Grandisol and Lineatin Enantiomers - American Chemical Society

Page 2 ..... Borden, J.H.; Handley, J.R.; Johnston, B.D.; MacConnell, J.G.;. Silverstein,. R.M.; Slessor, K.N.; Swigar, Α.Α.; Wong, D.T.W.. J. Chem...
0 downloads 0 Views 992KB Size
4 Grandisol and Lineatin Enantiomers FRANCIS X . WEBSTER and ROBERT M . SILVERSTEIN

Downloaded by PURDUE UNIV on August 28, 2014 | http://pubs.acs.org Publication Date: June 18, 1982 | doi: 10.1021/bk-1982-0190.ch004

State University of New York, College of Environmental Science and Forestry, Syracuse, NY 13210

The s y n t h e s i s of g r a n d i s o l ( I ) and lineatin(II) is d i s c u s s e d . G r a n d i s o l is a pheromone component in the c o t t o n boll w e e v i l and in Pissodes w e e v i l s . L i n e a t i n is the pheromone of Trypodendron l i n e a t u m . The key i n t e r m e d i a t e , 3 - m e t h y l - 5 - o x o - 3 - c y c l o h e x e n e 1 - c a r b o x y l i c a c i d ( V ) , was r e s o l v e d as the ( - ) - q u i n i n e salt. A new approach to determining the optical p u r i t y of c a r b o x y l i c a c i d s is d i s c u s s e d . G r a n d i s o l ( I ) i s a component o f t h e a g g r e g a t i o n pheromone o f t h e c o t t o n b o l l w e e v i l , Anthonomus g r a n d i s ( 1 ) , a n d i s p r e s e n t i n t h e hindgut o f s e v e r a l s p e c i e s o f male P i s s o d e s w e e v i l s ( 2 ) . L i n e a t i n ( I I ) i s t h e a g g r e g a t i o n pheromone o f t h e f e m a l e a m b r o s i a b e e t l e , T r y p o d e n d r o n l i n e a t u m (3>,4). S i n c e b o t h compounds s h a r e t h e same c a r b o n s k e l e t o n , s y n t h e s i s schemes i n v o l v i n g s i m i l a r i n t e r m e d i a t e s may b e c o n s i d e r e d , a n d t h i s p a p e r d e s c r i b e s s e v e r a l a p p r o a c h e s t o s y n t h e s i z i n g t h e e n a n t i o m e r s o f I and I I . The importance o f c o n s i d e r i n g enantiomeric composition o f c h i r a l s e m i o c h e m i c a l s o f i n s e c t s h a s b e e n d i s c u s s e d (5,j>) a n d s y n t h e t i c approaches have been r e v i e w e d ( 6 , 7 ) . Our c o n c e r n w i t h t h e g r a n d i s o l e n a n t i o m e r s a r i s e s f r o m o u r work w i t h t h e a g g r e g a t i o n pheromones o f s e v e r a l s p e c i e s o f Pissodes weevils ( 2 ) . Although g r a n d i s o l (I) i s present ( t o g e t h e r w i t h t h e c o r r e s p o n d i n g aldehyde, g r a n d i s a l ) i n t h e male h i n d g u t and n o t i n t h e f e m a l e , t h e s y n t h e s i z e d ( r a c e m i c ) compounds d i d n o t r e p r o d u c e t h e a t t r a c t i v i t y o f t h e m a l e s . We presume t h a t i t i s n e c e s s a r y t o r e p r o d u c e t h e e n a n t i o m e r i c c o m p o s i t i o n p r e s e n t i n t h e m a l e s . However, t h e s m a l l s p e c i f i c r o t a t i o n and t h e m i n u t e q u a n t i t i e s a v a i l a b l e o f g r a n d i s o l precluded d e t e r m i n a t i o n o f the o p t i c a l p u r i t y by o p t i c a l r o t a t i o n , and a t t e m p t s t o u s e a c h i r a l s h i f t r e a g e n t o r a c h i r a l d e r i v a t e f a i l e d presumably because t h e f u n c t i o n a l groups i s removed f r o m t h e c h i r a l c e n t e r s . The Hobbs and Magnus p r o c e d u r e (Scheme 1 ) (8) y i e l d e d o n l y ( + ) - g r a n d i s o l . A l t h o u g h M o r i ' s p r o c e d u r e (Scheme 2) (9) y i e l d e d 0097-6156/82/0190-0087$06.00/0 © 1981 American Chemical Society

In Insect Pheromone Technology: Chemistry and Applications; Leonhardt, B., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1982.

TECHNOLOGY

Downloaded by PURDUE UNIV on August 28, 2014 | http://pubs.acs.org Publication Date: June 18, 1982 | doi: 10.1021/bk-1982-0190.ch004

INSECT P H E R O M O N E

In Insect Pheromone Technology: Chemistry and Applications; Leonhardt, B., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1982.

Downloaded by PURDUE UNIV on August 28, 2014 | http://pubs.acs.org Publication Date: June 18, 1982 | doi: 10.1021/bk-1982-0190.ch004

4.

WEBSTER A N D siLVERSTEiN

Grandisol

and

Lineatin

Enantiomers

89

b o t h e n a n t i o m e r s , n e i t h e r e n a n t i o m e r was b e t t e r t h a n 80% o p t i c a l l y p u r e , and t h e o v e r a l l y i e l d was p o o r . The s e c o n d s y n t h e s i s by M o r i and Tamada (Scheme 3) (10) r e s u l t e d i n an o p t i c a l p u r i t y o f 94%, b u t o n l y t h e ( - ) - e n a n t i o m e r was o b t a i n e d . M o r i and Tamada (10) r e p o r t e d t h a t b o t h e n a n t i o m e r s ( m i x e d w i t h t h e o t h e r pheromone components) showed e q u a l b i o l o g i c a l a c t i v i t y f o r t h e b o l l w e e v i l . I n most c a s e s , t h e a n t i p o d e (an a r t i f a c t ) o f t h e n a t u r a l l y o c c u r r i n g e n a n t i o m e r shows c o n s i d e r a b l y l e s s a c t i v i t y ( 4 ) . However, i n most o t h e r c h i r a l pheromone c o m p o n e n t s , the f u n c t i o n a l group i s d i r e c t l y a t t a c h e d to the c h i r a l c e n t e r . P o s s i b l y t h e g r e a t e r d i s t a n c e b e t w e e n t h e f u n c t i o n a l g r o u p and the c h i r a l centers of g r a n d i s o l e x p l a i n the l a c k of d i s c r i m i n a ­ t i o n , a l t h o u g h t h e much g r e a t e r d i s t a n c e i n t r o g o d e r m a l (11) d i d n o t i n t e r f e r e w i t h d i s c r i m i n a t i o n by s e v e r a l s p e c i e s o f T r o g o d e r ma b e e t l e s . The e n a n t i o m e r i c c o m p o s i t i o n o f l i n e a t i n i n T r y p o d e n d r o n l i n e a t u m was n o t d e t e r m i n e d , b u t t h e s y n t h e s i z e d (racemic) m a t e r i a l was h i g h l y a c t i v e i n f i e l d t e s t s ( 1 3 , 1 4 ) . Mori et a l . (Scheme 4) (15) and S l e s s o r e t a l . (Scheme 5) (16) s y n t h e s i z e d t h e l i n e a t i n e n a n t i o m e r s and r e p o r t e d s i m i l a r o p t i c a l p u r i t i e s , but because d i f f e r e n t s o l v e n t s were used, the o p t i c a l r o t a t i o n s c a n n o t be compared. S i n c e t h e (+) e n a n t i o m e r was a c t i v e i n f i e l d t e s t s ( 1 6 ) , we may assume t h a t i t i s t h e n a t u r a l l y o c c u r r i n g e n a n t i o m e r ; however t h e p r e s e n c e o f t h e a n t i p o d e c a n n o t be r u l e d out. Exploratory

Studies

I n i t i a l l y , our work resembled M o r i ' s f i r s t s y n t h e s i s o f g r a n d i s o l (Scheme 2) ( 9 ) . Whereas M o r i p a r t i a l l y r e s o l v e d a k e t o a c i d c o n t a i n i n g a b i c y c l o [ 3 . 2 . 0 ] h e p t a n e s k e l e t o n , we a t t e m p t e d to r e s o l v e a k e t o a c i d c o n t a i n i n g a b i c y c l o [ 4 . 2 . 0 ] o c t a n e s k e l e t o n (compound I I I ) . The s y n t h e s i s o f t h e a c i d was s t r a i g h t ­ f o r w a r d (Scheme 6 ) : The c y a n o h y d r i n o f c y c l o h e x a n o n e was h y d r o l i z e d and e s t e r i f i e d , t h e α-hydroxy e s t e r was s m o o t h l y dehydrated w i t h t o s y l c h l o r i d e i n r e f l u x i n g p y r i d i n e . Allylic o x i d a t i o n by c h r o m i c a n h y d r i d e i n a c e t i c a c i d y i e l d e d t h e d e s i r e d enone e s t e r i n 55% y i e l d . A l t h o u g h t h i s y i e l d c o u l d n o t be i m p r o v e d by v a r y i n g t h e c o n d i t i o n s , t h e s t a r t i n g m a t e r i a l c o u l d be r e c o v e r e d f o r r e c y c l i n g . P h o t o c y c l i z a t i o n o f t h e p r o d u c t w i t h e t h y l e n e p r o c e e d e d i n 98% y i e l d . The b i c y c l o k e t o - e s t e r was t h e n hydrolyzed to the d e s i r e d keto a c i d , I I I . The k e t o a c i d c o u l d n o t be r e s o l v e d as e a s i l y as i t was synthesized. Formation of s a l t s w i t h v a r i o u s o p t i c a l l y pure bases i n v a r i a b l y y i e l d e d o i l s . K e t a l i z a t i o n of the keto e t h y l e s t e r w i t h e t h y l e n e g l y c o l f o l l o w e d by r e d u c t i o n w i t h l i t h i u m a l u m i n u m h y d r i d e and t r e a t m e n t w i t h M o s h e r ' s r e a g e n t , ( + ) - a methoxy-a-trxfluoromethylphenylacetyl c h l o r i d e (17,18,19), gave a d i a s t e r e o m e r i c m i x t u r e (Scheme 7 ) , w h i c h u n f o r t u n a t e l y was n o t r e s o l v a b l e by HPLC.

In Insect Pheromone Technology: Chemistry and Applications; Leonhardt, B., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1982.

Downloaded by PURDUE UNIV on August 28, 2014 | http://pubs.acs.org Publication Date: June 18, 1982 | doi: 10.1021/bk-1982-0190.ch004

INSECT

PHEROMONE

TECHNOLOGY

(O-Grandlsol Ll§° · •

15.7*(n-hexane)

Optical Purity ~80X (-)-Grandlsol [a]20 « - Ι6.5·(η-Νβχαηβ) Optical P u r i t y - 8 0 X Scheme 2.

ίΗ

ο

I

ÎH

2

CH,

HO

(-)

2

CH

3

(-)-grandisol

H ID o * 2

1 8 , 3 #

( n

"

h e x a n e )

Scheme 3.

In Insect Pheromone Technology: Chemistry and Applications; Leonhardt, B., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1982.

Grandisol

W E B S T E R A N D siLVERSTEiN

and Lineatin

CH C

H

3 ^ A

Enantiomers

3

Steps

Downloaded by PURDUE UNIV on August 28, 2014 | http://pubs.acs.org Publication Date: June 18, 1982 | doi: 10.1021/bk-1982-0190.ch004

HO'

' i t

NAPH-Ç-JOf H

M-Lineatin

H

Ho * (-)-Lineatln 2

2

HD

+

3

* *

6

#

( N

A 0 #

-P

( N

E N T A N E )

-P

E N T A N E )

Scheme 4.

OV"°nL

9 Steps

ψ



" X y f C H

MeO^/Οχ^

NAPH

2 Steps ·» —

3

CH

3

(•)-Lineatin [ a ] ^ « i-66 (CHC1 ) #

3

(-)-Llneatln [a] 23 , . 7 1 · (CHCI3)

Scheme 5.

In Insect Pheromone Technology: Chemistry and Applications; Leonhardt, B., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1982.

92

INSECT

PHEROMONE

TECHNOLOGY

Downloaded by PURDUE UNIV on August 28, 2014 | http://pubs.acs.org Publication Date: June 18, 1982 | doi: 10.1021/bk-1982-0190.ch004

Ο

Scheme 7.

In Insect Pheromone Technology: Chemistry and Applications; Leonhardt, B., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1982.

3

Downloaded by PURDUE UNIV on August 28, 2014 | http://pubs.acs.org Publication Date: June 18, 1982 | doi: 10.1021/bk-1982-0190.ch004

4.

WEBSTER AND

SILVERSTEIN

Grandisol

and

Lineatin

Enantiomers

93

S i n c e our a l t e r n a t i v e s a t t h i s p o i n t were of a l e s s g e n e r a l n a t u r e , we m o d i f i e d o u r o r i g i n a l g o a l o f s y n t h e s i z i n g t h e e n a n t i o m e r s o f b o t h g r a n d i s o l and l i n e a t i n f r o m a common p r e c u r sor. S i n c e we w e r e i n v o l v e d w i t h t h e w h i t e p i n e w e e v i l , t h e s y n t h e s i s o f g r a n d i s o l was g i v e n p r i o r i t y . T h e r e f o r e , we c l e a v e d t h e M o s h e r e s t e r s (MTPA e s t e r s ) , t o s y l a t e d t h e n e o p e n t y l t y p e a l c o h o l (Scheme 8 ) , and r e d u c t i v e l y c l e a v e d t h e t o s y l a t e w i t h l i t h i u m a l u m i n u m h y d r i d e i n THF. The k e t a l m o i e t y was removed i n a two-phase s y s t e m y i e l d i n g t h e d e s i r e d c i s - b i c y c l i c k e t o n e . Zûrflîfe e t a l . (20) o b t a i n e d t h e same compound as an i n t e r m e d i a t e i n t h e i r s t e r e o s p e c i f i c s y n t h e s i s of racemic g r a n d i s o l . This k e t o n e was r e d u c e d a t -78° C w i t h l i t h i u m t r i - t e r t butoxyaluminohydride i n THF y i e l d i n g a s i n g l e ( p r o b a b l y c i s ) s e c o n d a r y a l c o h o l . However, t h e d i a s t e r e o m e r i c MTPA e s t e r s c o u l d n o t be r e s o l v e d by HPLC on a p r e p a r a t i v e s c a l e e v e n t h o u g h t h e s e c o n d a r y OH g r o u p was d i r e c t l y a t t a c h e d t o t h e c h i r a l c e n t e r . N e x t , we i n v e s t i g a t e d t h e s y n t h e s i s o f compound IV w h i c h m i g h t be u s e d as a common i n t e r m e d i a t e i n t h e s y n t h e s i s o f b o t h pheromones. A l t h o u g h IV was n e v e r u s e d f o r t h e s e p u r p o s e s , o u r i n v e s t i g a t i o n l e d t o some i n t e r e s t i n g r e s u l t s . Ethyl levulinate (Scheme 9) was b r o m i n a t e d and d e h y d r o b r o m i n a t e d i n a o n e - p o t s e q u e n c e ( 2 1 ) . The r e s u l t i n g enone was c o n v e r t e d i n t o t h e d i e n e by t r e a t m e n t w i t h t r i m e t h y l s i l y l i o d i d e , f o r m e d i n s i t u f r o m t r i m e t h y l s i l y l c h l o r i d e (22), i n the presence of t r i e t h y l a m i n e . The d i e n e was i s o l a t e d by d i s t i l l a t i o n i n a non-aqueous w o r k - u p . The f o r m a t i o n o f a d i e n e f r o m an a,β-unsaturated k e t o n e seems a g e n e r a l r e a c t i o n . The d i e n e was h e a t e d w i t h m a l e i c a n h y d r i d e i n t o l u e n e y i e l d i n g a s i n g l e a d d u c t . T h i s compound was b r o m i n a t e d , t h e t r i m e t h y l s i l y l b r o m i d e f o r m e d was removed u n d e r vacuum, and d e h y d r o b r o m i n a t i o n was c a r r i e d o u t i n p y r i d i n e . The a n h y d r i d e was h e a t e d w i t h w a t e r y i e l d i n g t h e d i a c i d ; t h i s compound s p o n t a n ­ e o u s l y l o s t c a r b o n d i o x i d e f o r m i n g t h e d e s i r e d compound, I V . N o t e t h a t t h i s s e q u e n c e y i e l d s o n l y one i s o m e r . S i n c e t h e e x c e s s t r i m e t h y l s i l y l b r o m i d e was d i f f i c u l t t o remove, an a l t e r n a t i v e s e q u e n c e was i n v e s t i g a t e d (Scheme 1 0 ) . A f t e r bromination of the s i l y l enol ether, the r e a c t i o n mixture was p o u r e d i n t o w a t e r t o h y d r o l y z e b o t h t h e t r i m e t h y l s i l y l b r o m i d e and t h e a n h y d r i d e . On h e a t i n g t h i s b r o m o a c i d a s b e f o r e , an u n e x p e c t e d compound was f o r m e d . T h i s c a n be r a t i o n a l i z e d as follows: The r e a c t i o n p r o c e e d s f r o m t h e e n o l f o r m , and t h e mechanism i s f o r m a l l y 1,5 e l i m i n a t i o n o f h y d r o g e n b r o m i d e w i t h c o n c o m i t a n t l o s s o f c a r b o n d i o x i d e . The s e c o n d d e c a r b o x y l a t i o n i s a n a l o g o u s t o t h e one s e e n e a r l i e r , and w o u l d be e x p e c t e d o f the a,(3-unsaturated ketone. S y n t h e s i s and R e s o l u t i o n o f t h e Common Key

Intermediate

K e t o a c i d V, a known compound, was u s e d f o r t h e s y n t h e s i s o f b o t h g r a n d i s o l and l i n e a t i n . The f i r s t s t e p o f t h e two s t e p s y n t h e s i s i s an ene r e a c t i o n (23,24) o f i s o b u t y l e n e w i t h m a l e i c

In Insect Pheromone Technology: Chemistry and Applications; Leonhardt, B., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1982.

94

PHEROMONE

TECHNOLOGY

Downloaded by PURDUE UNIV on August 28, 2014 | http://pubs.acs.org Publication Date: June 18, 1982 | doi: 10.1021/bk-1982-0190.ch004

INSECT

Scheme 8.

In Insect Pheromone Technology: Chemistry and Applications; Leonhardt, B., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1982.

Grandisol

and Lineatin

Enantiomers

Downloaded by PURDUE UNIV on August 28, 2014 | http://pubs.acs.org Publication Date: June 18, 1982 | doi: 10.1021/bk-1982-0190.ch004

W E B S T E R A N D SILVERSTEIN

Scheme 9.

In Insect Pheromone Technology: Chemistry and Applications; Leonhardt, B., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1982.

PHEROMONE

TECHNOLOGY

Downloaded by PURDUE UNIV on August 28, 2014 | http://pubs.acs.org Publication Date: June 18, 1982 | doi: 10.1021/bk-1982-0190.ch004

INSECT

Scheme 10.

In Insect Pheromone Technology: Chemistry and Applications; Leonhardt, B., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1982.

4.

WEBSTER AND

SILVERSTEIN

Grandisol

and

Lineatin

Enantiomers

97

a n h y d r i d e (Scheme 1 1 ) . We w e r e u n a b l e t o r e p e a t t h e r e a c t i o n as r e p o r t e d (24) u n l e s s a s m a l l amount o f h y d r o q u i n o n e was a d d e d . The p r o d u c t , m e t h a l l y l s u c c i n i c a n h y d r i d e , u n d e r g o e s a c l e a n r e a r r a n g e m e n t i n h o t p o l y p h o s p h o r i c a c i d t o y i e l d enone a c i d V (25). R a c e m i c V c o u l d n o t be r e s o l v e d w i t h p r i m a r y o p t i c a l l y a c t i v e bases presumably because they r e a c t e d i n a M i c h a e l f a s h i o n . F o r m a t i o n o f t h e q u i n i n e s a l t and f i v e r e c r y s t a l l i z a t i o n s f r o m a b e n z e n e / h e x a n e m i x t u r e y i e l d e d an a c i d ( a f t e r h y d r o l y s i s ) whose s p e c i f i c r o t a t i o n was [ a ] j p - 4 7 . However, s i n c e t h e maximum s p e c i f i c r o t a t i o n i s unknown, an a b s o l u t e method o f d e t e r m i n i n g o p t i c a l p u r i t y i s n e e d e d . The u s u a l method i s t r e a t m e n t w i t h an o p t i c a l l y pure d e r i v a t i z i n g reagent to form c o v a l e n t d i a s t e r e o m e r s , whose r a t i o c a n be d e t e r m i n e d by NMR o r c h r o m a t o g r a p h y . ( - ) - Q u i n i n e i s an o p t i c a l l y p u r e d e r i v a t i z i n g r e a g e n t t h a t f o r m s a d i a s t e r e o m e r i c m i x t u r e o f s a l t s whose 13c NMR s p e c t r u m w o u l d be e x p e c t e d t o show i n d i v i d u a l p e a k s f o r t h e d i a s t e r e o m e r s p r e s e n t . A 1 3 NMR o f t h e s a l t f o r m e d f r o m 1 e q u i v a l e n t o f q u i n i n e and 1 e q u i v a l e n t o f r a c e m i c a c i d (V) r e v e a l e d two p e a k s f o r t h e c a r b o n atom 3 t o t h e c a r b o n y l g r o u p . The NMR (25.2 MHz) o f t h e s a l t o f t h e p a r t i a l l y r e s o l v e d a c i d ( F i g u r e 1) i n d i c a t e s t h a t t h e r a t i o o f d i a s t e r e o m e r s i s a p p r o x i m a t e l y t h r e e t o one ( o p t i c a l p u r i t y ~ 7 5 % ) . As i s s e e n i n t h e e x p a n s i o n , o v e r l a p o f peaks p r e c l u d e s p r e c i s e d e t e r m i n a t i o n of e n a n t i o m e r i c c o m p o s i t i o n , b u t a more p o w e r f u l i n s t r u m e n t s h o u l d c o m p l e t e l y r e s o l v e t h e two p e a k s . We a r e c u r r e n t l y i n v e s t i g a t i n g t h e g e n e r a l i t y o f t h i s procedure.

Downloaded by PURDUE UNIV on August 28, 2014 | http://pubs.acs.org Publication Date: June 18, 1982 | doi: 10.1021/bk-1982-0190.ch004

0

C

Synthesis of Grandisol The f i r s t s t e p i n t h e c o n v e r s i o n o f enone a c i d V t o g r a n d i ­ s o l i s f o r m a t i o n o f t h e c y c l o b u t a n e r i n g by i r r a d i a t i o n o f t h e a c i d i n t h e p r e s e n c e o f a c o n t i n u o u s f l o w o f e t h y l e n e (Scheme 12). S i n c e t h e two c h i r a l c e n t e r s o f g r a n d i s o l a r e f o r m e d i n t h i s r e a c t i o n , t h e p r o d u c t ( s ) o f t h e r e a c t i o n must be a n a l y z e d c a r e ­ fully. A p r i o r i , f o u r i s o m e r i c p r o d u c t s c a n be drawn: V I , V I I , V I I I , and I X . S i n c e two o f t h e s e p r o d u c t s h a v e a t r a n s r i n g j u n c t i o n α t o a k e t o n e , t h e y a r e u n s t a b l e and c a n be e p i m e r i z e d to t h e more s t a b l e c i s j u n c t i o n . Hence, a p a i r o f i s o m e r s ( V I and V I I o r V I I I and I X ) i s a c c e p t a b l e b e c a u s e s u c h a p a i r c o u l d be c o n v e r t e d i n t o a s i n g l e i s o m e r . A n a l y s i s o f t h e p r o d u c t r e v e a l e d t h a t two i s o m e r s w e r e present. F i g u r e 2 reproduces the NMR o f t h e c o r r e s p o n d i n g methyl e s t e r s (dimethyl s u l f a t e / p o t a s s i u m carbonate/acetone). S i n c e t h e k e t o n e c a r b o n y l ( a ) and a d j a c e n t b r i d g e c a r b o n (b) a r e e a c h r e p r e s e n t e d by two p e a k s , w h i l e t h e e s t e r c a r b o n y l ( c ) and t h e methoxy c a r b o n (d) a r e e a c h r e p r e s e n t e d by a s i n g l e p e a k , t h e m i x t u r e must c o n s i s t o f one o f t h e a c c e p t a b l e p a i r s m e n t i o n e d above.

In Insect Pheromone Technology: Chemistry and Applications; Leonhardt, B., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1982.

INSECT

PHEROMONE

TECHNOLOGY

Downloaded by PURDUE UNIV on August 28, 2014 | http://pubs.acs.org Publication Date: June 18, 1982 | doi: 10.1021/bk-1982-0190.ch004

98

In Insect Pheromone Technology: Chemistry and Applications; Leonhardt, B., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1982.

W E B S T E R A N D SILVERSTEIN

Grandisol

and Lineatin

Enantiomers

Downloaded by PURDUE UNIV on August 28, 2014 | http://pubs.acs.org Publication Date: June 18, 1982 | doi: 10.1021/bk-1982-0190.ch004

4.

In Insect Pheromone Technology: Chemistry and Applications; Leonhardt, B., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1982.

99

TECHNOLOGY

Downloaded by PURDUE UNIV on August 28, 2014 | http://pubs.acs.org Publication Date: June 18, 1982 | doi: 10.1021/bk-1982-0190.ch004

INSECT P H E R O M O N E

In Insect Pheromone Technology: Chemistry and Applications; Leonhardt, B., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1982.

W E B S T E R A N D SILVERSTEIN

Grandisol

and Lineatin

Enantiomers

Downloaded by PURDUE UNIV on August 28, 2014 | http://pubs.acs.org Publication Date: June 18, 1982 | doi: 10.1021/bk-1982-0190.ch004

4.

In Insect Pheromone Technology: Chemistry and Applications; Leonhardt, B., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1982.

101

102

INSECT P H E R O M O N E

TECHNOLOGY

The r e s t o f t h e s y n t h e s i s (Scheme 13) i s c o m p l e t e l y s t e r e o s p e c i f i c and most o f t h e s t e p s a r e known ( 2 0 ) . The b i c y c l i c a c i d was o x i d a t i v e l y d e c a r b o x y l a t e d w i t h l e a d t e t r a a c e t a t e and c o p p e r a c e t a t e ( 2 1 ) . The r e s u l t i n g enone was a l k y l a t e d w i t h methyllithium giving a single crystalline a l l y l i c tertiary alcohol. T h i s compound was c l e a v e d w i t h osmium t e t r o x i d e and sodium p e r i o d a t e . Inverse a d d i t i o n of the W i t t i g reagent effected methylenation i n 85% y i e l d . F i n a l l y , t h e a c i d was reduced w i t h l i t h i u m aluminum h y d r i d e to g r a n d i s o l .

Downloaded by PURDUE UNIV on August 28, 2014 | http://pubs.acs.org Publication Date: June 18, 1982 | doi: 10.1021/bk-1982-0190.ch004

Synthesis of L i n e a t i n Scheme 14 o u t l i n e s t h e s y n t h e s i s t h a t we h a v e d e v e l o p e d f o r lineatin. P h o t o c y c l i z a t i o n w i t h aliène gave p r e d o m i n a n t l y one i s o m e r ( 2 6 , 2 7 ) , w h i c h , a f t e r p u r i f i c a t i o n , was o b t a i n e d a s a s i n g l e c r y s t a l l i n e compound. T h i s r e a c t i o n i s v e r y s a t i s f a c t o r y f o r c h i r a l i n d u c t i o n . The n e x t s t e p i n t h e s y n t h e s i s i s t h e o x i d a t i v e d e c a r b o x y l a t i o n seen e a r l i e r i n the g r a n d i s o l s y n t h e s i s . O x i d a t i v e c l e a v a g e w i t h osmium t e t r o x i d e and s o d i u m p e r i o d a t e y i e l d e d t h e t r i f u n c t i o n a l compound, w h i c h was c o n v e r t e d i n t o t h e c o r r e s p o n d i n g a c e t a l k e t a l e s t e r . T h i s e s t e r was a l k y l a t e d w i t h m e t h y l l i t h i u m and t h e k e t a l g r o u p was h y d r o l y z e d . Although the f o l l o w i n g r e d u c t i o n shown i n t h e scheme has n o t y e t b e e n w o r k e d o u t , t h e p l a n i s d e s i g n e d t o s a v e one s t e p . I f the ketone can be r e d u c e d k i n e t i c a l l y w h i l e t h e h e m i a c e t a l r e m a i n s i n t a c t , t h e n t h e s y n t h e s i s i s v i r t u a l l y c o m p l e t e . However, i f t h e r e d u c t i o n i s u n s u c c e s s f u l , we s h a l l o x y d i z e t h e h e m i a c e t a l and r e d u c e b o t h g r o u p s w i t h DIBAH. I n e i t h e r c a s e , 4 , 6 , 6 - l i n e a t i n w i l l be f o r m e d by c l o s i n g t h e t h i r d r i n g w i t h a c i d c a t a l y s i s .

In Insect Pheromone Technology: Chemistry and Applications; Leonhardt, B., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1982.

W E B S T E R A N D siLVERSTEiN

à? HOOC

Grandisol

Cu(0AO CH

Enantiomers

6?

PbiOAc)^ 2

3

0

Downloaded by PURDUE UNIV on August 28, 2014 | http://pubs.acs.org Publication Date: June 18, 1982 | doi: 10.1021/bk-1982-0190.ch004

and Lineatin

H

3

C ^ ) H

MeLi >

CH

CH

3

3

0

H C v ^ O H 3

OsO^ ΝαΙΟ^ CH

0

3

CH

CH Ph P= CH 3

CH

0

CH

2

2

0

3

CH

3

2

LiAlH

0

3

CH

a

3

Grandisol Scheme 13.

In Insect Pheromone Technology: Chemistry and Applications; Leonhardt, B., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1982.

INSECT P H E R O M O N E

TECHNOLOGY

Downloaded by PURDUE UNIV on August 28, 2014 | http://pubs.acs.org Publication Date: June 18, 1982 | doi: 10.1021/bk-1982-0190.ch004

104

In Insect Pheromone Technology: Chemistry and Applications; Leonhardt, B., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1982.

4.

W E B S T E R A N D siLVERSTEiN

Literature 1.

2. 3.

4.

Downloaded by PURDUE UNIV on August 28, 2014 | http://pubs.acs.org Publication Date: June 18, 1982 | doi: 10.1021/bk-1982-0190.ch004

5.

6.

7. 8. 9. 10. 11.

12.

13. 14. 15. 16.

17. 18. 19. 20. 21.

Grandisol

and Lineatin

Enantiomers

105

Cited

Hedin, P . Α . ; Gueldner, R . C . ; Thompson, A . C . In "Pest Management w i t h I n s e c t Sex A t t r a c t a n t s " ; Beroza, M. Ed.; American Chemical S o c i e t y : Washington, 1976; pp. 30-52. Booth, D . C . ; Phillips, T.W.; Claesson, Α . ; Silverstein, R.M.; L a n i e r , G . N . ; West, J . R . J . Chem. Ecol., i n p r e s s . Borden, J.H.; Handley, J.R.; Johnston, B . D . ; MacConnell, J.G.; Silverstein, R . M . ; S l e s s o r , K.N.; Swigar, Α . Α . ; Wong, D.T.W. J. Chem. E c o l . 1979, 5, 681-689. MacConnell, J.G.; Borden, J.H.; Silverstein, R . M . ; Stokking, E . J . Chem. E c o l . 1977, 3, 549-561. Silverstein, R . M . In "Chemical Ecology: Odour Communication in A n i m a l s " ; Ritter, F.J. E d . ; E l s e v i e r / N o r t h H o l l a n d : Amsterdam, 1979; 133-158. Brand, J.M.; Young, J.C.; Silverstein, R . M . I n "Progress i n the Chemistry of Organic N a t u r a l P r o d u c t s " ; Herz, W.; Griseback, H.; K i r b y , G.W. E d s . ; S p r i n g e r - V e r l a g : Vienna, 1979; 1-190. M o r i , K . In "The T o t a l Synthesis of N a t u r a l P r o d u c t s " , Vol. 4; ApSimon, J. E d . ; W i l e y : New York, 1981; 1-183. Hobbs, P.D.; Magnus, P . D . J . Am. Chem. Soc. 1976, 98, 4594-4600. M o r i , K . Tetrahedron 1978, 14, 915-920. M o r i , K.; Tamada, S. Naturwissenschaften 1978, 65, 653-654. S i l v e r s t e i n , R.M.; C a s s i d y , R.F.; Burkholder, W . E . ; Shapas, T.J.; L e v i n s o n , H.Z.; L e v i n s o n , A.R.; M o r i , K . J. Chem. E c o l . 1980, 6, 911-917. Borden, J.H.; Handley, J.R.; Johnson, B.D.; MacConnell, J.G.; Silverstein, R . M . ; S l e s s o r , K.N.; Swigar, A.A.; Wong, D.T.W. J. Chem. E c o l . 1979, 5, 681-689. Borden, J.H.; O e h l s c h l a g e r , A.C.; S l e s s o r , K.N.; Chong, L.; P i e r c e , H . D . , Jr. Can. Entomol. 1980, 112, 107-109. M o r i , K.; S a s a k i , M. Tetrahedron 1980, 36, 2197-2208. K l i m e t z e k , D . ; Vité, J.P.; M o r i , K . Z . Angew. Entomol. 1980, 89, 57-63. S l e s s o r , K.N.; O e l s c h l a g e r , A.C.; Johnston, B.D.; P i e r c e , H . D . , Jr.; Grewal, S . K . ; Wickremesinghe, L .K.G. J. Org. Chem. 1980, 45, 2290-2297. Koreeda, M . ; Weiss, G . ; N a k a n i s h i , K . J. Am. Chem. Soc. 1973, 95, 239-240. Weiss, G.; Koreeda, M; N a k a n i s h i , K . J . Chem. Soc. Chem. Comm. 1973, 565-566. D a l e , J.Α.; Dull, D.L.; Mosher, H . S . J . Org. Chem. 1969, 34, 2543-2549. Z u r f l ü h , R . ; Durham, L.L.; S p a i n , V.L.; Siddall, J.B. J. Am. Chem. Soc. 1970, 92, 425-427. McMurry, J.E.; B l a s z c z a k , L.C. J. Org. Chem. 1974, 39, 2217-2222.

In Insect Pheromone Technology: Chemistry and Applications; Leonhardt, B., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1982.

106

22. 23. 24. 25. 26. 27.

INSECT P H E R O M O N E

TECHNOLOGY

Olah, G.A.,; Narang, S . C . ; Gupta, B.G.B.; M a l h o r t s , R. J. Org. Chem. 1979, 44, 1247-2451. A l d e r , K.; Pascher, F.; Schmitz, A . B e r . 1943, 76B, 47-49. Phillips, D . D . ; Johnson, A.W. J. Am. Chem. Soc. 1955, 77, 5977-5981. Noyce, D.S.; Dolby, L.J. J . Org. Chem. 1961, 26, 1732-1737. G u t h r i e , R . W . ; V a l e n t a , Z.; Wusner, K . Tetrahedron Lett. 1966, 4645-4654. K e l l y , R.B.; Zamecnik, J.; B e c k e t t , Β.A. Can. J. Chem. 1972, 50, 3455-3464. 1982.

Downloaded by PURDUE UNIV on August 28, 2014 | http://pubs.acs.org Publication Date: June 18, 1982 | doi: 10.1021/bk-1982-0190.ch004

RECEIVED February 24,

In Insect Pheromone Technology: Chemistry and Applications; Leonhardt, B., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1982.