r o x y complexes is [ ( H N ) 5 - C o - 0 8
Co(NH )5] 3
5 +
(8).
2
I n aqueous s o l u t i o n s no d e f i n i t i v e evidence for m o n o -
Centrum voor Oppervlaktescheikunde en Colloidale Scheikunde, Katholieke Universiteit Leuven, De Croylaan 42, B-3030 Heverlee, Belgium. Present address: University of Antwerp, Fort VI-straat, 2610 Wilrijk, Belgium. 1
2
441
Meier and Uytterhoeven; Molecular Sieves Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
2
442
MOLECULAR SIEVES
meric [ C o ( I I I ) ( N H ) 0 - ] 3
5
2
c o m p l e x , w h e r e t h e m o l a r r a t i o of C o t o 0
2 +
1 : 1 , has y e t been o b t a i n e d .
2
is
F u j i w a r a et al. (9) h o w e v e r , r e p o r t e d r e c e n t l y }
a 1:1 a d d u c t p r o d u c e d b y γ-irradiation of t h e [ C o ( N H ) 5 ( N 0 ) ] ( N 0 3 ) 2 3
salt.
I n a l l of these c o b a l t complexes, 0
sphere of t h e C o
2 +
2
3
c a n enter t h e first c o o r d i n a t i o n
i o n s , f o l l o w e d b y a c h a r g e - t r a n s f e r process.
The E P R
m e a s u r e m e n t s s h o w t h a t t h e u n p a i r e d e l e c t r o n of t h e l o w - s p i n C o i o n is l a r g e l y associated w i t h t h e c o o r d i n a t e d o x y g e n . charge t r a n s f e r a l l o w s a r e d u c t i o n b a c k t o C o therefore, t h e o x y g e n a t e d
cobalt (III)
2 +
T h e r e v e r s i b i l i t y of t h e w i t h a release of o x y g e n ;
complexes
are models of
oxygen
carriers i n biological systems.
Downloaded by UNIV OF ARIZONA on March 12, 2017 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0121.ch039
I n t h i s w o r k , 1:1 o x y g e n a t e d l o w - s p i n c o b a l t ( I I ) - a m m o n i a complexes w e r e s y n t h e s i z e d w i t h i n t h e zeolite f r a m e w o r k b y t h e a d s o r p t i o n of N H and 0
2
i n C o ( I I ) Y zeolites w i t h d i f f e r i n g c o b a l t ( I I ) c o n t e n t .
3
Spin densi
ties a n d t h e n a t u r e of t h e superoxide a n i o n ( 0 ~ ) were e s t i m a t e d b y i n t r o 2
d u c i n g oxygen-17
i n the ammoniated Co(II)
zeolites.
Questions
con
c e r n i n g t h e e q u i v a l e n c e of t h e t w o o x y g e n a t o m s h a v e a r i s e n i n studies o n o x y g e n a d d u c t s of C o (II) Schiff base c o m p o u n d s (7), a n d i t w a s of i n t e r e s t t o s t u d y t h i s p r o b l e m i n c o b a l t ( I l ) - a m m o n i a complexes. Experimental T h r e e C o ( I I ) Y zeolites w i t h different c o b a l t c o n c e n t r a t i o n s were p r e p a r e d f r o m a L i n d e N a Y z e o l i t e (lot n o . 13544-76) b y c o n v e n t i o n a l i o n exchange. A c a t i o n a n a l y s i s of t h e C o ( I I ) Y zeolites i n d i c a t e d c o n c e n t r a t i o n s of 0.8, 5, a n d 16 C o ions per u n i t cell. T h e C o ( I I ) Y zeolite samples were a c t i v a t e d b y h e a t i n g t o 400° C i n i n c r e m e n t s of 1 0 0 ° C p e r h o u r u n d e r a v a c u u m of 1 0 ~ t o r r . A m m o n i a w a s a d s o r b e d i n t h e d e h y d r a t e d C o ( I I ) Y zeolites a t r o o m t e m p e r a t u r e . T h e a m m o n i a t e d C o ( I I ) Y zeolites were o x i d i z e d b y e x p o s i n g t h e s a m p l e t o o x y g e n (3 m m ) a t - 7 0 ° C for 10 m i n . The N H , 0 , and a 0 0 mix t u r e e n r i c h e d t o 4 4 . 5 % 0 were o b t a i n e d f r o m c o m m e r c i a l sources a n d were u s e d w i t h o u t f u r t h e r p u r i f i c a t i o n . T h e E P R s p e c t r a , r e c o r d e d a t - 1 9 6 ° C or a t 2 5 ° C , were t a k e n w i t h V a r i a n E 6 S a n d V 4 5 0 2 s p e c t r o m e t e r s for X - b a n d (9.1 G H z ) , a n d Q - b a n d (35 G H z ) m e a s u r e m e n t s , r e s p e c t i v e l y . T h e g v a l u e s were e v a l u a t e d b y u s i n g a 2 , 2 - d i p h e n y l - l - p i c r y l h y d r a z y l ( D P P H ) s t a n d a r d , w i t h a g v a l u e of 2.0036. S p i n c o n c e n t r a t i o n s were o b t a i n e d b y u s i n g a single c r y s t a l of f r e s h l y r e c r y s t a l l i z e d C u S 0 - 5 H 0 as a s t a n d a r d . T h e e s t i m a t e d e r r o r i n s p i n c o n c e n t r a t i o n is ± 3 0 % . 2 +
5
3
1 6
2
1 7
1 8
1 7
4
2
Results and Discussion U p o n a d s o r p t i o n of excess a m m o n i a i n a C o ( I I ) Y zeolite a w h i t e , h i g h - s p i n c o b a l t ( H ) - a m m o n i a c o m p l e x w i t h a s p i n c o n f i g u r a t i o n of (fc^) 5
(e ) g
2
is f o r m e d .
A c c o r d i n g t o studies of c o b a l t ( I I ) complexes i n s o l u t i o n s ,
salts, a n d i n zeolites, a h e x a c o o r d i n a t e C o ( I I ) - a m m o n i a c o m p l e x is t h e m o s t l i k e l y f o r m w h e n a n excess of a m m o n i a is present (3, 4, 6).
Meier and Uytterhoeven; Molecular Sieves Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
Indeed,
39.
Cobalt (II)-Ammonia Complex
VANSANT AND LUNSFORD
443
w h e n a n excess of N H , C H C N , C H N C , or H 0 i n C o ( I I ) solutions a n d C H N C or H 0 i n C o (II) Y zeolites was present, s i x - c o o r d i n a t e d C o (II) c o m plexes were a l w a y s observed. B e c a u s e of t h e s h o r t r e l a x a t i o n t i m e , n o E P R s p e c t r a of t h e ϋ ο ( Ν Η ) complexes c a n be detected a t — 1 9 6 ° C ; h o w ever, w h e n 0 was a d s o r b e d i n t h e a m m o n i a t e d C o ( I I ) Y zeolite, E P R spectra attributed to a low-spin oxygen-carrying c o b a l t - a m m o n i a com p l e x were observed a t r o o m t e m p e r a t u r e a n d a t — 1 9 6 ° C . F i g u r e 1 show^s a t y p i c a l X - b a n d E P R s p e c t r u m of a n o x y g e n a t e d C o ( I I ) - a m m o n i a Y 3
3
3
3
2
2
3
6
2 +
Downloaded by UNIV OF ARIZONA on March 12, 2017 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0121.ch039
2
Figure L EPR spectrum, at —196°C, of an oxygenated Co(II)-ammonia complex in a Co(II)Y zeolite zeolite. T h e 16 h y p e r f i n e lines i n t h e o b s e r v e d s p e c t r a m a y be a t t r i b u t e d t o t h e s u p e r p o s i t i o n of t w o sets of 8 lines c o r r e s p o n d i n g t o t h e p a r a l l e l a n d p e r p e n d i c u l a r d i r e c t i o n s of t h e s y m m e t r y axis w i t h respect t o t h e e x t e r n a l m a g n e t i c field. S u c h a s p e c t r u m is c h a r a c t e r i s t i c of t h e h y p e r f i n e i n t e r action from a C o monomeric complex. A Q-band experiment was carried o u t t o ensure t h e p r o p e r d e t e r m i n a t i o n of a g v a l u e , since a t t h e h i g h e r frequencies t h e m a x i m u m c o r r e s p o n d i n g t o g\\ is b e t t e r resolved. A s s h o w n i n T a b l e I , t h e m a g n e t i c p a r a m e t e r s of t h e o x y g e n a t e d C o ( I I ) - a m m o n i a c o m p l e x i n t h e zeolite are c o m p a r a b l e w i t h o t h e r m o n o n u c l e a r C o ( I I ) - 0 complexes, regardless of t h e n a t u r e of t h e c o b a l t ( I I ) l i g a n d s . T h e v e r y s i m i l a r s p e c t r u m o b s e r v e d b y F u j i w a r a et ah (9) f o r 5 9
2
Meier and Uytterhoeven; Molecular Sieves Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
MOLECULAR SIEVES
444
Table L
Magnetic Parameters of Some Cobalt(II) Monomeric Oxygen Adducts in Solutions, Salts, and Co (II)Y Zeolites 9± 9\\ Band ± 0.004 ± 0.004
Compound
0
[Co(III)(NH ) 0 -p+Y Zeolite
X
[Co(NH ) N0 ](N0 ) Co (acacen) py(0 ) Vitamin B (0 ) TPP-L-Co(0 ) Co-TsPc(0 )
Q X X X X X
3
3
B
n
3
2
2
2
2
2
±
Ref.
2.084 2.083 2.081 2.082 2.07 2.07 2.075
2.000 1.996 1.995 1.999 2.004 2.00 2.004
17.8
12.5
17.7 19.6 15 18.3 15.9
12.2 10.7 13 14.2 8.5
—
this work this work (9) (11)
—
(12)
(7d) (7c)
Py pyridine, T P P - L = tetraphenylporphine-4 aminopyridine, acacen = [CH C(0~)=CHC(CH8)=NCH2-)2], andTsPc = tetrasulfophthalocyanide. a
Downloaded by UNIV OF ARIZONA on March 12, 2017 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0121.ch039
C o
2
3
12r
\a *\ ± 1 G
hi l ± 1 G
=
3
7-irradiated [ C o ( N H ) ( N 0 ) ] ( N 0 ) 3
(ΝΗ ) 0 -] 3
5
2
2 +
5
3
3
2
w a s also a t t r i b u t e d t o a
[Co(III)-
complex.
T h e s p i n c o n c e n t r a t i o n s of t h e o x y g e n a t e d c o b a l t - a m m o n i a complexes w e r e e s t i m a t e d t o b e 0.75, 4 . 1 , a n d 6.5 spins p e r u n i t c e l l f o r t h e C o ( I I ) Y zeolites w i t h r e s p e c t i v e l y 0.8, 5, a n d 16 C o zeolite c o n t a i n e d less t h a n one C o
2 +
2 +
ions p e r u n i t c e l l .
i o n per large c a v i t y ( < 8 C o
c e l l ) , t h e n u m b e r of s p i n s w a s i n agreement w i t h t h e C o experimental error. (>8Co
2 +
2 +
When the 2 +
per u n i t
content, w i t h i n
However, for t h e high-exchanged C o ( I I ) Y
zeolite
p e r u n i t c e l l ) , t h e s p i n c o n c e n t r a t i o n i n d i c a t e d o n l y 6.5 c o b a l t
complexes p e r u n i t c e l l w h i c h i s s l i g h t l y less t h a n one p e r large c a v i t y . T h e s e r e s u l t s suggest t h e presence of i s o l a t e d [ C o ( I I I ) ( N H ) 0 ~ ] 3
5
2
2 +
com
plexes i n t h e l a r g e c a v i t i e s of t h e zeolite w h e r e t h e m o l a r r a t i o of C o t o 0
2
is 1 : 1 . According to Table I, the small C o
2 +
hyperfine splitting constants
indicate t h a t t h e unpaired electron must be largely localized o n t h e co ordinated oxygen molecule.
I f t h e unpaired electron is localized i n only
one d o r b i t a l , t h e h y p e r f i n e tensor c a n b e r e s o l v e d i n t o a n i s o t r o p i c a n d anisotropic part i n the f o r m :
an
- *2 +
-β
(D
-β
+2/3
T h e F e r m i c o n t a c t t e r m , Α? °, i s p r o p o r t i o n a l t o t h e 4s c h a r a c t e r of t h e Β
w a v e f u n c t i o n whereas t h e a n i s o t r o p i c t e r m 2β i s p r o p o r t i o n a l t o t h e 3 d c h a r a c t e r of t h e w a v e f u n c t i o n . a
±
S i n c e o n l y t h e a b s o l u t e v a l u e s of an a n d
m a y be determined f r o m the E P R spectrum, various sign combinations
are possible w h i c h r e s u l t i n A
i80
= ± 2 . 4 o r ± 14.3 G .
T h e l a t t e r absolute
v a l u e agrees w e l l w i t h a n i s o t r o p i c c o b a l t s p l i t t i n g of |l3.3| G w h i c h w a s m e a s u r e d d i r e c t l y f o r t h e m o n o m e r i c o x y g e n a d d u c t of N,N ' - e t h y l e n e b i s ( a c e t y l a c e t o n i m i n a t o ) c o b a l t ( I I ) , a b b r e v i a t e d C o (acacen) (11).
Meier and Uytterhoeven; Molecular Sieves Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
39.
445
Cobalt (II)-Ammonia Complex
VANSANT AND LUNSFORD
A p o s i t i v e sign for A-
corresponds t o 2β =
lso
sign corresponds t o 20 = —3.5 G .
+ 3 . 5 G , and a negative
T h e a c t u a l sign of 2β is d e t e r m i n e d b y
t h e 3d o r b i t a l w h i c h c o n t a i n s t h e u n p a i r e d e l e c t r o n ; 2β > 0 whereas for t h e o t h e r d o r b i t a l s 2β < 0 (18).
for t h e d * o r b i t a l z
Based on the model
s h o w n i n F i g u r e 2 H o f f m a n a n d c o - w o r k e r s (11), h a v e p o i n t e d o u t t h a t t h e 2p7r* m o l e c u l a r o r b i t a l o n t h e o x y g e n w h i c h c o n t a i n s the u n p a i r e d electron mixes o n l y w i t h t h e Sd
yg
n e g a t i v e sign for A
Downloaded by UNIV OF ARIZONA on March 12, 2017 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0121.ch039
iso
o r b i t a l of c o b a l t .
T h i s , of course, suggests a
a n d 2β.
^ 3
Co
+a
NH-
Figure 2. Structure of the [Co(III)(NH ) 0 -] complex in Co (II) Y zeolites z
5
2
+2
Figure 3. Typical EPR spectrum, at —196°C, of ammoniated Co(II) Y zeolite after absorption of 0 enriched with 44.5% 0 2
Meier and Uytterhoeven; Molecular Sieves Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
17
446
MOLECULAR SIEVES
R e g a r d l e s s of t h e s i g n choice, t h e 4s a n d 3d c h a r a c t e r of t h e w a v e function m a y be evaluated b y comparing the experimentally determined c o u p l i n g c o n s t a n t w i t h t h e v a l u e s of 1350 G (14) a n d — 1 7 3 G (13) f o r t h e u n p a i r e d e l e c t r o n i n a p u r e 4s or 3d o r b i t a l o n C o ( I I I ) . T h i s c o m p a r i s o n confirms t h a t t h e u n p a i r e d e l e c t r o n is o n l y a b o u t 1 % l o c a l i z e d i n t h e 4s o r b i t a l a n d 2 % l o c a l i z e d i n t h e 3d o r b i t a l . Since n o n i t r o g e n hyperfine s p l i t t i n g w a s observed f o r t h e N H l i g a n d s , t h e u n p a i r e d e l e c t r o n m u s t b e almost completely localized (>97%) o n the 0 ligand. vz
3
2
T o s t u d y f u r t h e r t h e n a t u r e of t h e c o o r d i n a t e d 0 molecule, a d s o r p t i o n experiments w i t h 0 0 were c a r r i e d o u t . F i g u r e 3 shows a n E P R s p e c t r u m of t h e a m m o n i a t e d C o ( I I ) Y zeolites, t r e a t e d w i t h 0 0. S i n c e t h e n u c l e a r s p i n of 0 is / , p a r a m a g n e t i c species w i t h one 0 h a v e 21 + 1 o r six lines. T w o sets of s i x h y p e r f i n e lines ( 0 0 ) c a n b e o b s e r v e d i n a d d i t i o n t o t h e c o b a l t hyperfine lines. T h e p a r a m a g n e t i c p a r a m e t e r s of 0 species a r e g i v e n i n T a b l e I I . T h e s e v a l u e s , i n c l u d i n g t h e g tensor, a r e c o m p a r a b l e w i t h those observed i n several studies of t h e superoxide i o n o n v a r i o u s oxides (16). 2
1 7
1 8
1 7
Downloaded by UNIV OF ARIZONA on March 12, 2017 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0121.ch039
1 7
B
1 8
1 7
2
1 7
1 8
1 7
T h e 0 hyperfine s t r u c t u r e i n d i c a t e s t h a t t h e t w o o x y g e n a t o m s a r e n o t e q u i v a l e n t . T h i s o b s e r v a t i o n tends t o s u p p o r t t h e m o d e l of t h e C o ( a c a c e n ) 0 complexes proposed b y C r u m b l i s a et al. (7a) u s i n g I R d a t a a n d H o f f m a n et al. (11) u s i n g E P R d a t a . T h e 0 h y p e r f i n e s t r u c t u r e w a s n o t a v a i l a b l e i n t h e l a t t e r case. C o n s i d e r a t i o n s of t h e g e o m e t r y suggest a s y m m e t r y as s h o w n i n F i g u r e 2, where t h e 0 - 0 i n t e r n u c l e a r axis (ζ') is l a r g e l y a l o n g t h e χ axis. T o a first a p p r o x i m a t i o n a ^ ~ a > > ~ 0 (16). 1 7
2
1 7
y
Table II.
z
E P R Data for the 0 Hyperfine Interactions 17
a v, aj,v, a v, x
2
0(1)
0(2)
-80G ~0G ~0G
-60G ~0G ~0G
^iiso,
-27G
2/3,
-53G 0.016
p
8
0.51
P2 Tc * P
z
xf
-20G
-40G 0.012 0.38
T h e e x p e r i m e n t a l h y p e r f i n e tensor f o r each o x y g e n c a n be r e s o l v e d i n t o i t s i s o t r o p i c a n d a n i s o t r o p i c components i n t h e f o r m g i v e n b y E q u a t i o n 1. B e c a u s e t h e n u c l e a r m a g n e t o g y r i c r a t i o f o r o x y g e n is n e g a t i v e , Ai < O , a n d 2β > Ο. A n a n a l y s i s of t h e e x p e r i m e n t a l h y p e r f i n e tensor s i m i l a r t o t h a t c a r r i e d o u t for c o b a l t reveals t h a t t h e u n p a i r e d e l e c t r o n o n t h e o x y g e n is m a i n l y l o c a l i z e d ( ~ 9 0 % ) i n a 2ρπ * m o l e c u l a r o r b i t a l . T h e values of Ai , 2β, a n d t h e electron densities o n t h e different o x y g e n a t o m s are s u m m a r i z e d i n T a b l e I I . %Q
χ
SO
A n e x a m i n a t i o n of t h e r e v e r s i b i l i t y of t h e o x y g e n a t i o n shows t h a t u p o n e v a c u a t i o n of t h e 0 t h e h i g h - s p i n c o b a l t ( I l ) - a m m o n i a c o m p l e x w a s r e 2
Meier and Uytterhoeven; Molecular Sieves Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
39.
447
Cobalt (II)-Ammonia Comptez
VANSANT AND LUNSFORD
stored many times. This indicates a reversible charge transfer between the central cobalt ion and the coordinated oxygen molecule. We may conclude that the divalent cobalt ions move out into the large cavities upon adsorption of N H to form a hexacoordinate cobalt(II)ammonia complex. Following adsorption of 0 in the ammoniated Co (II) Y zeolites, oxygen enters the coordination sphere of the C o ions. This is accompanied by a charge-transfer process to form a [Co(III) ( Ν Η ) 0 ί Γ ] complex. The general intermolecular redox process can be approximated by the reactions 3
2
2 +
2 +
3
Co
2+
2+
+ 6NH *± [Co(II)(NH ) ] 3
3
(2)
6
2+
2+
[Co(II)(NH ) ] + 0 [Co(III)(NH ) 0 -] + NH Downloaded by UNIV OF ARIZONA on March 12, 2017 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0121.ch039
3
e
2
3
5
5
2
(3)
3
The reversibility of the charge transfer makes this complex useful as an oxygen carrier or perhaps as an oxidation catalyst. This monomeric complex forms in solution instead of the dimer in solutions because each peroxy complex is restricted from motion by the zeolite framework. There fore, the formation of binuclear [ ( Η Ν ) - Ο ο - 0 - Ο ο - ( Ν Η ) ] complex is slow in the zeolite. 5 +
3
5
2
3
δ
Literature Cited 1. 2. 3. 4.
Naccache, C., Ben Taarit, Y., Chem. Phys. Lett. (1971) 11, 11. Vansant, E. F., Lunsford, J. H., J. Phys. Chem. (1972) 76, 2860. Vansant, E. F., Lunsford, J. H., Chem. Commun. (1972) 830. Mikheikin, I. D., Brotikovskii, O. I., Zhidomirov, G. M., Kazanskii, V. B., Kinet.Katal.(1971) 12, 1279. 5. Symons, M . C. R., Wilkinson, J. G., J. Chem. Soc. A (1971) 2069. 6. Maher, J. P., J. Chem. Soc. A (1968) 2918. 7. See, for example, (a) Grumbliss A. L., Basolo, F., J. Amer. Chem. Soc. (1970) 92, 55; (b) Walker, F. Α., ibid. (1970), 92, 4235; (c) Abel, E. W., Chem. Commun. (1971) 449; (d) Yamamoto, K., Kwan, T., J. Catal. (1970) 18, 354. 8. Sykes, A. G., Weil, J. Α., Progr. Inorg. Chem. (1970) 13, 1. 9. Fujiwara, S., Watanabe, T., Tadano, H., J. Coord. Chem. (1971) 1, 195. 10. Cotton, F. Α., Wilkinson, G., Advan. Inorg. Chem. (1966) 2, 863. 11. Hoffman, B. M., Diemente, D. L., Basolo, F., Amer. Chem. Soc. (1970) 92, 61. 12. Bayston, J. H., Kelso, N., Looney, F. D., Winfield, M . E., J. Amer. Chem. Soc. (1969) 91, 2775. 13. Goodman, Β. Α., Raynor, J. B., Advan. Inorg. Chem. Radiochem. (1970) 13, 135. 14. McGarvey, B. R., J. Phys. Chem. (1967) 71, 51. 15. See, for example, (a) Tench, A. J., Holroyd, P. H., Chem. Commun. (1968) 471; (b) Symons, M . C. R., Phys. Chem. (1972) 76, 3095; (c) Lunsford, J. H., Catal. Rev., in press. RECEIVED November 17, 1972. Work supported by National Science Foundation Grants GP-35662X and GP-29898 as part of a cooperative program with J. Uytterhoeven, University of Leuven, Belgium, and by an Aspirant grant from the N.F.W.O. (Belgium) to E. F. V.
Meier and Uytterhoeven; Molecular Sieves Advances in Chemistry; American Chemical Society: Washington, DC, 1973.