Fuel Cells - American Chemical Society

stable in a wide range of oxygen partial pressures ( 1-10"2 0 atm p 0 2. ) f o r ...... circuit voltage at 1020°C is 190 V, and the maximum power is ...
0 downloads 0 Views 3MB Size
18 High-Temperature Electrolysis/Fuel Cells:

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on August 26, 2015 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch018

Materials Problems H. OBAYASHI and T. KUDO Central Research Laboratory, Hitachi, Ltd., Higashi-Koigakubo, Kokubunji, Tokyo, 185, Japan The motivation for electrolysis/fuel cell technology is sum­ marized, and problems regarding the development of high­ -temperature electrolysis cells and medium-temperature fuel cells are discussed: (a) a suitable solid electrolyte, (b) a cathode for operating in a highly oxidizing atmosphere mechanically compatible with the electrolyte, (c) a cell design that minimizes material and heat transfer problems, and (d) an electronic conductor stable in a wide range of oxygen partial pressures (1-10 atm PO2) for series connec­ tion. Materials research addressed to solving these problems is reviewed. -20

T 7 u e l cells convert

chemical energy

d i s s i p a t i o n of heat;

electrolysis

e n e r g y i n t o c h e m i c a l energy.

i n t o e l e c t r i c a l energy

cells c o n v e r t

w i t h the

heat a n d e l e c t r i c a l

I f t h e e n t h a l p y of t h e c h e m i c a l r e a c t i o n is

AH = AG + Τ AS, the electrical energy derived f r o m a fuel c e l l ( o r consumed i n a n electrol­ ysis c e l l ) is AG a n d t h e heat d i s s i p a t e d ( o r c o n s u m e d ) is Τ AS.

I n the

absence of overvoltages a n d other c i r c u i t losses a n e n g i n e c o n s i s t i n g of a h i g h - t e m p e r a t u r e electrolysis c e l l a n d a l o w - t e m p e r a t u r e f u e l c e l l w o u l d c o n v e r t heat to e l e c t r i c i t y a n d / o r f u e l w i t h a n efficiency a p p r o a c h i n g t h e C a r n o t factor.

I n p r a c t i c e , losses at t h e electrodes are c o m p a r a b l e

with

t h e n e t e n e r g y d e r i v e d f r o m s u c h a c y c l e , so s u c h h e a t engines h a v e n o t been developed.

H o w e v e r , as t h e s u p p l y of c h e a p f o s s i l fuels b e c o m e s

e x h a u s t e d , t h e r e is r e n e w e d

i n c e n t i v e to d e v e l o p

cells w i t h

reduced

e l e c t r o d e loss, f o r t h e v e r s a t i l i t y o f a n e n g i n e that c a n c o n v e r t h e a t t o e i t h e r e l e c t r i c i t y o r f u e l w o u l d h a v e t r e m e n d o u s advantages i n a n u c l e a r 316

In Solid State Chemistry of Energy Conversion and Storage; Goodenough, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1977.

18.

OBAYASHi

energy

A N D

High-Temperature

K U D O

economy.

Two

approaches

to

Electrolysis/Fuel this

problem

d e v e l o p m e n t of b e t t e r c a t a l y t i c electrodes a n d ( b )

Cells

are

(a)

317 the

o p e r a t i o n at h i g h e r

temperatures.

B e c a u s e l i q u i d electrolytes b e c o m e too corrosive at h i g h

temperatures,

s o l i d electrolytes

offer

great

advantages

for

use

with

l i q u i d a n d gaseous fuels. T w o factors h a v e i n h i b i t e d the use of s o l i d e l e c t r o l y t e s : ( a )

adequate

c e l l d e s i g n a n d ( b ) a d e q u a t e i o n i c m o b i l i t y . B e c a u s e ions m o v e t h r o u g h

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on August 26, 2015 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch018

solids v i a a d i f f u s i o n process, the i o n i c m o b i l i t y contains a n e x p o n e n t i a l f a c t o r e x p ( — EJkT), Unless E

&

where E

&

is r e f e r r e d to as t h e a c t i v a t i o n e n e r g y .

is u n u s u a l l y s m a l l ( 0 . 1 - 0 . 3 e V ) , the i o n i c m o b i l i t y gives a j o u l e

loss i n t h e e l e c t r o l y t e that is t o l e r a b l e o n l y at h i g h t e m p e r a t u r e s .

This

s i t u a t i o n is a c c e p t a b l e for a h i g h - t e m p e r a t u r e electrolysis c e l l , a n d t h e reasons s u c h cells h a v e not b e e n d e v e l o p e d are, essentially, ( a )

inade­

q u a t e c e l l d e s i g n a n d ( b ) insufficient i n c e n t i v e g i v e n a n a v a i l a b l e s u p p l y of c h e a p fossil fuels. W e s h o u l d a n t i c i p a t e b e t t e r designs of h i g h - t e m ­ p e r a t u r e electrolysis cells as t h e i n c e n t i v e for d e v e l o p i n g s y n t h e t i c fuels b e c o m e s m o r e intense. T o date, e n g i n e e r i n g d e s i g n has c o n c e n t r a t e d o n f u e l cells, since t h e y offer the p o s s i b i l i t y of c o n v e r t i n g the c h e m i c a l e n e r g y of a n a v a i l a b l e f u e l into electrical a n d m e c h a n i c a l energy w i t h o u t the customary restriction of the C a r n o t efficiency factor. M a n y types h a v e b e e n p r o p o s e d ( I , 2, 3, 4, 5 ) , a n d e a c h has advantages f o r a p a r t i c u l a r a p p l i c a t i o n .

However,

f u e l cells f o r extensive t e r r e s t r i a l a p p l i c a t i o n a r e o n l y n o w

becoming

commercially available from a single supplier ( 6 ) .

T h e y use a l i q u i d

electrolyte a n d c a n a c c e p t a f a i r l y w i d e r a n g e of fuels. T h e i r efficiency is h m i t e d b y t h e t e m p e r a t u r e of o p e r a t i o n , w h i c h is r e s t r i c t e d b e c a u s e of t h e corrosive c h a r a c t e r of the electrolyte.

C e l l s that e m p l o y e i t h e r s o l i d

or m o l t e n - s a l t electrolytes f o r o p e r a t i o n a b o v e 3 0 0 ° C are c a l l e d h i g h t e m p e r a t u r e ( or m e d i u m - t e m p e r a t u r e ) f u e l cells ( 7, 8, 9 ). S i n c e m o l t e n salt electrolytes are corrosive, a t t e n t i o n is g i v e n i n this a r t i c l e to cells u t i l i z i n g s o l i d electrolytes. T h e h i g h - t e m p e r a t u r e o p e r a t i o n m a d e p o s s i b l e b y s o l i d electrolytes has several advantages, acceptably

(a)

I m p r o v e d k i n e t i c s at the electrodes a l l o w

h i g h c u r r e n t densities w i t h m e t h a n e ,

propane,

and

other

h y d r o c a r b o n fuels that d o n o t react s m o o t h l y at a m b i e n t t e m p e r a t u r e s , (b)

I n the absence of a l i q u i d phase i n t h e system, m a i n t a i n i n g the

" t e r n a r y phase b o u n d a r y r e g i o n " to a v o i d w e t t i n g of t h e e l e c t r o d e n e e d not be considered, system (d)

is m a d e

(c)

F a b r i c a t i o n , o p e r a t i o n , a n d m a i n t e n a n c e of t h e

easier b y

reduced

corrosion

and

sealing

problems,

C o n t r o l of t h e w a t e r / f u e l b a l a n c e is easier b e c a u s e t h e c o m p o s i t i o n

of the e l e c t r o l y t e is i n v a r i a n t a n d i n d e p e n d e n t of the c o m p o s i t i o n of t h e f u e l gas.

(e)

A r e d u c e d p o l a r i z a t i o n of the system p e r m i t s o p e r a t i o n at

h i g h e r c u r r e n t densities, a n d h e n c e h i g h e r p o w e r densities.

In Solid State Chemistry of Energy Conversion and Storage; Goodenough, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1977.

318

SOLID

STATE

CHEMISTRY

O n t h e other h a n d , w o r k i n g at e l e v a t e d temperatures has d i s a d v a n ­ tages: a l o w e r o u t p u t v o l t a g e a n d p r o b l e m s w i t h m i s m a t c h of the t h e r m a l e x p a n s i o n of e l e c t r o d e a n d e l e c t r o l y t e m a t e r i a l s . A l t h o u g h the l a t t e r problem can be engineered around b y appropriate cell design,

both

p r o b l e m s m a k e i t d e s i r a b l e to operate a f u e l c e l l at as l o w a t e m p e r a t u r e as possible, c o m p a t i b l e w i t h the p o w e r r e q u i r e m e n t s . A m e d i u m - t e m ­ p e r a t u r e r a n g e ( 2 0 0 ° - 4 0 0 ° C ) appears m o s t d e s i r a b l e w e r e i t p o s s i b l e to Downloaded by UNIV OF CALIFORNIA SAN DIEGO on August 26, 2015 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch018

find a s o l i d e l e c t r o l y t e h a v i n g a c c e p t a b l e i o n i c m o b i l i t i e s i n this t e m p e r a ­ t u r e r a n g e . T h e m o b i l e i o n i c species of t h e s o l i d e l e c t r o l y t e w o u l d b e either O ' or K 2

+

ions ( m o s t fuels offering H

+

as t h e m o b i l e c o m p o n e n t ) .

Because no k n o w n proton conductors w i t h acceptable H - i o n mobilities +

are stable a b o v e 2 0 0 ° C , t h e e v a l u a t i o n of s o l i d electrolytes i n f u e l cells has b e e n c o n f i n e d to 0 " - i o n c o n d u c t o r s . 2

Unfortunately, acceptable O ' 2

ion mobilities occur only above 800°C, a temperature considerably above the o p t i m u m f o r f u e l - c e l l o p e r a t i o n .

Nevertheless, the materials con­

siderations f o r a h i g h - t e m p e r a t u r e f u e l c e l l are s i m i l a r to those f o r a h i g h - t e m p e r a t u r e electrolysis c e l l , a n d the 0 " - i o n c o n d u c t o r s 2

h e r e are excellent c a n d i d a t e s for this latter a p p l i c a t i o n .

considered Clearly

the

d i s c o v e r y of a s o l i d e l e c t r o l y t e c a p a b l e o f t r a n s p o r t i n g O ' or H ions w i t h 2

+

a c c e p t a b l e m o b i l i t i e s i n the t e m p e r a t u r e r a n g e 2 0 0 ° - 4 0 0 ° C w o u l d r e v o ­ l u t i o n i z e the d e s i g n a n d use of f u e l cells. Development

of a c o m m e r c i a l e l e c t r o l y s i s / f u e l c e l l u s i n g a s o l i d

e l e c t r o l y t e r e q u i r e s the s o l u t i o n of s e v e r a l p r o b l e m s : ( a ) s u i t a b l e m a t e r i a l f o r the s o l i d e l e c t r o l y t e ; ( b )

s e l e c t i o n of a

i d e n t i f i c a t i o n of a c h e m ­

i c a l l y a n d m e c h a n i c a l l y c o m p a t i b l e c a t h o d e that r e m a i n s a g o o d elec­ t r o n i c c o n d u c t o r i n a h i g h l y o x i d i z i n g atmosphere, is t h e r m o d y n a m i c a l l y stable, a n d contains a b u n d a n t , i n e x p e n s i v e elements; d e s i g n t h a t a l l o w s series

connection

of

(c)

simple cell

i n d i v i d u a l units a n d

makes

a c c e p t a b l e a n y m i s m a t c h i n t h e r m a l e x p a n s i o n of the electrolyte a n d the electrodes; a n d ( d ) i d e n t i f i c a t i o n of a n i n e x p e n s i v e e l e c t r o n i c c o n d u c t o r stable i n a w i d e r a n g e of o x y g e n p a r t i a l pressures ( 1 - 1 0 " series c o n n e c t i o n .

20

atm p

)

0 2

f

o r

O f these, t h e most i m p o r t a n t i m m e d i a t e p r o b l e m is

t h e s o l i d electrolyte. A t a n o p e r a t i n g t e m p e r a t u r e n e a r 3 5 0 ° C the s o l i d 0 " - i o n electrolyte s h o u l d h a v e a h i g h 0 " - i o n m o b i l i t y a n d a h i g h 0 " - i o n 2

2

2

transference n u m b e r ( r a t i o of 0 " - i o n c o m p o n e n t to t o t a l e l e c t r i c a l c o n ­ 2

d u c t i v i t y ) o v e r a w i d e r a n g e of o x y g e n p a r t i a l pressures.

It must be

c h e m i c a l l y stable o v e r a w i d e t e m p e r a t u r e range, m a d e of i n e x p e n s i v e m a t e r i a l s , a n d easily f a b r i c a t e d i n t o dense c e r a m i c m e m b r a n e s of a r b i ­ t r a r y shape. T h i s p a p e r r e v i e w s the present status of m a t e r i a l s r e s e a r c h i n t o 0 " - i o n s o l i d electrolytes, electrodes, a n d c e l l interconnectors. 2

In Solid State Chemistry of Energy Conversion and Storage; Goodenough, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1977.

18.

OBAYASHi

A N D

High-Temperature

K U D O

Electrolysis/Fuel

319

Cells

&~-Ion Solid Electrolytes General Considerations. The d i s c o v e r y a n d u t i l i z a t i o n of o x y g e n - i o n c o n d u c t i o n i n a c e r a m i c o x i d e dates b a c k to b e f o r e 1900, w h e n N e r n s t used yttria-stabilized zirconia, χ Υ 0 · ( 1 — 2 x ) Z r 0 2

fluorite

3

2

crystallizing i n the

structure, as a g l o w e r element, k n o w n as t h e N e r n s t mass

M a n y w o r k e r s h a v e c o n t r i b u t e d to this field since t h e n (11).

(10).

Although

N e r n s t ' s g l o w e r element was n o t a c o m m e r c i a l success, oxides c o n d u c t i n g O " ions h a v e b e e n i n v e s t i g a t e d for a v a r i e t y of other a p p l i c a t i o n s , i n c l u d ­ Downloaded by UNIV OF CALIFORNIA SAN DIEGO on August 26, 2015 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch018

2

i n g t h e n o w c o m m e r c i a l l y a v a i l a b l e o x y g e n sensors u s e d f o r the s t u d y of the t h e r m o d y n a m i c p r o p e r t i e s of oxides at e l e v a t e d t e m p e r a t u r e s

(8,12).

T h e use of c e r a m i c 0 " - i o n c o n d u c t o r s as s o l i d electrolytes i n f u e l cells 2

has b e e n s t u d i e d i n t e n s i v e l y at several institutes (13, 14, 15, 16), c i a l l y d u r i n g the late 1960s.

A l t h o u g h the c e l l designs w e r e

espe­

inadequate

a n d the h i g h - t e m p e r a t u r e a p p l i c a t i o n is b e t t e r s u i t e d to electrolysis, these studies h a v e p r o v i d e d i m p o r t a n t i n f o r m a t i o n a b o u t the p e r f o r m a n c e

of

0 " - i o n c o n d u c t o r s u n d e r o p e r a t i n g c o n d i t i o n s a n d s o m e of the p r o b l e m s 2

to b e e n c o u n t e r e d because of m a t e r i a l s m i s m a t c h b e t w e e n electrodes a n d electrolyte.

T h e 0 " - i o n conductors

extensively s t u d i e d are

the

O t h e r systems w i t h the fluorite s t r u c t u r e , f o r

2

e x a m p l e those b a s e d o n T h 0 The

most

2

Z r 0 - b a s e d systems (13).

a n d C e 0 , h a v e also b e e n i n v e s t i g a t e d .

2

2

0 ~ - i o n conductors

that have been

2

s t u d i e d most i n t e n s i v e l y

g e n e r a l l y e x h i b i t a n e g l i g i b l e c a t i o n i c c o n d u c t i v i t y (17, e r a l m o d e l for s u c h a n 0 " - i o n 2

conductor

consists of

18, 19). a

A gen­

fixed

cation

s u b a r r a y w i t h i n w h i c h the anions m o v e b y j u m p i n g f r o m one e n e r g e t i ­ c a l l y e q u i v a l e n t site to another. The mobility μ cient D

0

of t h e i o n i c m o t i o n is r e l a t e d to t h e d i f f u s i o n coeffi­

t h r o u g h the N e r n s t - E i n s t e i n r e l a t i o n ,

0

μ

ο

=

2eD /kT

(1)

0

w h e r e —2e is the charge o n the m o b i l e O " i o n a n d the s i g n of μο is 2

chosen f o r c o n v e n i e n c e . D where n

D

0

=

F r o m r a n d o m - w a l k theory,

0

=

(2n

D O

(2)

)- [Vo' ]^o vo 1

,

2

1, 2, or 3 is the d i m e n s i o n a l i t y of the i o n i c m o t i o n ,

[V "] 0

is the c o n c e n t r a t i o n of d o u b l y i o n i z e d o x y g e n vacancies ( e a c h of w h i c h is c a p a b l e of t r a p p i n g t w o e l e c t r o n s ) , z

0

nearest-neighbor

is t h e n u m b e r of

equivalent

sites a j u m p distance flo a w a y , a n d vo is t h e

jump-

a t t e m p t f r e q u e n c y of the O " ions. T h e e x t r i n s i c 0 " - i o n c o n d u c t i v i t y is 2

a o

( e x t ) — Nod

2

-

[V "])e/io 0

In Solid State Chemistry of Energy Conversion and Storage; Goodenough, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1977.

(3)

320

SOLID

STATE

CHEMISTRY

w h e r e JV is t h e d e n s i t y of e n e r g e t i c a l l y e q u i v a l e n t o x y g e n sites o n w h i c h 0

t h e ions m o v e . K i n g e r y et a l . ( 2 0 ) h a v e d e m o n s t r a t e d (see below) t h a t 0 " - i o n c o n d u c t i o n i n Zro.85Cao.15O1.s5 takes p l a c e v i a t h e d o u b l y i o n i z e d 2

o x y g e n v a c a n c i e s V " , a n d w e assume this to b e t r u e for a l l 0 ~ - i o n 2

0

c o n d u c t o r s c o n s i d e r e d here. F i n a l l y , since a free e n e r g y A G = 0

TaS

0

vo = Downloaded by UNIV OF CALIFORNIA SAN DIEGO on August 26, 2015 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch018

Δί/

0



is r e q u i r e d to m a k e a j u m p , t h e j u m p f r e q u e n c y is

where E = a

v e x p ( — AGo/kT)

— v o o e x p ( A S / f c ) e x p ( — EJkT)

o 0

ΔΗ

0

0

(4)

is r e f e r r e d to as the a c t i v a t i o n e n e r g y f o r i o n i c m o b i l i t y .

F r o m the f a c t o r ( 1 — [ V " ] ) [ V " ] a p p e a r i n g i n a o ( e x t ) , i t is c l e a r 0

0

t h a t t h e i o n i c c o n d u c t i v i t y vanishes i f the N o e q u i v a l e n t sites are e i t h e r c o m p l e t e l y o c c u p i e d or c o m p l e t e l y e m p t y . S u c h a s i t u a t i o n is analogous to a s t o i c h i o m e t r i c s e m i c o n d u c t o r or i n s u l a t o r i n w h i c h i n t r i n s i c elec­ t r o n i c c o n d u c t i v i t y r e q u i r e s t h e c r e a t i o n of m o b i l e electrons a n d holes b y t h e t h e r m a l e x c i t a t i o n of electrons f r o m t h e v a l e n c e b a n d to the c o n d u c ­ t i o n b a n d . I n t h e e l e c t r o n i c a n a l o g y , t h e p r o d u c t of the concentrations of i n t r i n s i c electrons a n d holes is [e]i„ [h] t

where K

l n t

-

tf exp[-

E /kT] g

0

is a n e q u i l i b r i u m constant a n d E

0

(5)

is the e n e r g y g a p b e t w e e n

g

t h e t o p of t h e v a l e n c e b a n d a n d the b o t t o m of t h e c o n d u c t i o n b a n d . S i m i l a r l y , i n t r i n s i c i o n i c c o n d u c t i v i t y r e q u i r e s t h e r m a l e x c i t a t i o n of O ' 2

ions f r o m n o r m a l positions to i n t e r s t i t i a l positions across a n e n t h a l p y barrier Δ ί ^ :

O " ^± V o " +

Oi "

2

(6)

2

w h e r e O i " is a n i n t e r s t i t i a l i o n a n d t h e e q u i h b r i u m constant is 2

KdT)

-

[Vc/'HOi -] 2

X

i 0

e x p ( - ΔΗι/kT)

(7)

A s i g n i f i c a n t c o n c e n t r a t i o n of m o b i l e e l e c t r o n i c c h a r g e carriers at n o r m a l temperatures can be i n t r o d u c e d into a semiconductor b y a suitable c h e m ­ i c a l s u b s t i t u t i o n . S i m i l a r l y , i t is c u s t o m a r y i n i o n i c c o n d u c t o r s to i n t r o ­ duce m o b i l e ionic charge carriers b y appropriate c h e m i c a l substitutions. I n t h e s t a b i l i z e d z i r c o n i a s a l r e a d y m e n t i o n e d , the f o l l o w i n g s u b s t i t u t i o n s were made: Zr 2Zr

4 +

4 +

+

O " by C a

+

O " by 2 Y

2

2

2 +

3 +

+ +

V "

(8a)

Vo'

(8b)

0

In Solid State Chemistry of Energy Conversion and Storage; Goodenough, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1977.

18.

OBAYASHi

A N D

High-Temperature

K U D O

Electrolysis/Fuel

321

Cells

A n o x y g e n p o s i t i o n adjacent to a s u b s t i t u t i o n a l c a t i o n is n o t c r y s t a l l o g r a p h i c a l l y , a n d h e n c e e n e r g e t i c a l l y , e q u i v a l e n t to

one

t h a t is

not.

H o w e v e r , w i t h sufficient c a t i o n s u b s t i t u t i o n V o " is a b l e to m i g r a t e to a p o s i t i o n n e i g h b o r i n g another s u b s t i t u t i o n a l c a t i o n v j a a n e a r e s t - n e i g h b o r j u m p , a n d the b i n d i n g energy b e t w e e n d o p a n t a n d V " m a y b e n e g l e c t e d 0

at o p e r a t i n g temperatures. T h e s i t u a t i o n b e c o m e s analogous to e x t r i n s i c e l e c t r o n i c or h o l e c o n d u c t i o n i n a h i g h l y d o p e d s e m i c o n d u c t o r ,

except

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on August 26, 2015 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch018

that the c h a r g e - c a r r i e r m o b i l i t y μο is a c t i v a t e d ( E q u a t i o n s 1-4)

as i n

t h e case of a s m a l l - p o l a r o n c o n d u c t o r . T h e p o p u l a t i o n s of o x y g e n v a c a n c i e s a n d m o b i l e electrons a n d holes i n s u c h a c a t i o n - s u b s t i t u t e d 0 ' - i o n c o n d u c t o r are also i n f l u e n c e d b y t h e 2

c h e m i c a l e q u i l i b r i u m of the s a m p l e w i t h gaseous o x y g e n 0 ( g ) 2

*0 (g) +

V

2

0

" i

h

0

- +

2

(21):

2h

(9a)

0 - S i 0 ( g ) + V " + 2e 2

2

(9b)

0

F r o m the l a w of mass a c t i o n the e q u i l i b r i u m constants a r e

=

K (T) h

K (T) e

where p

02

[h] =

2

• [Vo"]"

[e]

2

• Po -

1

2

· [Vo"] • p

m

0 2

1 / 2

-

#

-

K^expiAHJkT)

h o

e x p ( - AHJkT)

(10b)

is the p a r t i a l pressure of o x y g e n a n d A / / , AH

are t h e e n t h a l ­

e

h

(10a)

pies f o r o x i d a t i o n a n d r e d u c t i o n , r e s p e c t i v e l y . T h e c o r r e s p o n d i n g

elec­

t r o n i c c h a r g e - c a r r i e r concentrations are

[h] = X [e] -

h

1 / 2

Xe

[V "]

1 / 2

0

1 / 2

[V "]0

p

1 / 2

0 2

Po 2

e

(Hb)

1 / 4

I f the v a l e n c e b a n d of the o x i d e is a n 0 " : 2 p b a n d , A f / 2

(Ha)

1 / 4

h

is l a r g e a n d

[h]

is n e g l i g i b l e . H o w e v e r , i f the v a l e n c e b a n d is a n a r r o w d or f b a n d , as m a y o c c u r i n t r a n s i t i o n - m e t a l a n d r a r e - e a r t h oxides, A H

h

m a y be small

e n o u g h to g i v e a significant c o n c e n t r a t i o n of m o b i l e holes [ h ] at h i g h e r o x y g e n p a r t i a l pressures.

S i m i l a r l y , i f t h e c o n d u c t i o n b a n d associated

w i t h t h e l o w e s t e m p t y orbitals o n the c a t i o n a r r a y is r e l a t i v e l y stable, Aff

e

m a y b e s m a l l e n o u g h to g i v e a significant c o n c e n t r a t i o n of m o b i l e

electrons [e] at l o w e r o x y g e n p a r t i a l pressures.

In Solid State Chemistry of Energy Conversion and Storage; Goodenough, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1977.

322

SOLID STATE

CHEMISTRY

T h e total electrical conductivity is the s u m of the partial

conduc­

t i v i t i e s c a u s e d b y holes, electrons, a n d O " i o n s : 2

«n, = σ

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on August 26, 2015 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch018

σ where N

tf [h]

e/x

h

= i V [ e ] e/x

β

e

(12a)

h

(12b)

e

— ΛΓ (1 — [ V ' ' ] )2e/*o + ^ [ ( V ^ e / V

0

0

(12c)

0

i s the d e n s i t y o f c r y s t a l l o g r a p h i c sites a v a i l a b l e t o c h a r g e -

m

c a r r i e r species m , e is t h e m a g n i t u d e o f the e l e c t r o n i c c h a r g e , a n d t h e signs of the m o b i l i t i e s /A are so d e f i n e d (see E q u a t i o n 1) t h a t the p r o d u c t m

of t h e m o b i l i t y a n d t h e c h a r g e c a r r i e d is a l w a y s p o s i t i v e . T h e m o b i l i t y /Ao refers t o t h e i n t e r s t i t i a l O i ' ions, a n d N is t h e d e n s i t y o f i n t e r s t i t i a l 1

2

{

sites. T h e transference n u m b e r for 0 " - i o n c o n d u c t i o n is d e f i n e d as 2

to = σ / ( a 0

h

+ σ + σ ) β

(13)

0

F o r a s o l i d e l e c t r o l y t e i t is d e s i r a b l e t o h a v e t =

1. T h i s i d e a l m a y b e

0

a p p r o a c h e d i n oxides w i t h l a r g e b a n d gaps (E

> 100&Γ), p r o v i d e d A H

G

and Δ Η

β

h

are also l a r g e .

F o r a g i v e n AH a n d Δ Η , the transference n u m b e r o f a n e x t r i n s i c h

β

0 " - i o n c o n d u c t o r is 2

to =

(«Po

1 / 4 2

[V '']-

1 / 2

0

+

/W

/

4

[V

0

"]-

3

/

2

1

+

D"

(14)

where a = K^W^HO

a n d β = Κ"*μ*/2μο

(15)

F i g u r e 1 shows s c h e m a t i c a l l y the d e p e n d e n c e o f ίο o n the o x y g e n p a r t i a l pressure p

0 2

(22).

S i g n i f i c a n t l y , the r a n g e o f o x y g e n pressures at w h i c h — —

• u n d o p e d oxide = doped -

ff

NX

y /

6" ion

\--/

1.0

n i / / 1

.20.5 Figure 1. Schematic show­ ing the effect of doping on conductivity and ionic trans­ ference number

\

1

I'

*

/ '

»

//

\

P

0

y

\

-

\ \

\

2

In Solid State Chemistry of Energy Conversion and Storage; Goodenough, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1977.

18.

OBAYASHi

High-Temperature

A N D K U D O

Electrolysis/Fuel

c o n d u c t i o n is p r e d o m i n a n t l y i o n i c c a n , f o r a g i v e n A i /

h

323

Cells and Δίί , β

be

widened b y increasing [Vo"] w i t h chemical doping. Schmalzried (23)

has d e f i n e d p * σ

h

to =

a n d p * as t h e o x y g e n

h

pressures at w h i c h a =

0

{1 +

and σ =

σ

β

(Po /Ph*) 2

e

(i.e. t

0

0

1 / 4

+

=

0.5).

WPe*)"

1 7 4

a n d i t is sufficient to k n o w p * a n d p * to c a l c u l a t e t

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on August 26, 2015 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch018

h

}-

(16)

1

at a n y g i v e n o x y g e n

0

e

partial

Then

p a r t i a l pressure. C o n v e r s e l y , p * a n d p ° c a n b e o b t a i n e d f r o m c o n d u c ­ h

e

tivity measurements that give t

0

pressures (24, 2 5 ) .

u n d e r a f e w different o x y g e n

S c h m a l z r i e d ' s (23, 26)

partial

o r i g i n a l e q u a t i o n t o estimate

these p a r a m e t e r s is b a s e d o n t h e e m f of a n o x y g e n c o n c e n t r a t i o n c e l l :

(17)

w h e r e F is F a r a d a y ' s constant a n d ρ

θ 2

' , P o " are, r e s p e c t i v e l y , t h e o x y g e n 2

p a r t i a l pressures at t h e a n o d e a n d c a t h o d e

(po " 2

>

Ρο ')· 2

If the ionic

defects are f u l l y i o n i z e d , as is g e n e r a l l y t h e case at e l e v a t e d t e m p e r a t u r e s (20), η

y .



4

T h e " e l e c t r o l y t i c d o m a i n " is d e f i n e d as the d o m a i n of o x y g e n p a r t i a l pressures i n w h i c h to is greater t h a n some s p e c i f i e d v a l u e s u c h as 0.99 (27, 28).

M o s t 0 " - i o n conductors have a n 0 " : 2 p 2

h e n c e a large &H . h

2

e

valence b a n d a n d

I n these cases i t is p r a c t i c a l l y m o r e i m p o r t a n t to

d e t e r m i n e the v a l u e of p * i n o r d e r to c h e c k t h e s u i t a b i l i t y of a m a t e r i a l e

for a f u e l / e l e c t r o l y s i s c e l l or a n o x y g e n sensor (29, 30,

31).

I n a d d i t i o n t o c h e m i c a l s t a b i l i t y against o x i d i z i n g a n d r e d u c i n g atmopsheres ( l a r g e AH

a n d Δ Η ) a n d a large intrinsic electronic energy

h

β

g a p E g , a l l to m i n i m i z e a n y e l e c t r o n i c c o n t r i b u t i o n to t h e c o n d u c t i v i t y , a good 0 " - i o n electrolyte must have a h i g h μ , a n d hence a l o w activation 2

0

energy E

a

for i o n i c m o b i l i t y . E x t e n s i v e studies o n 0 " - i o n electrolytes 2

h a v e s h o w n t h a t the 0 ' - i o n m o b i l i t i e s m a y v a r y g r e a t l y w i t h c r y s t a l 2

s t r u c t u r e . A l t h o u g h l i t t l e a t t e n t i o n has b e e n g i v e n to l e a r n i n g w h y c e r t a i n c r y s t a l structures are m o r e f a v o r a b l e t h a n others f o r h i g h i o n i c m o b i l i t y , i t has b e e n f o u n d e m p i r i c a l l y t h a t m o s t of t h e g o o d 0 " - i o n 2

k n o w n crystallize i n the The B i 0 2

3

fluorite,

conductors

p e r o v s k i t e , o r p y r o c h l o r e structures.

a n d C - t y p e l a n t h a n i d e structures, w h i c h are r e l a t e d to

fluorite

w i t h V " i n a n o r d e r e d a r r a y , are also g o o d host structures. I n w h a t 0

f o l l o w s , r e p r e s e n t a t i v e s o l i d electrolytes f r o m e a c h s t r u c t u r a l g r o u p are d i s c u s s e d i n some d e t a i l . Fluorites.

S T R U C T U R E .

The cubic

fluorite

s t r u c t u r e corresponds

c h e m i c a l f o r m u l a M X . I t consists of a f a c e - c e n t e r e d - c u b i c 2

to

a r r a y of

cations M w i t h anions X o c c u p y i n g a l l of t h e t e t r a h e d r a l interstices. T h e

In Solid State Chemistry of Energy Conversion and Storage; Goodenough, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1977.

324

S O L I D

S T A T E

C H E M I S T R Y

o c t a h e d r a l sites are e m p t y ; t h e y represent i n t e r s t i t i a l positions f o r

the

anions. I n t r o d u c t i o n of v a c a n c i e s i n t o the t e t r a h e d r a l sites p e r m i t s a n i o n m o b i l i t y , a n d the most p r o b a b l e j u m p p a t h is v i a a n o c t a h e d r a l site t h a t shares c o m m o n faces w i t h t h e t w o n e i g h b o r i n g t e t r a h e d r a l sites. activation energy E

a

The

increases as t h e e n e r g y r e q u i r e d t o p l a c e a n a n i o n

i n t o a n adjacent i n t e r s t i t i a l site increases. T h e C - t y p e l a n t h a n i d e s t r u c t u r e ( M X ) contains 2 5 % a n i o n v a c a n ­ 2

3

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on August 26, 2015 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch018

cies t h a t are o r d e r e d a m o n g the t e t r a h e d r a l sites.

I n such an

ordered

s t r u c t u r e the tetrahedral-site vacancies are not c r y s t a l l o g r a p h i c a l l y e q u i v ­ a l e n t a n d m u s t b e c o n s i d e r e d i n t e r s t i t i a l positions. D O P E D

ZR0 . 2

Pure Z r 0

has t w o c r y s t a l l o g r a p h i c m o d i f i c a t i o n s :

2

it

is m o n o c l i n i c at l o w t e m p e r a t u r e s a n d t e t r a g o n a l at h i g h temperatures (32, 3 3 , 3 4 ) .

I n t r i n s i c e l e c t r o n i c c o n d u c t i v i t y competes w i t h i n t r i n s i c

i o n i c c o n d u c t i v i t y , a n d the e l e c t r o n i c m o b i l i t i e s are m u c h greater t h a n t h e i o n i c m o b i l i t i e s . E l e c t r o n i c c o n d u c t i v i t y d o m i n a t e s the phase

monoclinic

(35, 36, 3 7 ) ; the t e t r a g o n a l m o d i f i c a t i o n s h o w s a m i x e d i o n i c /

e l e c t r o n i c c o n d u c t i o n of c o m p a r a b l e m a g n i t u d e

(38).

t h e i o n i c a n d e l e c t r o n i c c o n d u c t i v i t i e s of p u r e Z r 0 p a r t i a l pressure of o x y g e n p o

2

2

F i g u r e 2 shows

as a f u n c t i o n of the

for t w o temperatures, 6 0 0 ° C a n d 9 0 0 ° C .

A t h i g h e r p , i n t e r s t i t i a l o x y g e n ions O i " are i n t r o d u c e d ; these are the 2

0 2

m o b i l e i o n i c species. A t l o w e r p o , o x y g e n vacancies V o " are i n t r o d u c e d , 2

a n d t h e n o r m a l - s i t e O " ions are m o b i l e .

A t intermediate po

2

2

b o t h the

i o n i c a n d e l e c t r o n i c c o n d u c t i v i t i e s are i n t r i n s i c . O n the other h a n d , i o n i c c o n d u c t i v i t y dominates i n c a t i o n - s u b s t i t u t e d Z r 0 , e v e n i n the m o n o c l i n i c phase. 2

a transference n u m b e r t

0

>

F o r example, 0 . 0 1 Y O 0 . 9 9 Z r O 2

three orders of m a g n i t u d e l a r g e r t h a n that of p u r e Z r 0

0

-4

3

2

has

0.9 at 6 0 0 ° C a n d a t o t a l c o n d u c t i v i t y n e a r l y

-8

-12

-16

-20

-24

2

(37).

-28

Figure 2. Electronic and ionic partial conductivity isotherms for pure Zr0 . Adapted from Ref. 37. 2

In Solid State Chemistry of Energy Conversion and Storage; Goodenough, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1977.

18.

OBAYASHi

A N D

High-Temperature

K U D O

Τ

ίο-·-

1

Electrolysis/Fuel

1

1

325

Cells

Γ

Calculated from electrical conductivity

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on August 26, 2015 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch018

10 - 7

10-·

10-·

io-

-L

1 0

0.7

0.6

0.5

10

0.9

0.8

U

îoocvr Figure 3. Comparison of directly measured diffusion constants with a line calculated from electrical conductivity and the Nernst-Einstein relation. Adapted from Ref. 20.

K i n g e r y et a l . ( 2 0 ) ductivity i n doubly mobility

h a v e d e m o n s t r a t e d t h a t the h i g h 0 ~ - i o n 2

Zro.s5Cao.15O1.85

ionized oxygen

vacancies

at 7 0 0 ° - 1 1 0 0 ° C

employing

con­

is c a u s e d b y n o r m a l - s i t e Ό " ions h o p p i n g to 2

by

mass-spectrometer

[Vo"].

They

introducing O analysis.

They

1 8

measured

the

oxygen

v i a i o n exchange also m e a s u r e d

and

the total

e l e c t r i c a l c o n d u c t i v i t y a n d c o m p a r e d i t w i t h the i o n i c c o n d u c t i v i t y c a l c u ­ l a t e d f r o m the m e a s u r e d i o n i c m o b i l i t y a n d E q u a t i o n 3. T h e c o m p a r i s o n is s h o w n i n F i g u r e 3.

W i t h i n e x p e r i m e n t a l error, t h e entire e l e c t r i c a l

c o n d u c t i v i t y c a n b e a t t r i b u t e d to a n e x t r i n s i c i o n i c c o n d u c t i v i t y i n w h i c h t h e i o n i c m o b i l i t y is p r o p o r t i o n a l to the c o n c e n t r a t i o n of d o u b l y i o n i z e d vacancies, [ V " ] . 0

S i m p s o n a n d C a r t e r ( 1 8 ) o b t a i n e d s i m i l a r results w i t h

s i n g l e - c r y s t a l a n d p o l y c r y s t a l l i n e Zr .858Ca .i42Oi.858. 0

0

In Solid State Chemistry of Energy Conversion and Storage; Goodenough, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1977.

326

SOLED

STATE

CHEMISTRY

W i t h l a r g e r c a t i o n s u b s t i t u t i o n s a c u b i c fluorite s t r u c t u r e is s t a b i l i z e d r e l a t i v e to t h e m o n o c l i n i c a n d t e t r a g o n a l m o d i f i c a t i o n s of p u r e Z r 0 . T h e 2

a n i o n - d e f i c i e n t fluorite s t r u c t u r e has a s i g n i f i c a n t l y l a r g e r O ^ - i o n c o n d u c ­ t i v i t y , a n d i t is this phase that is of interest f o r s o l i d electrolytes.

I n the

s y s t e m C a . Z r i . 0 . . , t h e c u b i c phase is s t a b i l i z e d a b o v e 1 7 0 0 ° C f o r χ > a?

a

2

a

0.12, a b o v e 1 3 0 0 ° C f o r χ >

0.16 ( 3 9 ) .

M a x i m u m c o n d u c t i v i t i e s are

o b s e r v e d i n t h e r a n g e 0.13 > χ > 0.15 (40).

T h e systems M

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on August 26, 2015 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch018

w h e r e M is a t r i v a l e n t c a t i o n of c o m p a r a b l e size ( M = G d . . .) h a v e also b e e n e x t e n s i v e l y i n v e s t i g a t e d (41).

2 a ;

Zri. .0 . , 2 a

2

a r

Se, Y , N d , S m , F i g u r e 4 shows

c o n d u c t i v i t y v s . d o p a n t c o n c e n t r a t i o n at 8 0 0 ° C f o r several of these sys­ tems

I n most

(42).

cases t h e c o n d u c t i v i t y m a x i m u m o c c u r s at t h e

m i n i m u m d o p a n t l e v e l n e e d e d to s t a b i l i z e t h e c u b i c phase. T h i s o b s e r v a ­ t i o n seems to i n d i c a t e that t h e m a g n i t u d e of t h e m o b i l i t y is n o t o b t a i n e d b y o p t i m i z i n g t h e p r o d u c t [ V o " ] ( 1— [ V " ] ) w i t h t h e s i m p l i f i e d a s s u m p ­ 0

t i o n of r a n d o m o x y g e n v a c a n c i e s i n t h e fluorite s t r u c t u r e (43, 44). =

0.15/2 =

In

f o r e x a m p l e , t h e o x y g e n - v a c a n c y c o n c e n t r a t i o n is [ V o " ]

Cao.15Zro.85O1.g5,

0.075.

A t the large vacancy

concentrations

required for

s t a b i l i z a t i o n o f t h e c u b i c phase, t h e d i l u t e - s o l u t i o n a p p r o x i m a t i o n , w h i c h neglects i n t e r a c t i o n s b e t w e e n t h e vacancies, m a y n o t h o l d . I n d e e d i t has b e e n suggested t h a t a c u b i c phase w i t h

disordered

o x y g e n vacancies is n o t stable b e l o w a b o u t 1 0 0 0 ° C ( 4 5 , 46, 47, 48, 49). Baukal

f o u n d that a decrease w i t h t i m e i n t h e c o n d u c t i v i t y of

(50)

( Z r 0 ) 0 . 9 1 ( Y 0 ) 0 . 0 9 o n l o w e r i n g t h e t e m p e r a t u r e to 8 0 0 ° C c o u l d b e 2

2

3

described b y

first-order

kinetics a n d that the activation energy E

for

&

ionic conduction remained unchanged

d u r i n g t h e a g i n g process.

This

r e s u l t p r o v i d e s c l e a r e v i d e n c e f o r some k i n d of o r d e r i n g o f t h e o x y g e n vacancies,

a n d this i n f e r e n c e

observation specimens

from

has b e e n

partially confirmed

x-ray a n d neutron-diffraction

studies

by

for the

(40, 48, 4 9 ) . T h i s a g i n g effect, o b s e r v e d f o r m a n y

direct aged

systems,

a p p e a r s b e l o w a c r i t i c a l t e m p e r a t u r e b u t has a cutoff at l o w t e m p e r a t u r e s w h e r e t h e i o n i c m o b i l i t y b e c o m e s too l o w f o r a g i n g to t a k e p l a c e . I n t h e s y s t e m CSL ZT . 0 .X, X

1 x

2

χ (47, 48, 51, 52); occur for Τ >

o r d e r i n g occurs m o r e r e a d i l y at h i g h e r v a l u e s of i t has a m a x i m u m rate of 1 0 0 0 ° C ( 5 3 ) , i t does n o t

1 2 5 0 ° C , a n d i t is too s l o w to b e o b s e r v a b l e

for Τ


3

Pr

349

Cells

2.5) causes s p a l l i n g of t h e

cathode during cooling. S h i r a i et a l . (130)

investigated C e 0

C r , C o , a n d N i as w e l l as L a 0 2

wt % Zr0

2

3

2

doped with Y 0 , F e 0 , L a 0 , 2

3

2

3

2

doped with C r , Co, and N i . A

3

60-40

L a 0 - C o s a m p l e h a d the l o w e s t r e s i s t i v i t y , a n d adhesiveness to 2

was

3

much improved by

substituting Y

for

L a i n the

system

L a . . Y 0 - C o . T h e y c l a i m that a f u e l c e l l e m p l o y i n g this c a t h o d e c o u l d

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on August 26, 2015 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch018

2

a

; c

3

b e o p e r a t e d a b o v e 1000°C, b u t details w e r e n o t g i v e n . I t w o u l d a p p e a r t h a t t h e i r c o m p o s i t i o n contains L a C o 0 , i n w h i c h case r e a c t i v i t y w i t h 3

the solid w o u l d be a problem. S v e r d r u p et a l . ( 13, 128) %

f o u n d a r e s i s t i v i t y m i n i m u m n e a r 1-2 m o l

S n , S b , or T e as a d o p a n t i n l n 0 2

at 1000°C, a n d S n - d o p e d l n 0 2

d u c t o r . It has t h e C - t y p e L n 0 2

r e l a t e d to

fluorite.

3

In 0 2

3

is stable

s t r u c t u r e of F i g u r e 2 1 , w h i c h is closely

3

=

0

sions of the t w o c o m p o u n d s 2

Figure 25).

A t 25 ° C , its p s e u d o f l u o r i t e l a t t i c e p a r a m e t e r , a

5.06 A , m a t c h e s w e l l that of Z r 0 Moreover, l n 0

(see

3

is u s e d as a t r a n s p a r e n t e l e c t r o n i c c o n ­

3

2

(a

=

0

5.10 A ) , a n d t h e t h e r m a l e x p a n ­

are s i m i l a r (131),

as seen i n F i g u r e 26.

is essentially u n r e a c t i v e w i t h Z r 0

2

at 1000°C.

Polariza­

t i o n losses at t h e e l e c t r o d e c a n b e s i g n i f i c a n t l y r e d u c e d b y a s i m p l e r e v e r s e - c u r r e n t t r e a t m e n t , as c a n b e seen i n the v o l t a g e - c u r r e n t curves of F i g u r e 27 for a film of l n 0 2

3

deposited on stabilized Z r 0

2

by chemical

v a p o r t r a n s p o r t . P o l a r i z a t i o n losses w e r e also r e d u c e d w i t h a c o m p o s i t e electrode

c o n s i s t i n g of a d o p e d - I n 0 2

1

1

1

3

current collector covered b y 1

1

1

a

Γ

Temperature, ° C

Figure 26. A comparison of the linear thermal expansion characteristics and stabilized zirconia. Adapted from Ref. 13.

of

In Solid State Chemistry of Energy Conversion and Storage; Goodenough, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1977.

In O t

s

350

SOLID

STATE

CHEMISTRY

'600

1 Ί Test In 10 Electrode weight: 21 mg/cm Operating ρ/δ -0.68Ω 1400H Τ • 1000°C

î

N

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on August 26, 2015 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch018

e

Q

- 200cc/min (26 C, latm)

Acuve electrode area.- 1.3 cm

1200

>

2

Total drop before treatmen

1000

1

2

Total drop following reverse current treatment

800

ιι a.

UJ

o 600

Resistive drop following reverse current treatment R -0.67Q

o 400

ÛJ

^ ^ ^ ^ Resistive drop prior to reverse current treatment

200

200

400 600 800 Electrode Current, ma

1000

1200

Figure 27. Voltage-current characteristic of In O air electrodes. "Re­ verse-current" treatment reduces the potential drop. Adapted from Ref. 13. s

p o r o u s l a y e r of Z r 0

2

i m p r e g n a t e d w i t h o n e of t h e " c u b i c " p e r o v s k i t e s

P r C o 0 , N d C o 0 , P r N i 0 , or N d N i 0 3

3

doped l n 0 2

3

s

3

3

(13).

F r o m these observations,

is a p r o m i s i n g a i r e l e c t r o d e f o r h i g h - t e m p e r a t u r e f u e l /

electrolysis cells o p e r a t i n g at a b o u t 1000°C. A n a l t e r n a t i v e to a p o r o u s e l e c t r o d e is a m i x e d e l e c t r o n i c / i o n i c conductor. A s illustrated i n F i g u r e 28 for a n anode ( a similar argument a p p l i e s to c a t h o d e s ) , T a k a h a s b i et a l . (124)

have p o i n t e d out that w i t h

s u c h a n o n p o r o u s e l e c t r o d e t h e e l e c t r o d e r e a c t i o n takes p l a c e o v e r t h e entire electrode surface; i t is n o t c o n f i n e d t o t h e p o r t i o n a d j a c e n t to t h e

In Solid State Chemistry of Energy Conversion and Storage; Goodenough, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1977.

18.

OBAYASHi

electrolyte.

High-Temperature

A N D K U D O

T h i s s i t u a t i o n has b e e n

c a t h o d e h a v i n g a d i f f u s i o n constant D 119).

I f the D

0 "-ion

0

Cells

351

demonstrated w i t h a molten A g 0

— 10~ — 10" c m / s e c 5

4

2

(117,118,

o f t h e e l e c t r o d e is c o m p a r a b l e w i t h t h a t o f t h e e l e c t r o l y t e ,

d i f f u s i o n t h r o u g h t h e electrode

2

Electrolysis/Fuel

i n c r e a s i n g t h e effective

electrode

is n o t r a t e - d e t e r m i n i n g , a n d

area reduces

t h e p o l a r i z a t i o n losses.

S i n c e d o p e d a n d n o n s t o i c h i o m e t r i c perovskites h a v e b e e n s h o w n t o h a v e h i g h 0 - i o n conductivities 2 _

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on August 26, 2015 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch018

cathode materials,

and P r C o 0

(101, 102, 103)

to b e good

3

i t is reasonable to suspect t h a t " P r C o 0 " is a m i x e d 3

electronic/ionic conductor. Kudo

e t a l . (132)

have

shown

that

electronically

conducting

Ndi^Sra-CoOa-e a n d s i m i l a r p e r o v s k i t e systems a r e g o o d c a t h o d e m a t e r i a l s

Electrolyte

Particle of the electronic conductor

/H 2

L-H20

Electrolyte

(b)

Particle of the mixed conductor

Figure 28. Models of the anodic reaction zone showing the superiority of a mixed conductor: (a) electronic conductor, (b) mixed conductor. (The hatched parts indicate the active reaction zone.) A simihr model is applicable to the cathodic reaction. Adapted from Ref. 124.

In Solid State Chemistry of Energy Conversion and Storage; Goodenough, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1977.

352

SOLID

STATE

CHEMISTRY

f o r r o o m - t e m p e r a t u r e , a l k a l i n e - s o l u t i o n a i r batteries; a n d O b a y a s h i et a l . (133)

h a v e m e a s u r e d 0 M o n diffusivities at 2 5 ° C i n t h e r a n g e

ÎO^-IO

2

- 1 1

c m / s e c , w h i c h are v e r y m u c h l a r g e r t h a n those of o r d i n a r y oxides. 2

S i m i l a r results h a v e b e e n o b t a i n e d f o r " L a C o 0 " (134). 3

I t is reasonable

to assume t h a t t h e 0 ~ - i o n c o n d u c t i o n is h i g h e n o u g h at e l e v a t e d t e m ­ 2

peratures to c h a r a c t e r i z e these systems as m i x e d e l e c t r o n i c / i o n i c ductors. Schwarz a n d A n d e r s o n (105) have reported a D

=

0

5

c m / s e c i n r e d u c e d r u t i l e i n t h e i n t e r v a l 700° < Γ < 950 C (see Downloaded by UNIV OF CALIFORNIA SAN DIEGO on August 26, 2015 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch018

3

4

above).

2

O b a y a s h i a n d K u d o ( 1 3 5 ) h a v e s h o w n that L a N i 0

con­

10" -10"

loses o x y g e n

s t e p w i s e o n r a i s i n g t h e t e m p e r a t u r e i n a r e v e r s i b l e , v e r y fast r e a c t i o n , s u g g e s t i n g that this m e t a l l i c c o m p o u n d is also a m i x e d c o n d u c t o r . has b e e n s u c c e s s f u l l y u s e d at 8 0 0 ° C as t h e c a t h o d e of a oxygen meter using stabilized Z r 0 compares

t h e a g i n g of L a N i 0

3

as t h e s o l i d electrolyte.

2

It

flow-through

a n d p o r o u s - P t electrodes

F i g u r e 29 The

(136).

d e v i a t i o n w i t h t i m e of t h e m e a s u r e d f r o m t h e t h e o r e t i c a l e m f at t h e p o r o u s - P t electrodes porous L a N i 0 Anodes.

3

is c a u s e d b y a g g r e g a t i o n of t h e p l a t i n u m . N o n -

cathodes c a n b e u s e d successfully f o r m o r e t h a n 1 0 h o u r s . 4

T h e c o n d i t i o n s u n d e r w h i c h a n o d e m a t e r i a l s operate are

m u c h less severe, a n d g o o d p e r f o r m a n c e has b e e n r e p o r t e d f o r v a r i o u s m e t a l s s u c h as T i , M n , F e , N i , C u , a n d P t (137)

as w e l l as s e v e r a l oxides

s u c h as N i O , C r 0 , C o O , F e 0 , r e d u c e d T i 0

(J38), V 0

3

U0

2

3

T a k a h a s h i et a l . (140)

(139).

reported

2

excellent

2

2

(138),

3

a n d T e d m o n et a l . (138)

depolarization i n the mixed electronic/ionic

and have con­

d u c t o r s C e 0 - L a 0 a n d C e 0 - Y 0 , as s h o w n i n F i g u r e 30. 2

2

3

Interconnectors.

2

2

3

I n p r a c t i c e , i n d i v i d u a l e l e c t r o l y s i s / f u e l cells m u s t

b e c o n n e c t e d i n series to m a k e a c e l l stack (8, 13). o n e p o s s i b l e c o n f i g u r a t i o n (141).

F i g u r e 3 1 illustrates

T h e m a t e r i a l u s e d to i n t e r c o n n e c t t h e

0,

one y e a r ± 3 i

-201

102 time ( h )

10

10

3

10*

Figure 29. Comparison of a LaNiO and a porousplatinum cathode: deviation of observed emf s from the theoretical value of the cell p . = 10' atm, (Pt)/Zr Ca O /cathode, air. s

0

015

4

085

lm85

In Solid State Chemistry of Energy Conversion and Storage; Goodenough, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1977.

18.

OBAYASHi

A N D

High-Temperature

K U D O

Electrolysis/Fuel

353

Cells

06

S 0 4

g

02

Φ

ο

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on August 26, 2015 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch018

è

οι

I

10

100 (m A/cm )

Current density

2

Electrode material (I) ( C e 0 2 W Y 0 , . ) o 4

(2) ( C e 0 W

(3)Pt

(4)(Zr02)o«(YO,.5)o.,8

Figure

30. Anodic polarization trode materials at 1000°C.

a i r a n d f u e l electrodes

of

L

2

5

a

0

i 5>04

characteristics of various Adapted from Ref. 124.

adjacent

cells m u s t b e

elec­

a good

electronic

c o n d u c t o r stable at o p e r a t i n g t e m p e r a t u r e s i n b o t h the r e d u c i n g atmos­ p h e r e of the a n o d e a n d the o x i d i z i n g a t m o s p h e r e of t h e c a t h o d e .

It

m u s t also b e r e a d i l y m a d e n o n - p o r o u s , since n e i t h e r f u e l n o r a i r s h o u l d penetrate through it. S v e r d r u p et a l . (13)

have

studied the normal spinel C o C r 0 , 2

w h i c h is stable at o x y g e n p a r t i a l pressures ρ

> 10"

θ2

it b e c o m e s a p - t y p e s e m i c o n d u c t o r ; at l o w p

15

atm. A t h i g h

4

p

02

i t is a n η-type s e m i c o n ­

02

d u c t o r . F i g u r e 32 shows r e s i s t i v i t y isotherms at 1000°C as a f u n c t i o n of Po

2

(141,

D o p i n g w i t h V or M n l o w e r s the r e s i s t i v i t y one to t w o

142).

orders of m a g n i t u d e , e s p e c i a l l y at l o w e r po .

A n i r r e v e r s i b l e loss of

2

occurs f o r ρ

θ2

>

1 2 3 4 5

10~

10

V

a t m v i a o x i d a t i o n a n d v a p o r i z a t i o n , w h i c h raises

interconnecter electrolyte cathode anode support

^ connection of a high-temperature cell. Adapted from f

F

i

g

m

e

3

1

F o

Re

f c f e

1

4

s e r i e s

1

In Solid State Chemistry of Energy Conversion and Storage; Goodenough, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1977.

354

SOLID

STATE

CHEMISTRY

1000°C

-

-

Undoped CoC r0 Cr/Co= 1 9; ?

4

1 1

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on August 26, 2015 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch018

10'

>pe



-

r

-

10'

10°

-8 log

P Q

-12 2

-16

(atm.)

Figure 32. Comparison of resistivities of two types of cobalt chromite. Adapted from Ref. 141. the resistivity. O n the other h a n d , M n - d o p e d C o C r 0 2

(2-4 mol %

4

Μη)

w a s stable f o r o v e r 26 days i n t h e r e d u c i n g f u e l a t m o s p h e r e , a n d its r e s i s t i v i t y w a s i n d e p e n d e n t of c y c l i n g to a n o x i d i z i n g a t m o s p h e r e F i g u r e 33)

(141).

I t appears t h a t M n - d o p e d C o C r 0 2

(see

has t h e c h e m i c a l

4

s t a b i l i t y a n d a n e a r l y t o l e r a b l e r e s i s t i v i t y at 1 0 0 0 ° C f o r u s e as a n i n t e r connector material i n a high-temperature electrolysis/fuel cell. K l e i n s c h m a g e r a n d R e i c h (143)

have investigated the electronically

c o n d u c t i n g perovskites d o p e d a n d / o r r e d u c e d L a N i 0 w e l l as t h e i n t e r l a y e r c o m p o u n d L a N i 0 . 2

4

3

and L a C r 0

as

3

A t 1 0 0 0 ° C the resistivities

of t h e n o m i n a l c o m p o s i t i o n s L a . 8 S r . C r o . 8 N i o . 0 a n d L a i ^ N i . 9 C o . i O . 6 0

0

2

2

3

0

0

c h a n g e d v e r y l i t t l e o v e r the r a n g e of o x y g e n p a r t i a l pressures 10~

In Solid State Chemistry of Energy Conversion and Storage; Goodenough, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1977.

3

17




ι

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on August 26, 2015 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch018

Ζ 100

Figure 35. Performance of a 100W solid-electrolyte fuel-cell battery operated at 1020°C. Adapted from

g

50 u.o

υ

13.

Ref.

IJU

CURRENT

(A)

systems h a v e b e e n e v a l u a t e d b y W e s t i n g h o u s e E l e c t r i c C o . o n a 1 0 0 - W scale ( 1 3 , 1 4 1 ) . T h e institutions where cell-performance

studies h a v e b e e n c a r r i e d

out i n c l u d e G e n e r a l E l e c t r i c C o . , W e s t i n g h o u s e

Electric Co., B r o w n -

B o v e r i C o . , B a t t e l l e L a b o r a t o r i e s at F r a n k f u r t a n d G e n e v a , a n d A . E . R . E . Harwell.

W e select t h e f u e l cells f a b r i c a t e d b y W e s t i n g h o u s e E l e c t r i c

C o . a n d B r o w n - B o v e r i C o . to i l l u s t r a t e c e l l - p e r f o r m a n c e d a t a . T h e W e s t i n g h o u s e u n i t consisted of t w o c e l l stacks c o n n e c t e d p a r a l l e l to s u p p l y p o w e r to a l o a d . connected

cells.

in

E a c h stack c o n t a i n e d 200 series-

F r o m the p e r f o r m a n c e

d a t a of F i g u r e 35, the

open-

c i r c u i t v o l t a g e at 1020°C is 190 V , a n d t h e m a x i m u m p o w e r is 110 W . T h e B r o w n - B o v e r i C o . has d e v e l o p e d b o t h p l a n a r a n d c y l i n d r i c a l f u e l cells, e s p e c i a l l y t h e latter. T h e cells use a s t a b i l i z e d z i r c o n i a electro­ lyte ( Z r 0 cathode.

2

— Y 0 2

3

F i g u r e 36

c o n n e c t e d cells (146,

— Yb 0 ) 2

w i t h a N i anode a n d a

3

complex-oxide

illustrates a c y l i n d r i c a l s t r u c t u r e of 147).

100

series-

A i r is i n t r o d u c e d to the i n n e r s i d e of the

e l e c t r o l y t e tubes a n d p u r g e d at the t o p of t h e c e l l stack. F u e l gas, w h i c h is o x i d i z e d n o n - e l e c t r o c h e m i c a l l y , is i n t r o d u c e d to t h e outer c o m p a r t m e n t . B o t h t h e i n l e t a n d t h e f u e l gas are p r e h e a t e d i n a c o u n t e r - f l o w

heat

e x c h a n g e r b y the exhaust. F i g u r e 37 gives the c e l l c h a r a c t e r i s t i c ; p o w e r densities of 105 m W / c m

2

decreased to 35 m W / c m

2

after 1 0

4

h o u r s of

operation. E l e c t r o l y s i s C e l l s . O p e r a t i o n of a h i g h - t e m p e r a t u r e electrolysis c e l l to o b t a i n h y d r o g e n f r o m w a t e r is essentially the same as that of a f u e l c e l l , b u t i n reverse. W a t e r v a p o r is i n t r o d u c e d i n t o t h e " f u e l " c o m p a r t ­ m e n t , a n d a n e x t e r n a l v o l t a g e is a p p l i e d across the electrodes to the f o l l o w i n g reactions. cathode: H 0 + 2 e - » H 2

anode: 0 ~ - > \0 2

2

2

+

O " 2

+2e

S u c h cells h a v e b e e n d e m o n s t r a t e d b y m a n y w o r k e r s

(148,149,150).

In Solid State Chemistry of Energy Conversion and Storage; Goodenough, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1977.

give

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on August 26, 2015 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch018

18.

OBAYASHi

A N D

K U D O

High-Temperature

Electrolysis/Fuel

357

Cells

Figure 36. Structure of a stack containing 100 series-connected ceils developed by Brown-Boveri Co. (a) Mixing nozzle, (b) thermal isolation, (c) afterburning catalyst layer, (d) reforming catalyst layer, (e,h) current collector, (f) flue gas recycling, (g) fuel-cell module. B r o w a l l a n d H a n n e m a n (151)

have used a m i x e d e l e c t r o n / 0 " - i o n 2

c o n d u c t o r a n d a r e d u c i n g gas to p r o d u c e h y d r o g e n f r o m w a t e r w i t h o u t t h e n e e d f o r electrodes.

T h e y h a v e n a m e d t h e process G E Z R O .

The

f u n c t i o n of the r e d u c i n g gas is to l o w e r the t e m p e r a t u r e at w h i c h w a t e r dissociates. W i t h C O , for e x a m p l e , the reactions Inside: H 0 + 2e-> H 2

2

+

Outside: C O + Ο " - » C 0 2

2

0 " 2

+

2e

J 0 0

160 |AO

I

20

Figure 37. Performance of H + 3% HJD/air high-temperature fuel cell using a Zr0 -Y 0 Yb O solid electrolyte 0.8 mm thick operated at 830°C. Adapted from Ref. 147. 2

0

J 0

100

2

200

300

400

current density ( m Acm"2 )

2

s

In Solid State Chemistry of Energy Conversion and Storage; Goodenough, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1977.

2

5

358

SOLID

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on August 26, 2015 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch018

2

0-2+C0—C0J+ 2f

2

NET REACTION* HgO • CO—> H • C0 2

Figure 38. production

proceed

2

Schematic of self-dnven mode of hydrogen using an oxygen-ion/electron mixed con­ ductor. Adapted from Ref. 151.

at 1000°C w i t h o u t any a p p h e d voltage.

a " s e l f - d r i v e n " c e l l i s s h o w n i n F i g u r e 38. of 6 0 - 7 0 %

CHEMISTRY

"ANOOE" REACTION

"CATHOOE" REACTION H 0 +2Γ—H^O'

STATE

A schematic of such

O v e r a l l t h e r m a l efficiencies

a r e a n t i c i p a t e d . T h e o p t i m u m transference n u m b e r s f o r t h e

m i x e d e l e c t r o n i c / 0 " - i o n c o n d u c t o r are t 2

0

= U = 0.5, b u t l i t t l e w o r k has

been done to obtain an o p t i m u m material. Summary R e a l i z a t i o n o f c o m m e r c i a l h i g h - t e m p e r a t u r e cells a w a i t s t h e s o l u t i o n of s e v e r a l m a t e r i a l s p r o b l e m s .

I d e a l l y , h i g h - t e m p e r a t u r e cells w o u l d b e

u s e d f o r e l e c t r o l y s i s , m e d i u m - t e m p e r a t u r e cells f o r p o w e r

generation.

Development o f a medium-temperature cell u t i l i z i n g a solid electrolyte p r o b a b l y awaits t h e discovery

and development

c o n d u c t o r , a p r o b l e m n o t d i s c u s s e d i n this p a p e r .

of a suitable proton However, with the

r i s i n g cost o f f o s s i l fuels, t h e m o t i v a t i o n f o r d e v e l o p i n g a h i g h - t e m p e r a ­ t u r e electrolysis c e l l i s s t r o n g , a n d s u c h cells c a n p r o v i d e a t e s t - b e d f o r o p t i m i z i n g c e l l designs. T h e 0 " - i o n c o n d u c t o r s u s e d as s o l i d electrolytes are n o t satisfactory 2

at present. too

T h e most w i d e l y investigated, the stabilized zirconias, have

h i g h a r e s i s t i v i t y ( 1 0 - 2 0 Ω-cm

at 1000°C),

a n d efforts

to

find

a l t e r n a t e electrolytes o f l o w e r r e s i s t i v i t y h a v e b e e n o n l y p a r t i a l l y s u c ­ cessful. T h e d o p e d cerias s u c h as C e i _ a , G d 2

2iP

0 _ , ( x = 0.115) h a v e b e t t e r 2

p

0 " - i o n c o n d u c t i o n b u t are n o t sufficiently r e s i s t i v e t o r e d u c i n g a t m o s ­ 2

pheres. Gd

2 a ;

(a) 0 . 2

A satisfactory e l e c t r o l y t e m u s t h a v e t h e f o l l o w i n g p r o p e r t i e s : a n 0 " - i o n c o n d u c t i o n a t 7 0 0 ° C greater t h a n t h e best a n d w i t h a n o x y g e n transference n u m b e r to-*1.0; 2

i p

In Solid State Chemistry of Energy Conversion and Storage; Goodenough, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1977.

Cei. «2

18.

OBAYASHi

A N D

High-Temperature

K U D O

Electrolysis/Fuel

359

Cells

( b ) c h e m i c a l s t a b i l i t y over a w i d e r a n g e of o x y g e n p a r t i a l pressures, £ P02 * 1 a t m ; (c) mechanical stability, especially no crystallographic modification o v e r a w i d e r a n g e of t e m p e r a t u r e s ; ( d ) c h e m i c a l inertness to f u e l a n d electrodes as w e l l as a t h e r m a l e x p a n s i o n m a t c h i n g that of the electrodes; a n d ΙΟ"

30

(e)

i n v a r i a n c e d u r i n g c u r r e n t transfer.

T h e c h o i c e of electrode m a t e r i a l s is i n f l u e n c e d b y t h e

electrolyte

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on August 26, 2015 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch018

u s e d . I n a d d i t i o n to m a t c h e d t h e r m a l expansions the electrodes m u s t b e c h e m i c a l l y stable a n d c a t a l y t i c a l l y r e a c t i v e at the o p e r a t i n g t e m p e r a t u r e of t h e c e l l .

K n o w n electrode

temperatures

of

inadequate.

700°C,

materials are acceptable

for

operating

b u t at 1 0 0 0 ° C t h e i r c h e m i c a l stabilities are

T h e most p r o m i s i n g c a t h o d e

m a t e r i a l s are e l e c t r o n i c a l l y

c o n d u c t i n g oxides, a n d the m i x e d e l e c t r o n / 0 " - i o n c o n d u c t o r s give e x c e l ­ 2

l e n t d e p o l a r i z a t i o n . A s e a r c h for m o r e s u i t a b l e m i x e d c o n d u c t o r s s h o u l d be encouraged. Interconnectors

m u s t b e c h e m i c a l l y stable o v e r a w i d e r a n g e

of

o x y g e n p a r t i a l pressures, a n d a s e a r c h for a c c e p t a b l e m a t e r i a l s has b a r e l y begun.

T h e c o n d u c t i v i t y of d o p e d C o C r 0 2

4

is m u c h too l o w . A l t h o u g h

several institutions have studied fuel-cell performance,

c e l l d e s i g n has

n o t b e e n o p t i m i z e d for heat transfer a n d m e c h a n i c a l s t r e n g t h . H i g h - t e m p e r a t u r e a n d m e d i u m - t e m p e r a t u r e cells u t i l i z i n g s o l i d elec­ trolytes offer great p o t e n t i a l for t h e e c o n o m i c m a n u f a c t u r e of s y n t h e t i c fuels

a n d for

more

efficient

power

generation

with

built-in

storage

c a p a c i t y for l o a d a v e r a g i n g . T h e r e q u i r e d m a t e r i a l s research s h o u l d b e supported. Acknowledgment H . O b a y a s h i thanks the P e t r o l e u m R e s e a r c h F u n d of t h e A m e r i c a n C h e m i c a l Society f o r

financial

assistance i n a t t e n d i n g the N e w

York

M e e t i n g of the Society.

Literature Cited 1. Liebhafsky, Η. Α., Cairns, E. J., "Fuel Cells and Fuel Batteries—A Guide to Their Research and Development," Wiley, New York, 1968. 2. Young, G. J., Linden, H. R., Eds., "Fuel Cell Systems," Advan. Chem. Ser. (1965) 47. 3. Young, G. J., Ed., "Fuel Cells," Vol. 1, Reinhold, New York, 1960. 4. Young, G. J., Ed., "Fuel Cells," Vol. 2, Reinhold, New York, 1963. 5. Baker, B. S., Εd., "Fuel Cell Systems—II," Advan. Chem. Ser. (1969) 90. 6. Rogers, L. J., "Status of the 4.8 Megawatt Demonstration Program," National Fuel Cell Seminar, Boston, June 21-23, 1977. 7. Markin, T. L., in "Power Sources 4, Research and Development in NonMechanical Electrical Power Sources," D. H . Collins, Ed., p. 583, Oriel Press, New Castle upon Tyne, 1973.

In Solid State Chemistry of Energy Conversion and Storage; Goodenough, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1977.

360

SOLID STATE CHEMISTRY

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on August 26, 2015 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch018

8. Takahashi, T., in "Physics of Electrolytes," J. Hladik, Ed., p. 989, Aca­ demic, London, 1972. 9. Takahashi, T., Denki Kagaku (1976) 44, 78. 10. Nernst, W., Z. Elektrochem. (1899) 6, 41. 11. For a detailed list of oxide electrolytes and historical aspect see Ref. 1. 12. Etsell, T. H., Flengas, S. N., Chem. Rev. (1970) 70, 339. 13. Sverdrup, E. F., et al., Westinghouse Electric Corp., "1970 Final Report Project Fuel Cell R & D Report No. 57," U.S. Government Printing Office, Washington, D.C., 1970. 14. Antonsen, O., Baukal, W., Fischer, W., Brown Boveri Rev. (1966) 53, 21. 15. Fischer, W., Kleinschmager, H., Rohr, F. J., Steiner, R., Eysel, H . H., Chem. Ing. Tech. (1972) 44, 726. 16. Markin, T. L., Bones, R. J., Dell, R. M., in "Superionic Conductors," G. D. Mahan and W. L. Roth, Eds., p. 15, Plenum, New York and London, 1976. 17. Rhodes, W. H., Carter, R. E., J. Am. Ceram. Soc. (1966) 49, 244. 18. Simpson, L. Α., Carter, R. E., J. Am. Ceram. Soc. (1966) 49, 139. 19. Oishi, Y., Ando, K., in "Reactivity of Solids," Chem. Rev. Ser. No. 9 Tokyo University Press, Tokyo, 1975, p. 31. 20. Kingery, W. D., Pappis, J., Doty, M. E., Hill, D. C., J. Am. Ceram. Soc. (1959) 42, 393. 21. Kröger, F. Α., Vink, H . J., in "Solid State Physics," Vol. 3, F. Seitz and D. Turnbull, Eds., p. 307, Academic Press, New York, 1956. 22. Lasker, M. F., Rapp, R. Α., Ζ. Phys. Chem. (1966) 49, 198. 23. Schmalzried, Η., Z. Phys. Chem. (1963) 38, 87. We replace the notation p and p_ by ph and pe . 24. Tuller, H. L., Nowick, A. S., J. Electrochem. Soc. (1975) 122, 255. 25. Kofstad, P., "Nonstoichiometry, Diffusion, and Electrical Conductivity in Binary Metal Oxides," Wiley-Interscience, New York, 1972. 26. Tare, V. B., Schmalzried, Η., Z. Phys. Chem. (1964) 43, 30. 27. Patterson, J., in "Physics of Electronic Ceramics," Vol. 1., Chap. 5, L. L. Hench and D. B. Dove, Eds., Marcel Dekker, New York, 1971. 28. Patterson, J. W., J. Electrochem. Soc. (1971) 118, 1033. 29. Choudhury, N . S., Patterson, J. W., J. Electrochem. Soc. (1971) 118, 1107. 30. Choudhury, N . S., Patterson, J. W., J. Electrochem. Soc. (1970) 117, 1384. 31. Saito, Y., in "Nonstoichiometric Metal Oxides," S. Takeuchi, Ed., p. 423, Metallurgical Society of Japan, Maruzen, Tokyo, 1975 (in Japanese). 32. McCullough, J. D., Trueblood, Κ. N., Acta Cryst. (1959) 12, 507. 33. Domagala, R. F., McPherson, D. J., J. Met. (1954) 6, Trans. Am. Inst. Min., Metall. Pet. Eng. (1954) 200, 238. 34. Ruh, R., Garrett, H. J., J. Am. Ceram. Soc. (1967) 50, 257. 35. Vest, R. W., Tallan, Ν. M., Tripp, W. C., J. Am. Ceram. Soc. (1964) 47, 635. 36. Kumar, Α., Rajdev, D., Douglass, D. L., J. Am. Ceram. Soc. (1972) 55, 439. 37. Nasrallah, M. M., Douglass, D. L., J. Electrochem. Soc. (1974) 121, 255. 38. Vest, R. W., Tallan, Ν. M., J. Am. Ceram. Soc. (1965) 48, 472. 39. Garvie, R. C., J. Am. Ceram. Soc. (1968) 51, 553. 40. Carter, R. E., Roth, W. L., G. E. Res. Rep. No. 63-RL-3479M, 1963. 41. For work done before 1970 see Ref. 14 for details. 42. Tannenberger, H., Schachner, H., Kovas, P., Proc. J. Int. Etude Piles Combust., Brussels, June, 1965, p. 19. 43. Heyne, L., Electrochem. Acta (1970) 15, 1251. 44. Heyne, L., in "Mass Transport in Oxides," J. B. Wachtman and A. D. Franklin, Eds., p. 149, NBS SpecialPubl.296, 1968. ☼



+

In Solid State Chemistry of Energy Conversion and Storage; Goodenough, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1977.

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on August 26, 2015 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch018

18. OBAYASHI AND KUDO High-Temper at ure Electrolysis/Fuel Cells 361

45. Michel, D., Jorba, M . P., Collonges, R., C. R. Acad. Sci. (1968) 266, 1602. 46. Rhodes, W. H., Carter, R. E., J. Am. Ceram. Soc. (1966) 49, 244. 47. Tien, T. Y., J. Am. Ceram. Soc. (1964) 47, 430. 48. Tien, T. Y., Subbarao, E. C., J. Chem. Phys. (1963) 39, 1041. 49. Subbarao, E. C., Sutter, P. H., J. Phys. Chem. Solids (1963) 24, 128. 50. Baukal, W., Electrochim. Acta (1969) 14, 1071. 51. Cocco, Α., Danelon, M., Ann. Chim. (Rome) (1965) 55, 1313. 52. Wachtman, J. B., Corwin, W. C., J. Res. Nat. Bur. Stand. (1965) 694, 457. 53. White, D. W., Rev. Energ. Primaire (1966) 2, 10. 54. Carter, R.E., Roth, W. L., in "Electromotive Force Measurements in High-Temperature Systems," C. B. Alcock, Ed., p. 125, Institution of Mining and Metallurgy, London, 1968. 54a.Dixon, J. M., LaGarange, L. D., Merten, U., Miller, C. F., Porter, J. T., J. Electrochem. Soc. (1963) 110, 276. 54b.Nuimin, A. D., Pal'guev, S. F., Tr. Inst. Elektrokhim., Akad. Nauk SSSR, Ural. Fil. (1964) 5, 154; Chem. Abstr. (1965) 62, 8472. 54c.Guillou, M., Rev. Gen. Elec. (1967) 76, 58. 54d.Stricker, D. W., Carlson, W. G., J. Am. Ceram. Soc. (1965) 48, 286. 54e.Tannenberger, H., Schachner, H., Kovacs, P., Rev. Energ. Primaire (1966) 2, 19. 54f.Möbius, H.-H., Proeve, G., Z. Chem. (1965) 5, 431. 55. Schmalzried, H., Z. Electrochem., Ber. Bunsenges. Phys. Chem. (1962) 66, 572. 56. Yanagida, H., reported in Yuan, D., Kröger, F. Α., J. Electrochem Soc. (1969) 116, 594. 57. Etsell, T. H., Flengas, S. N., J. Electrochem. Soc. (1972) 119, 1. 58. Komatsu, S., Yonehara, M., Kouzuka, Z., Bull. Metall. Soc. Jpn. (1972) 36, 674. 59. Patterson, J. W., Bogren, E. C., Rapp, R. Α., J. Electrochem. Soc. (1967) 114, 752. 60. Steele, B. C. H., Alcock, C. B., Trans. Metall. Soc. AIME (1965) 233, 1359. 61. Shores, D. Α., Rapp, R. Α., J. Electrochem. Soc. (1971) 118, 1107. 62. VanHandel, G. J., Blumenthal, R. N., J. Electrochem. Soc. (1974) 121, 1198. 63. Tuller, H. L., Nowick, A. S., J. Electrochem. Soc. (1975) 122, 836. 64. Panlener, R. J., Blumenthal, R. N., Garnier, J. E., J. Phys. Chem. Solids (1975) 36, 1213. 65. Kevane, C. J., Holvesson, E. L., Armstrong, J. B., Proc. Rare Earth Res. Conf., 5th Ames, Iowa, August, 1965, Book 4, 43. 66. Noddack, W., Walch, H., U. Phys. Chem. (1959) 211, 194. 67. Rudolph, J., Z. Naturforsch. (1959) 14A, 727. 68. Greener, E. H., Wimmer, J. M., Hirthe, W. M., in "Rare Earth Research II," K. S. Vorres, Ed., Gordon and Breach, New York, 1964. 69. Blumenthal, R. N., Pinz, Β. Α., J. Appl. Phys. (1967) 38, 2376. 70. Blumenthal, R. N., Lee, P. W., Panlener, R. J., J. Electrochem. Soc. (1971) 118, 123. 71. Kofstad, P., Hed, A. Z., J. Am. Ceram. Soc. (1967) 50, 681. 72. Blumenthal, R. N., Hofmaier, R. L., J. Electrochem. Soc. (1974) 121, 126. 73. Croatto, U., Mayer, Α., Gazz. Shim. Ital. (1943) 73, 199. 74. Takahashi, T., Ito, Κ., Iwahara, Η., Proc. J. Int. Etude Piles Combust. (1965) 1-III, 42. 75. Takahashi, T., Iwahara, H., Denki Kagaku (1966) 34, 254. 76. Singman, D., J. Electrochem. Soc. (1966) 113, 502.

In Solid State Chemistry of Energy Conversion and Storage; Goodenough, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1977.

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on August 26, 2015 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch018

362

SOLID STATE CHEMISTRY

77. Kudo, T., Obayashi, H., J. Electrochem. Soc. (1975) 122, 142. 78. Blumenthal, R. N., Brugner, F. S., Garnier, J. E., J. Electrochem. Soc. (1973) 120, 2340. 79. Seitz, Μ. Α., Holliday, T. B., J. Electrochem. Soc. (1974) 121, 122. 80. Tuller, H. L., Nowick, A. S., J. Electrochem. Soc. (1975) 122, 255. 81. Pal'guev, S. F., Volchenkova, Z. S., Tr. Inst. Elektrokhim., Akad. Nauk SSSR, Ural. Fil. (1961) 2, 157; Chem. Abs. (1963) 59, 12267. 82. Kudo, T., Obayashi, H., to be published in J. Electrochem. Soc. (1976) 123. 83. Takahashi, T., Ito, K., Iwahara, H., Electrochim. Acta (1967) 12, 21. 84. Alcock, C. B., Steele, B. C. H., in "Science of Ceramics," Vol. II, G. H. Stewart, Ed., Academic, London, 1965; Trans. Br. Ceram. Soc. (1964) 397. 85. Laskar, M. F., Rapp, R. Α., Ζ. Phys. Chem. (1966) 49, 211. 86. Choudhury, N. S., Patterson, J. W., J. Am. Ceram. Soc. (1974) 57, 90. 87. Diness, A. M., Roy, R.,J.Mater. Sci. (1969) 4, 613. 88. Mehrotra, A. K., Maiti, H. S., Subbarao, E. C., Mater. Res. Bull. (1973) 8, 899. 89. Etsell, T. H., Z. Naturforsch. Teil A (1972) 27A, 1138. 90. Volchenkova, Z. S., Pal'guev, S. F., Electrochem. Molten Solid Electrolyte (1964) 2, 53. 91. Möbius, H. -H., Witzmann, H., Witte, W., Z. Chem. (1964) 4, 152. 92. Swinkels, D. A. J., J. Electrochem Soc. (1970) 117, 1267. 93. Hardaway, J. Β., III, Patterson, J. W., Wilder, D. R., Schieltz, J. D., J. Am. Ceram. Soc. (1971) 54, 94. 94. Tretyakov, Y. D., Muan, Α.,J.Am. Ceram. Soc. (1969) 116, 331. 95. Wells, A. F., "Structural Inorganic Chemistry," 3rd Ed., pp. 668-670, Clarendon, Oxford, 1962. 96. Takahashi, T., Iwahara, H., Nagai, Y., Proc. Annu. Meet. Electrochem. Soc. (Jpn.), 37th, Tokyo, May, 1970, Paper A209. 97. Takahashi, T., Iwahara, H., Arao, T., Proc. Annu. Meet. Electrochem. Soc. (Jpn.), 38th, Osaka, May, 1971, Paper D111. 98. Takahashi, T., Iwahara, H., Proc. Annu. Meet. Electrochem. Soc. (Jpn.) 39th, Tokyo, March, 1972, Paper C305. 99. Goodenough, J. B., Longo, J. M., Landolt Börnstein New Series III/4a, p. 126, Springer-Verlag, Berlin, 1970. 100. Galasso, F. S., "Structure, Properties and Preparation of Perovskite-Type Compounds," Int. Ser. of Monographs in Solid State Physics, 5, Pe amon, Oxford, 1969. 101. Takahashi, T., Iwahara, H., Denki Kagaku (1967) 35, 433. 102. Takahashi, T., Iwahara, H., Imaichi, T., Denki Kagaku (1969) 37, 857. 103. Takahashi, T., Iwahara, H., Imaichi, T., Aoyama, H., Annu. Rep. Asahi Glass Found. Contrib. Ind. Technol. (1969) 15, 237. 104. Matsuo, Y., Sasaki, H., Jpn. J. Appl. Phys. (1964) 3, 799. 105. Schwarz, D. B., Anderson, H. U., J. Electrochem. Soc. (1975) 12, 707. 106. Stephenson, C. V., Flanagan, C. E., J. Chem. Phys. (1961) 34, 2203. 107. Roth, R. S., J. Res. Nat. Bur. Stand. (1956) 56, 17. 108. Aleskin, E., Roy, R.,J.Am. Ceram. Soc. (1962) 45, 18. 109. Mazelsky, R., Kramer, W. E., J. Electrochem. Soc. (1964) 111, 528. 110. Wells, A. F., "Structural Inorganic Chemistry," 3rd Ed., p. 465, Clarendon, Oxford, 1962. 111. Etsell, T. H., Flengas, S. N., J. Electrochem. Soc. (1969) 116, 771. 112. Tedmon, C. S., Jr., Spacil, M. S., Mitoff, S. P., J. Electrochem. Soc. (1969) 116, 1170. 113. Yanagida, H., Brook, R. J., Kröger, F. Α., J. Electrochem. Soc. (1970) 117, 593. 114. Etsell, T. H., Flengas, S. N., J. Electrochem. Soc. (1961) 118, 1890.

g

In Solid State Chemistry of Energy Conversion and Storage; Goodenough, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1977.

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on August 26, 2015 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch018

18. OBAYASHI AND KUDO High-Temperature Electrolysis/Fuel Cells 363

115. Kröger, F. Α., J. Electrochem. Soc. (1973) 120, 75. 116. Yanagida, H., Brook, R. J., Kröger, F. Α., J. Electrochem. Soc. (1970) 117, 593. 117. Hirsch, Η. H., White, D. W., Ref. 4 in Tedmon, C. S., Jr., Spacil, H . S. Mitoff, S. P., J. Electrochem. Soc. (1969) 116, 1170. 118. Tannenberger, H., Siegert, H., "Abstracts of Papers," 154th National Meeting, ACS, Sept. 1967, FUEL 042. 119. Tannenberger, H., Siegert, H., in "Fuel Cell Systems—II," B. S. Baker, Ed., Advan. Chem. Ser. 90, 281. 120. Goodenough, J. B., "Metallic Oxides," in Prog. Solid State Chem. (1972) 5, 145. 121. Verwey, E. J. W., Haaijman, P. W., Romeijin, F. C., Van Oosterhout, G. W., Philips Res. Rep. (1950) 5, 173. 122. van Houten, S., J. Phys. Chem. Solids (1960) 17, 7. 123. Takahashi, T., Suzuki, Y., Ita, K., Hasegawa, H., Denki Kagaku (1967) 35, 201. 124. Takahashi, T., Iwahara, H., Suzuki, Y., Proc. J. Int. Etude Piles Combust. (1969) 3, 113. 125. Böhm, R., Kleinschmager, H., Z. Naturforsch. (1971) 26A, 780. 126. Heikes, R. R., Miller, R. C., Mazelsky, R., Physica (1964) 30, 1600. 127. Goodenough, J. B., Raccah, P. M., J. Appl. Phys. (1963) 36, 1031. 128. Sverdrup, E. F., Archer, D. H., Glasser, A. D., in "Fuel Cell Systems— II," B. S. Baker, Ed., Advan. Chem. Ser. (1969) 90, 301. 129. Bosman, A. J., Crevecoeur, C., Phys. Rev. (1966) 144, 763. 130. Shirai, K., Ihara, S., Sato, H., Bull. Electrotech. Lab., Tokyo (1974) 38, 378. 131. Weiher, R. L., Ley, R. P., J. Appl. Phys. (1963) 34, 1833. 132. Kudo, T., Obayashi, H., Gejo, T., J. Electrochem. Soc. (1975) 122, 159. 133. Obayashi, H., Kudo, T., Gejo, T., Jpn. J. Appl. Phys. (1974) 13, 1. 134. Similar results were obtained for LaCoO by G. H . J. Broers, et al., private communication. 135. Obayashi, H., Kudo, T., Jpn. J. Appl. Phys. (1975) 14, 330. 136. Obayashi, H., et al., unpublished data. 137. Eysel, H . H., "Extended Abstracts," No. 36, Electrochem. Soc. Meeting, Atlantic City, Oct., 1970. 138. Tedmon, C. S., Jr., Spacil, H . S., Mitoff, S. P., G. E. Report No. 69-C-056 (1969). 139. Rohland, B., Möbius, H . H., Naturwissenschaften (1968) 55, 227. 140. Takahashi, T., Suzuki, Y., Ito, K., Yamanaka, H., Denki Kagaku (1968) 36, 345. 141. Sun, C. C., Hawk, E. W., Sverdrup, E. F., J. Electrochem. Soc. (1972) 119, 1433. 142. Schmalzried, H., Ber. Bunsenges. Phys. Chem. (1963) 67, 93. 143. Kleinschmager, H., Reich, Α., Z. Naturforsch. (1972) 27A, 363. 144. Boll, R. H., Bhada, R. K., Energy Convers. (1968) 8, 3. 145. Kudo, T., Obayashi, H., Energy Convers. (1976) 15, 121. 146. Fischer, W., Kleinschmager, H., Rohr, F. J., Steiner, R., Eysel, H . H., Chem. Ing. Tech. (1972) 44, 726. 147. Eysel, H. H., Kleinschmager, H., BBC-Nachr. (1972) 54, 13. 148. Spacil, H. S., Tedmon,C.S., Jr., G. Ε. Report No. 69-C-176 (1969). 149. Chem. Eng. News (1968) 46, 48. 150. Allison, H. J., Hughes, W. L., Intersoc. Energy Convers. Eng. Conf., Rec., 10th, 1975 (1975) 104. 151. Browall, K. W., Hanneman, R. E., G. E. Report No. 75CRD012 (1975). 152. Takahashi, T., Iwahara, H., Energy Convers. (1971) 11, 105. 3

RECEIVED

July 26, 1976.

In Solid State Chemistry of Energy Conversion and Storage; Goodenough, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1977.