Gate-Tuned Insulator-Metal Transition in ... - ACS Publications

resistance Rxx of the device shown in Figure 1a reaches a minimum and then begins to increase again (Figure 2a). To quantitatively analyze the charge ...
0 downloads 0 Views 4MB Size
Subscriber access provided by ALBRIGHT COLLEGE

Communication

Gate-Tuned Insulator-Metal Transition in Electrolyte-Gated Transistors Based on Tellurene Xinglong Ren, Yan Wang, Zuoti Xie, Feng Xue, Chris Leighton, and C. Daniel Frisbie Nano Lett., Just Accepted Manuscript • DOI: 10.1021/acs.nanolett.9b01827 • Publication Date (Web): 10 Jun 2019 Downloaded from http://pubs.acs.org on June 11, 2019

Just Accepted “Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.

is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Page 1 of 28 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Nano Letters

Gate-Tuned Insulator-Metal Transition in Electrolyte-Gated Transistors Based on Tellurene Xinglong Ren1, Yan Wang2, Zuoti Xie1, Feng Xue1, Chris Leighton1, and C. Daniel Frisbie1* 1Department 2Department

of Chemical Engineering and Materials Science,

of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA *Corresponding Author: [email protected]

Abstract Tellurene is a recently discovered 2D material with high hole mobility and air stability, rendering it a good candidate for future applications in electronics, optoelectronics, and energy devices. However, the physical properties of tellurene remain poorly understood. In this paper, we report on the fabrication and characterization of high-performance electrolyte-gated transistors (EGTs) based on solution-grown tellurene flakes 1  1013

cm-2, as confirmed by the temperature dependence of resistance, and magnetoresistance measurements. Wide-range tuning of the electronic ground state of tellurene is thus achievable in EGTs, opening up new opportunities to realize electrical control of its physical properties.

Keywords: insulator-metal transition, electrolyte gating, 2D tellurene, charge transport

1 ACS Paragon Plus Environment

Nano Letters 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Electrolyte gating, which enables accumulation of high charge densities (>1013 cm-2) at targeted surfaces, has been widely applied in field-effect transport experiments based on a variety of materials.1–4 Due to the existence of strong electric fields and thus high charge densities, electrical control of materials properties can be realized both electrostatically and electrochemically in the electrolyte-gated transistor (EGT) geometry, simply by varying the gate voltage (VG).3,4 The effectiveness and ease of electrolyte gating make it a powerful tool to tune transitions among different electronics phases. Since the first observation of a gate-induced insulator–metal transition in epitaxial ZnO films in 2007,5 for example, the electrolyte gating approach has been applied to trigger electronic phase transitions in a broad range of materials, including organic semiconductors,6–8 transition metal and complex oxides,9–14 1D nanowires and nanotubes,15–18 and 2D van der Waals layered materials.19–25

Upon the discovery of graphene in 2004,26 2D materials (e.g., transition metal dichalcogenides,27 black phosphorus28, etc.) have attracted significant attention due to their attractive electronic and optical properties. Recently, a new elemental 2D material, tellurene (i.e., nm-thick tellurium (Te) flakes), was discovered, showing promising properties.29 Te has a trigonal crystal structure, in which individual atoms are covalently bonded into 1D helical chains, with van der Waals interactions bonding the neighboring chains together.30 Under appropriate conditions, 2D flakes of Te with thicknesses 1013 cm-2, mobilities >400 cm2V-1s-1 and operating voltages -0.2 V strongly-localized insulating behavior occurs. Around -0.5 V this gives way to weak localization, the resistance upturn at -0.5 V occurring around 100 K (see Figure S6). Increasing the magnitude of VG to -1 V then leads to the onset of truly metallic conduction, with dR/dT ≥ 0 down to the lowest temperatures probed. The upturn temperature marked by the dashed line thus decreases to below 2 K. Finally, further increase of the magnitude of VG leads to reentrance of a state with a measurable upturn temperature for the resistance (dashed line), which grows from 20 to 60 K from -1.5 to -2.0 V (see Figure S6). As discussed above, MR measurements in this regime suggest both weak localization and weak antilocalization, consistent with the high atomic number of Te. One possibility here is that weak antilocalization effects are more prevalent at higher bias magnitudes due to confinement of the hole gas closer to the interface, where spin-orbit effects may be stronger. More work is clearly needed to fully understand the evolution of weak localization/antilocalization with gate voltage, however. Clearly related to this, the exact origins of the saturation of Hall carrier density and decrease of mobility at high |VG| remain open questions for further work on electrolyte gated tellurene. In particular,

better

understanding

of

ion-hole

and

hole-hole

interactions

at

the

electrolyte/semiconductor interface are required.

In summary, we have presented a systematic study of tellurene EGTs and their low temperature charge transport behavior. Fabricated EGTs based on solution-grown tellurene exhibit unipolar

15 ACS Paragon Plus Environment

Nano Letters 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

p-type behavior with good on-off current ratios. Charge densities over 1013 cm-2 and mobilities as high as 500 cm-2V-1s-1 were revealed by Hall effect measurements on such devices. VGdependent R-T measurements were then applied to investigate charge transport mechanisms, and a gate-tuned 2D insulator-metal transition was thus established at VG = -1 V (corresponding to 1.6  10-13 cm-2). Higher VG magnitudes result in reentrance of a weakly-localized state, however, evidencing a non-trivial interplay between insulating, truly metallic, and weaklylocalized/antilocalized transport. Overall, our results demonstrate that electrolyte gating is a powerful tool to tune the charge-density-dependent properties of tellurene, potentially of utility for controlling other properties (optical, thermoelectric, and even structural) in future work.

Supporting Information The Supporting Information is available free of charge on the ACS Publications website. Synthesis of tellurene flakes and device fabrication; characterization of back-gated tellurene devices; additional results on tellurene EGTs; additional information on fitting of magnetoresistance data.

Acknowledgements This work was primarily supported by the MRSEC program of the National Science Foundation at the University of Minnesota under Award Number DMR-1420013. Parts of this work were carried out in the Characterization Facility, University of Minnesota, which receives partial support from NSF through the MRSEC program (DMR-1420013), and in the Minnesota Nano Center, which receives partial support from NSF through the NINN program (NNCI-1542202). X.R. thanks Rui Ma and Jiayi He for helpful discussions and experimental assistance.

16 ACS Paragon Plus Environment

Page 16 of 28

Page 17 of 28 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Nano Letters

References (1)

Xie, W.; Frisbie, C. D. Electrolyte Gated Single-Crystal Organic Transistors to Examine Transport in the High Carrier Density Regime. MRS Bull. 2013, 38 (01), 43–50.

(2)

Goldman, A. M. Electrostatic Gating of Ultrathin Films. Annu. Rev. Mater. Res. 2014, 44 (1), 45–63.

(3)

Bisri, S. Z.; Shimizu, S.; Nakano, M.; Iwasa, Y. Endeavor of Iontronics: From Fundamentals to Applications of Ion-Controlled Electronics. Adv. Mater. 2017, 29 (25), 1607054.

(4)

Leighton, C. Electrolyte-Based Ionic Control of Functional Oxides. Nat. Mater. 2019, 18 (1), 13–18.

(5)

Shimotani, H.; Asanuma, H.; Tsukazaki, A.; Ohtomo, A.; Kawasaki, M.; Iwasa, Y. Insulator-to-Metal Transition in ZnO by Electric Double Layer Gating. Appl. Phys. Lett. 2007, 91 (8), 082106.

(6)

Wang, S.; Ha, M.; Manno, M.; Frisbie, C. D.; Leighton, C. Hopping Transport and the Hall Effect near the Insulator–metal Transition in Electrochemically Gated Poly(3Hexylthiophene) Transistors. Nat. Commun. 2012, 3, 1210.

(7)

Xie, W.; Wang, S.; Zhang, X.; Leighton, C.; Frisbie, C. D. High Conductance 2D Transport around the Hall Mobility Peak in Electrolyte-Gated Rubrene Crystals. Phys. Rev. Lett. 2014, 113 (24), 246602.

(8)

Ren, X.; Frisbie, C. D.; Leighton, C. Anomalous Cooling-Rate-Dependent Charge Transport in Electrolyte-Gated Rubrene Crystals. J. Phys. Chem. Lett. 2018, 9 (17), 4828– 4833.

(9)

Ueno, K.; Nakamura, S.; Shimotani, H.; Ohtomo, A; Kimura, N.; Nojima, T.; Aoki, H.;

17 ACS Paragon Plus Environment

Nano Letters 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Iwasa, Y.; Kawasaki, M. Electric-Field-Induced Superconductivity in an Insulator. Nat. Mater. 2008, 7 (11), 855–858. (10)

Bollinger, A. T.; Dubuis, G.; Yoon, J.; Pavuna, D.; Misewich, J.; Božović, I. Superconductor–insulator Transition in La2−xSrxCuO4 at the Pair Quantum Resistance. Nature 2011, 472 (7344), 458–460.

(11)

Leng, X.; Garcia-Barriocanal, J.; Bose, S.; Lee, Y.; Goldman, A. M. Electrostatic Control of the Evolution from a Superconducting Phase to an Insulating Phase in Ultrathin YBa2Cu3O7-x Films. Phys. Rev. Lett. 2011, 107 (2), 027001.

(12)

Scherwitzl, R.; Zubko, P.; Lezama, I. G.; Ono, S.; Morpurgo, A. F.; Catalan, G.; Triscone, J.-M. Electric-Field Control of the Metal-Insulator Transition in Ultrathin NdNiO3 Films. Adv. Mater. 2010, 22 (48), 5517–5520.

(13)

Walter, J.; Wang, H.; Luo, B.; Frisbie, C. D.; Leighton, C. Electrostatic versus Electrochemical Doping and Control of Ferromagnetism in Ion-Gel-Gated Ultrathin La0.5Sr0.5CoO3−δ. ACS Nano 2016, 10 (8), 7799–7810.

(14)

Walter, J.; Charlton, T.; Ambaye, H.; Fitzsimmons, M. R.; Orth, P. P.; Fernandes, R. M.; Leighton, C. Giant Electrostatic Modification of Magnetism via Electrolyte-Gate-Induced Cluster Percolation in La0.5Sr0.5CoO3−δ. Phys. Rev. Mater. 2018, 2 (11), 111406.

(15)

Qin, F.; Shi, W.; Ideue, T.; Yoshida, M.; Zak, A.; Tenne, R.; Kikitsu, T.; Inoue, D.; Hashizume, D.; Iwasa, Y. Superconductivity in a Chiral Nanotube. Nat. Commun. 2017, 8, 14465.

(16)

Qin, F.; Ideue, T.; Shi, W.; Zhang, X.-X.; Yoshida, M.; Zak, A.; Tenne, R.; Kikitsu, T.; Inoue, D.; Hashizume, D.; et al. Diameter-Dependent Superconductivity in Individual WS2 Nanotubes. Nano Lett. 2018, 18 (11), 6789–6794.

18 ACS Paragon Plus Environment

Page 18 of 28

Page 19 of 28 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Nano Letters

(17)

Lieb, J.; Demontis, V.; Prete, D.; Ercolani, D.; Zannier, V.; Sorba, L.; Ono, S.; Beltram, F.; Sacépé, B.; Rossella, F. Ionic-Liquid Gating of InAs Nanowire-Based Field-Effect Transistors. Adv. Funct. Mater. 2019, 29 (3), 1804378.

(18)

Ji, H.; Wei, J.; Natelson, D. Modulation of the Electrical Properties of VO2 Nanobeams Using an Ionic Liquid as a Gating Medium. Nano Lett. 2012, 12 (6), 2988–2992.

(19)

Ye, J. T.; Inoue, S.; Kobayashi, K.; Kasahara, Y.; Yuan, H. T.; Shimotani, H.; Iwasa, Y. Liquid-Gated Interface Superconductivity on an Atomically Flat Film. Nat. Mater. 2010, 9 (2), 125–128.

(20)

Ye, J. T.; Zhang, Y. J.; Akashi, R.; Bahramy, M. S.; Arita, R.; Iwasa, Y. Superconducting Dome in a Gate-Tuned Band Insulator. Science 2012, 338 (6111), 1193–1196.

(21)

Yu, Y.; Yang, F.; Lu, X. F.; Yan, Y. J.; Cho, Y.-H.; Ma, L.; Niu, X.; Kim, S.; Son, Y.-W.; Feng, D.; et al. Gate-Tunable Phase Transitions in Thin Flakes of 1T-TaS2. Nat. Nanotechnol. 2015, 10 (3), 270–276.

(22)

Saito, Y.; Iwasa, Y. Ambipolar Insulator-to-Metal Transition in Black Phosphorus by Ionic-Liquid Gating. ACS Nano 2015, 9 (3), 3192–3198.

(23)

Jo, S.; Costanzo, D.; Berger, H.; Morpurgo, A. F. Electrostatically Induced Superconductivity at the Surface of WS2. Nano Lett. 2015, 15 (2), 1197–1202.

(24)

Costanzo, D.; Jo, S.; Berger, H.; Morpurgo, A. F. Gate-Induced Superconductivity in Atomically Thin MoS2 Crystals. Nat. Nanotechnol. 2016, 11 (4), 339–344.

(25)

Lu, J.; Zheliuk, O.; Chen, Q.; Leermakers, I.; Hussey, N. E.; Zeitler, U.; Ye, J. Full Superconducting Dome of Strong Ising Protection in Gated Monolayer WS2. Proc. Natl. Acad. Sci. 2018, 115 (14), 3551–3556.

(26)

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.;

19 ACS Paragon Plus Environment

Nano Letters 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Grigorieva, I. V.; Firsov, A. A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306 (5696), 666–669. (27)

Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and Optoelectronics of Two-Dimensional Transition Metal Dichalcogenides. Nat. Nanotechnol. 2012, 7 (11), 699–712.

(28)

Li, L.; Yu, Y.; Ye, G. J.; Ge, Q.; Ou, X.; Wu, H.; Feng, D.; Chen, X. H.; Zhang, Y. Black Phosphorus Field-Effect Transistors. Nat. Nanotechnol. 2014, 9 (5), 372–377.

(29)

Wang, Y.; Qiu, G.; Wang, R.; Huang, S.; Wang, Q.; Liu, Y.; Du, Y.; Goddard, W. A.; Kim, M. J.; Xu, X.; et al. Field-Effect Transistors Made from Solution-Grown TwoDimensional Tellurene. Nat. Electron. 2018, 1 (4), 228–236.

(30)

Wu, W.; Qiu, G.; Wang, Y.; Wang, R.; Ye, P. Tellurene: Its Physical Properties, Scalable Nanomanufacturing, and Device Applications. Chem. Soc. Rev. 2018, 47 (19), 7203–7212.

(31)

Amani, M.; Tan, C.; Zhang, G.; Zhao, C.; Bullock, J.; Song, X.; Kim, H.; Shrestha, V. R.; Gao, Y.; Crozier, K. B.; et al. Solution-Synthesized High-Mobility Tellurium Nanoflakes for Short-Wave Infrared Photodetectors. ACS Nano 2018, 12 (7), 7253–7263.

(32)

Zhou, G.; Addou, R.; Wang, Q.; Honari, S.; Cormier, C. R.; Cheng, L.; Yue, R.; Smyth, C. M.; Laturia, A.; Kim, J.; et al. High-Mobility Helical Tellurium Field-Effect Transistors Enabled by Transfer-Free, Low-Temperature Direct Growth. Adv. Mater. 2018, 30 (36), 1803109.

(33)

Qiu, G.; Wang, Y.; Nie, Y.; Zheng, Y.; Cho, K.; Wu, W.; Ye, P. D. Quantum Transport and Band Structure Evolution under High Magnetic Field in Few-Layer Tellurene. Nano Lett. 2018, 18 (9), 5760–5767.

(34)

Wu, L.; Huang, W.; Wang, Y.; Zhao, J.; Ma, D.; Xiang, Y.; Li, J.; Ponraj, J. S.;

20 ACS Paragon Plus Environment

Page 20 of 28

Page 21 of 28 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Nano Letters

Dhanabalan, S. C.; Zhang, H. 2D Tellurium Based High-Performance All-Optical Nonlinear Photonic Devices. Adv. Funct. Mater. 2019, 29 (4), 1806346. (35)

Wang, C.; Zhou, X.; Qiao, J.; Zhou, L.; Kong, X.; Pan, Y.; Cheng, Z.; Chai, Y.; Ji, W. Charge-Governed Phase Manipulation of Few-Layer Tellurium. Nanoscale 2018, 10 (47), 22263–22269.

(36)

Lin, C.; Cheng, W.; Chai, G.; Zhang, H. Thermoelectric Properties of Two-Dimensional Selenene and Tellurene from Group-VI Elements. Phys. Chem. Chem. Phys. 2018, 20 (37), 24250–24256.

(37)

Gao, Z.; Liu, G.; Ren, J. High Thermoelectric Performance in Two-Dimensional Tellurium: An Ab Initio Study. ACS Appl. Mater. Interfaces 2018, 10 (47), 40702–40709.

(38)

Wang, Y.; Xiao, C.; Chen, M.; Hua, C.; Zou, J.; Wu, C.; Jiang, J.; Yang, S. A.; Lu, Y.; Ji, W. Two-Dimensional Ferroelectricity and Switchable Spin-Textures in Ultra-Thin Elemental Te Multilayers. Mater. Horizons 2018, 5 (3), 521–528.

(39)

Du, Y.; Qiu, G.; Wang, Y.; Si, M.; Xu, X.; Wu, W.; Ye, P. D. One-Dimensional van der Waals Material Tellurium: Raman Spectroscopy under Strain and Magneto-Transport. Nano Lett. 2017, 17 (6), 3965–3973.

(40)

Yuan, H.; Shimotani, H.; Tsukazaki, A.; Ohtomo, A.; Kawasaki, M.; Iwasa, Y. HighDensity Carrier Accumulation in ZnO Field-Effect Transistors Gated by Electric Double Layers of Ionic Liquids. Adv. Funct. Mater. 2009, 19 (7), 1046–1053.

(41)

Ovchinnikov, D.; Gargiulo, F.; Allain, A.; Pasquier, D. J.; Dumcenco, D.; Ho, C.-H.; Yazyev, O. V.; Kis, A. Disorder Engineering and Conductivity Dome in ReS2 with Electrolyte Gating. Nat. Commun. 2016, 7, 12391.

(42)

Xie, W.; Frisbie, C. D. Organic Electrical Double Layer Transistors Based on Rubrene

21 ACS Paragon Plus Environment

Nano Letters 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Single Crystals: Examining Transport at High Surface Charge Densities above 1013 cm–2. J. Phys. Chem. C 2011, 115 (29), 14360–14368. (43)

Xia, Y.; Xie, W.; Ruden, P. P.; Frisbie, C. D. Carrier Localization on Surfaces of Organic Semiconductors Gated with Electrolytes. Phys. Rev. Lett. 2010, 105 (3), 036802.

(44)

Podzorov, V.; Menard, E.; Rogers, J. A.; Gershenson, M. E. Hall Effect in the Accumulation Layers on the Surface of Organic Semiconductors. Phys. Rev. Lett. 2005, 95 (22), 226601.

(45)

Xie, W.; Zhang, X.; Leighton, C.; Frisbie, C. D. 2D Insulator-Metal Transition in AerosolJet-Printed Electrolyte-Gated Indium Oxide Thin Film Transistors. Adv. Electron. Mater. 2017, 3 (3), 1600369.

(46)

Nelson, J.; Goldman, A. M. Metallic State of Low-Mobility Silicon at High Carrier Density Induced by an Ionic Liquid. Phys. Rev. B 2015, 91 (24), 241304.

(47)

Paulsen, B. D.; Frisbie, C. D. Dependence of Conductivity on Charge Density and Electrochemical Potential in Polymer Semiconductors Gated with Ionic Liquids. J. Phys. Chem. C 2012, 116 (4), 3132–3141.

(48)

Zabrodskii, A. G. The Coulomb Gap: The View of an Experimenter. Philos. Mag. Part B 2001, 81 (9), 1131–1151.

(49)

Shklovskii, B. I.; Efros, A. L. Electronic Properties of Doped Semiconductors; Springer Science & Business Media, 2013; Vol. 45.

(50)

Lee, P. A.; Ramakrishnan, T. V. Disordered Electronic Systems. Rev. Mod. Phys. 1985, 57 (2), 287–337.

(51)

Bergmann, G. Weak Localization in Thin Films. Phys. Rep. 1984, 107 (1), 1–58.

22 ACS Paragon Plus Environment

Page 22 of 28

Page 23 of 28 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Nano Letters

Table of Contents graphic

23 ACS Paragon Plus Environment

Nano Letters 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

ACS Paragon Plus Environment

Page 24 of 28

Page 25 of 28 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

Nano Letters

ACS Paragon Plus Environment

Nano Letters 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

ACS Paragon Plus Environment

Page 26 of 28

Page 27 of 28 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

Nano Letters

ACS Paragon Plus Environment

Nano Letters 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

ACS Paragon Plus Environment

Page 28 of 28