Article Cite This: Cryst. Growth Des. 2018, 18, 2452−2457
pubs.acs.org/crystal
High-Nuclearity (Cu8‑Based) Cage Silsesquioxanes: Synthesis and Structural Study Alexey N. Bilyachenko,*,†,‡ Victor N. Khrustalev,‡,§ Yan V. Zubavichus,§ Anna V. Vologzhanina,† Grigorii S. Astakhov,†,‡ Evgenii I. Gutsul,† Elena S. Shubina,† and Mikhail M. Levitsky† †
Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Str., 28, 119991 Moscow, Russia Peoples’ Friendship University of Russia, Miklukho-Maklay Str., 6, 117198 Moscow, Russia § National Research Center “Kurchatov Institute”, Akademika Kurchatova pl., 1, 123182 Moscow, Russia ‡
S Supporting Information *
ABSTRACT: We herein report a study of Cu(II)-silsesquioxanes’ self-assembly in the presence of two possible template agents (acetonitrile and acetone). This results in the isolation of unusual high-nuclearity cluster CuII8 cage silsesquioxanes [(Ph 8 Si 8 O 16 ) 2 Cu 8 (DMF) 8 ][Ph 8 Si 8 O 12 ]·2MeCN 1 and [(Me8Si8O16)2Cu8(Me2CO)4]2[MeCOO−]2[Na+]2·2(H2O)·3(Me2CO) 2. In the case of 1, acetonitrile indeed serves as a template being incorporated into the inner void of the prismlike cage of the crystalline product. To the contrary, in the case of complex 2, acetone molecules just play the role of external solvates. An inner void of the prism-like cage in 2 is occupied by sodium acetate groups. The latter, most likely, are produced via the mild oxidation of ethanol during the synthesis of 2. Finally, the sodium centers of these acetate groups caused an unprecedented “cage connectivity” (dimerization of two octacopper cage silsesquioxanes in 2). capture a fluoride anion.44−48 According to these observations, one could suggest that CLMS can encapsulate other species as well, which would give rise to previously undiscovered principles underlying the structure formation for these intriguing compounds. As an implementation of this work, we herein demonstrate how other small molecules could govern the aggregation of cage metallasilsesquioxanes.
U
nusual representatives of cage metallacomplexes, namely, cage-like metallasilsesquioxanes1−5 (CLMSs), are a worldwide hot research topic being developed by numerous research teams due to a variety of synthetic approaches6−10 to such compounds, their structural multitude,11−13 intriguing magnetic (spin glass)14−18 properties, and potential applications. Among potential applied fields, catalysis,19−25 production of brush-like polymer materials,26−29 membranes,30 nanoparticles,31 coordination polymers10,18,32−34 and calcined inorganic materials35−37 could be mentioned. One of widespread geometries of CLMSs is a prism-like architecture with parallel layersone metal oxide (M−O−M) and two siloxane (Si−O−Si) ones (Figure 1, left). By now, the number of compounds belonging to this structural type exceeds 30, according to the CCDC database.5 Along with differences in the nature of (i) metal ions incorporated in the siloxane matrix, (ii) substituents at silicon atoms, and (iii) solvating ligands, the CLMSs differ from each other in the cage nuclearity. Usually, the CLMSs are hexanuclear (M)6, containing a pair of [RSiO]6 ligands.5,38 In turn, several examples of prismatic cage silsesquioxanes of a lower (M)515,17,39,40 or higher, (M)7,41 (M)8,42 and (M)9,43 nuclearity have been reported. Small molecules present in the synthesis as a solvent or ligand, such as pyrazine42 or dimethyl sulfoxide,43 were localized in the inner prismatic voids of the target cages and thus were regarded as specific template agents governing the “high nuclearity shift”, i.e., directed assembly of a CLMS with an increased nuclearity (Figure 1, right). By design, this phenomenon is similar to a well described ability of polyhedral oligosilsesquioxanes to © 2018 American Chemical Society
■
RESULTS AND DISCUSSION
In this paper, acetonitrile and acetone (both are known for their encapsulation properties49−51) were studied in the context of their potential effects exerted on the nuclearity of emerging Cu(II)-based silsesquioxanes. We have performed parallel selfassembly reactions starting from triethoxysilanes bearing different (Me or Ph) substituents at the silicon atoms. According to our expectations, this would allow one to evaluate possible substituents’ steric effects. At the first stage of the reaction, some of Si-OEt groups of silanes were converted into reactive silanolate Si-ONa groups by the interaction with NaOH (ratio Si/Na = 1/1). At the second stage, these silanolates were put into a reaction with CuCl2 (ratio Na/Cu = 2/1) in different solvent media in the presence of aforementioned acetonitrile and acetone as small-molecule templates. Received: January 15, 2018 Revised: February 21, 2018 Published: March 5, 2018 2452
DOI: 10.1021/acs.cgd.8b00082 Cryst. Growth Des. 2018, 18, 2452−2457
Crystal Growth & Design
Article
Figure 1. General view of prismatic metallasilsesquioxanes. Left: Hexacopper structure. Right: Octanuclear structure with encapsulated pyrazine molecule. Color code: Si - yellow, O - red, Cu - turquoise green, N - blue, C - black.
Figure 2. Top: General scheme of synthesis of compound 1 in the presence of acetonitrile. Bottom: solid state structure of 1. Color code: Si - yellow, O - red, Cu - turquoise green, N - blue. DMF solvates coordinating copper ions at external positions are not shown for clarity.
the final product stoichiometry after addition of acetonitrile or acetone. According to this, the deliberate removal of alcohol was not obligatory since it gives us an opportunity to evaluate competition of different potential solvating ligands during the cage metallasilsesquioxane’ assembly. Two of these reaction conditions, namely, (i) the transformation of phenyltrietoxysilane in the presence of acetonitrile (Figure 2 top) and (ii) the transformation of methyltrietoxysilane in the presence of acetone (Figure 3, top), were found
Noteworthy alcohol that acted as a reaction medium during the silanolate’s formation was not removed from the reaction mixture upon completion of the first stage of synthesis. It does not seem too surprising due to results published by some of us in a recent work43 reporting on a nonanuclear copper silsesquioxane encapsulating a DMSO molecule in its center. This unusual process occurred in the presence of both DMSO and alcohol solvent molecules in the reaction medium. Thus, we could expect a similar displacement of alcohol molecules in 2453
DOI: 10.1021/acs.cgd.8b00082 Cryst. Growth Des. 2018, 18, 2452−2457
Crystal Growth & Design
Article
significant attention paid to chemistry and structures of polyhedral oligosilsesquioxanes.52−58 Note that we succeeded in the crystallization of complex 1 from the acetonitrile/DMF system, and DMF solvates coordinate copper ions outside the cage. Thus, one could conclude that DMF, known as a ligand with high coordination affinity, also strongly influences the assembly process of the Cu8 core. Here we would like to cite an earlier work by the Lindeman team,59 devoted to the synthesis of Cu(II)-based phenylsilsesquioxane in the DMF-only system. This results in the formation of a product with the principally different, Cu6, nuclearity. Thus, we should emphasize the role played by acetonitrile during the formation of complex 1, especially keeping in mind its obvious proneness to encapsulation. In the case of product 2, acetone molecules did not enter the inner prismatic void of the cage occupying exterior solvation positions. Thus, the templating effect of acetone is not as evident as in the case of compound 1. Nevertheless, the cage component of complex 2 (crystallized from acetone/ethanol mixture) is still capable of forming an unusual high-nuclearity octanuclear cage. Similarly to the above discussion regarding product 1, it is worth mentioning that numerous “alcohol-only” syntheses of Cu(II)-silsesquioxanes5 never resulted in Cu8 products. This necessarily means that the role of acetone’s assistance in the assembly of product 2 should not be underestimated. We could presume some coordination of metallasilsesquioxane species and acetone molecules, favoring the formation of the Cu8 core. At the last stage of the compound 2 crystallization, acetone molecules, being weakly binding ligands, are expelled from the coordination sphere of the copper ions. As a result, the free sites are occupied by ethanol molecules. In turn, the presence of ethanol in the reaction system provoked a truly intriguing encapsulation event. The role of captured species is played herein by sodium acetate, formed in situ during the synthesis/crystallization. Several earlier reports implied a high oxidative potential of the metallasilsesquioxane systems. These reports included examples of (i) silsesquioxane’s metal ion oxidation (CeIII to CeIV,60 UIV to UVI,8 CrII to CrIV61), (ii) oxidation of an N-ligand used for the metallasilsesquioxane’ assembly (neocuproine to the respective geminal diol via the hydroxylation of one of the Me groups),62 (iii) oxidation of solvent molecules used for the CLMS synthesis (ethanol to acetate,9,63 THF to γ-butyrolactone64). Thus, the formation of sodium acetate during the synthesis is a rare but not an unprecedented observation. In turn, to the best of our knowledge, the phenomenon of capture of acetate species by CLMS has never been reported. And even more than that, the coordination of sodium ions (balancing the charge of the acetate) to water molecules solvating the octanuclear cage component of 2 provokes an extraordinary linkage of two CLMSs. As a result, the whole structure of 2 represents a unique dimer of two octacopper cages. It is of interest to describe both structures 1 and 2 in terms of the topological analysis (Figure 4). Octanuclear metal belts in the cage components of 1 and 2 can be simplified to Cu8O16 rings. These rings realize the 2M8−1 topology (the notation described in ref 65 denotes the 2M8−1 clusters as follows: 2 is the coordination number of topologically inequivalent nodes, M denotes a discrete cluster, 8 is the number of metal atoms in the cluster, and 1 is the classification number to distinguish topologically distinct octanuclear clusters). At the same time, unprecedented CLMS dimerization in 2 leads to an octadecanuclear cluster (16 copper atoms, two sodium atoms
Figure 3. Top: General scheme of synthesis of compound 2 in the presence of acetone. Bottom: solid state structure of 2. Color code: Si yellow, O - red, Cu - turquoise green, Na- orange, N - blue.
successful for the isolation of novel crystalline products. A slow evaporation of solvents allowed us to obtain blue CLMSs 1 (24% yield) and 2 (19% yield), respectively. Both structures 1 and 2 are exclusively unusual as compared to any known molecular geometries of CLMSs. First of all, products 1−2 add up to a very rare family of octanuclear cage silsesquioxanes (the first and the only type of compound of such an unusual nuclearity was obtained using pyrazine as a template center42). Note that despite the difference in steric characteristics of starting silanes (MeSi vs PhSi), similar Cu8 cores were found in the composition of both products. In the case of the CLMS component of compound 1, the role of the template center is played by an acetonitrile molecule (Figure 2, bottom), which is a brand new feature in the regulations underlying the CLMS assembly process. Another remarkable feature of product 1 is the fact of cocrystallization of CLMS and metal-free octaphenyloctasilsesquioxane (PhT8) in a common supramolecular architecture. To the best of our knowledge, this is the very first observation of such a mixed crystal, despite 2454
DOI: 10.1021/acs.cgd.8b00082 Cryst. Growth Des. 2018, 18, 2452−2457
Crystal Growth & Design
Article
metallasilsesquioxanes of the early transition metals and f-elements. Coord. Chem. Rev. 2000, 206−207, 321−368. (3) Roesky, H. W.; Anantharaman, G.; Chandrasekhar, V.; Jancik, V.; Singh, S. Control of Molecular Topology and Metal Nuclearity in Multimetallic Assemblies: Designer Metallosiloxanes Derived from Silanetriols. Chem. - Eur. J. 2004, 10, 4106−4114. (4) Edelmann, F. T. Metallasilsesquioxanes. Synthetic and Structural Studies. In Silicon Chemistry: From the Atom to Extended Systems; Jutzi, P.; Schubert, U., Eds.; Wiley, 2007; pp 383−394. (5) Levitsky, M. M.; Bilyachenko, A. N. Modern concepts and methods in the chemistry of polyhedral metallasiloxanes. Coord. Chem. Rev. 2016, 306, 235−269. (6) Hirotsu, M.; Taruno, S.; Yoshimura, T.; Ueno, K.; Unno, M.; Matsumoto, H. Synthesis and Structures of the First Titanium(IV) Complexes with Cyclic Tetrasiloxide Ligands: Incomplete and Complete Cage Titanosiloxanes. Chem. Lett. 2005, 34, 1542−1543. (7) Lokare, K. S.; Frank, N.; Braun-Cula, B.; Goikoetxea, I.; Sauer, J.; Limberg, C. Trapping Aluminum Hydroxide Clusters with Trisilanols during Speciation in Aluminum(III)−Water Systems: Reproducible, Large Scale Access to Molecular Aluminate Models. Angew. Chem., Int. Ed. 2016, 55, 12325−12329. (8) Gießmann, S.; Lorenz, V.; Liebing, P.; Hilfert, L.; Fischer, A.; Edelmann, F. T. Synthesis and structural study of new metallasilsesquioxanes of potassium and uranium. Dalton Trans. 2017, 46, 2415−2419. (9) Bilyachenko, A. N.; Kulakova, A. N.; Levitsky, M. M.; Petrov, A. A.; Korlyukov, A. A.; Shul’pina, L. S.; Khrustalev, V. N.; Dorovatovskii, P. V.; Vologzhanina, A. V.; Tsareva, U. S.; Golub, I. E.; Gulyaeva, E. S.; Shubina, E. S.; Shul’pin, G. B. Unusual Tri-, Hexa-, and Nonanuclear Cu(II) Cage Methylsilsesquioxanes: Synthesis, Structures, and Catalytic Activity in Oxidations with Peroxides. Inorg. Chem. 2017, 56, 4093−4103. (10) Bilyachenko, A. N.; Kulakova, A. N.; Levitsky, M. M.; Korlyukov, A. A.; Khrustalev, V. N.; Vologzhanina, A. V.; Titov, A. A.; Dorovatovskii, P. V.; Shul’pina, L. S.; Lamaty, F.; Bantreil, X.; Villemejeanne, B.; Ruiz, C.; Martinez, J.; Shubina, E. S.; Shul’pin, G. B. Ionic Complexes of Tetra- and Nonanuclear Cage Copper(II) Phenylsilsesquioxanes: Synthesis and High Activity in Oxidative Catalysis. ChemCatChem 2017, 9, 4437−4447. (11) Hanssen, R. W. J. M.; van Santen, R. A.; Abbenhuis, H. C. L. The Dynamic Status Quo of Polyhedral Silsesquioxane Coordination Chemistry. Eur. J. Inorg. Chem. 2004, 2004, 675−683. (12) Jutzi, P.; Lindemann, H. M.; Nolte, J.-O.; Schneider, M. Synthesis, Structure, and Reactivity of Novel Oligomeric Titanasiloxanes. In Silicon Chemistry: From the Atom to Extended Systems; Jutzi, P., Schubert, U., Eds.; Wiley, 2007; pp 372−382. (13) Pinkert, D.; Limberg, C. Iron Silicates, Iron-Modulated Zeolite Catalysts, and Molecular Models Thereof. Chem. - Eur. J. 2014, 20, 9166−9175. (14) Bilyachenko, A. N.; Yalymov, A. I.; Korlyukov, A. A.; Long, J.; Larionova, J.; Guari, Y.; Zubavichus, Y. V.; Trigub, A. L.; Shubina, E. S.; Eremenko, I. L.; Efimov, N. N.; Levitsky, M. M. Heterometallic Na6Co3 Phenylsilsesquioxane Exhibiting Slow Dynamic Behavior in its Magnetization. Chem. - Eur. J. 2015, 21, 18563−18565. (15) Bilyachenko, A. N.; Yalymov, A. I.; Korlyukov, A. A.; Long, J.; Larionova, J.; Guari, Y.; Vologzhanina, A. V.; Es’kova, M. A.; Shubina, E. S.; Levitsky, M. M. Unusual penta- and hexanuclear Ni(II)-based silsesquioxane polynuclear complexes. Dalton Trans. 2016, 45, 7320− 7327. (16) Bilyachenko, A. N.; Levitsky, M. M.; Yalymov, A. I.; Korlyukov, A. A.; Vologzhanina, A. V.; Kozlov, Yu. N.; Shul’pina, L. S.; Nesterov, D. N.; Pombeiro, A. J. L.; Lamaty, F.; Bantreil, X.; Fetre, A.; Liu, D.; Martinez; Long, J.; Larionova, J.; Guari, Y.; Trigub, A. L.; Zubavichus, Y. V.; Golub, I. E.; Filippov, O. A.; Shubina, E. S.; Shul’pin, G. B. A Heterometallic (Fe6Na8) Cage-like Silsesquioxane: Synthesis, Structure, Spin Glass Behavior and High Catalytic Activity. RSC Adv. 2016, 6, 48165−48180. (17) Bilyachenko, A. N.; Yalymov, A. I.; Levitsky, M. M.; Korlyukov, A. A.; Es’kova, M. A.; Long, J.; Larionova, J.; Guari, Y.; Shul’pina, L. S.;
Figure 4. Octa- (compound 1, left) and octadecanuclear (compound 2, right) metal-containing clusters connected by bridging oxygen atoms. The corresponding graphs of clusters’ connectivity are shown as solid black lines.
and the μ2-oxygen atoms) with the 2,3,3M18−1 topology that has not occurred before. Herewith, we reported the solvent-assisted self-assembly of Cu(II)-organosilsesquioxanes giving rise to unexpected and previously undescribed octanuclear cages. Although the apparently highly important solvent effects are still poorly understood, we believe that the results reported extend the existing knowledge base to enable complete predictability, genuine materials design, and purposeful synthesis in the future.
■
ASSOCIATED CONTENT
S Supporting Information *
The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.cgd.8b00082. Details of synthetic and X-ray experiments (PDF) Accession Codes
CCDC 1585110−1585111 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing
[email protected], or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.
■
AUTHOR INFORMATION
Corresponding Author
*E-mail:
[email protected]. ORCID
Alexey N. Bilyachenko: 0000-0003-3136-3675 Victor N. Khrustalev: 0000-0001-8806-2975 Anna V. Vologzhanina: 0000-0002-6228-303X Elena S. Shubina: 0000-0001-8057-3703 Notes
The authors declare no competing financial interest.
■
ACKNOWLEDGMENTS The publication was prepared with the support of the “RUDN University Program 5-100” and funded by RFBR according to the Research Project 17-03-00993. Synchrotron single-crystal diffraction measurements were performed at the unique scientific facility Kurchatov Synchrotron Radiation Source supported by the Ministry of Education and Science of the Russian Federation (Project Code RFMEFI61917X0007).
■
REFERENCES
(1) Murugavel, R.; Voigt, A.; Walawalkar, M. G.; Roesky, H. W. Hetero- and Metallasiloxanes Derived from Silanediols, Disilanols, Silanetriols, and Trisilanols. Chem. Rev. 1996, 96, 2205−2236. (2) Lorenz, V.; Fischer, A.; Gießmann, S.; Gilje, J. W.; Gun’ko, Y.; Jacob, K.; Edelmann, F. T. Disiloxanediolates and polyhedral 2455
DOI: 10.1021/acs.cgd.8b00082 Cryst. Growth Des. 2018, 18, 2452−2457
Crystal Growth & Design
Article
Ikonnikov, N. S.; Trigub, A. L.; Zubavichus, Y. V.; Golub, I. E.; Shubina, E. S.; Shul’pin, G. B. First Cage-Like Pentanuclear Co(II)Silsesquioxane. Dalton Trans. 2016, 45, 13663−13666. (18) Bilyachenko, A. N.; Yalymov, A.; Dronova, M.; Korlyukov, A. A.; Vologzhanina, A. V.; Es’kova, M. A.; Long, J.; Larionova, J.; Guari, Y.; Dorovatovskii, P. V.; Shubina, E. S.; Levitsky, M. M. Family of Polynuclear Nickel Cagelike Phenylsilsesquioxanes; Features of Periodic Networks and Magnetic Properties. Inorg. Chem. 2017, 56, 12751−12763. (19) Quadrelli, E. A.; Basset, J.-M. On silsesquioxanes’ accuracy as molecular models for silica-grafted complexes in heterogeneous catalysis. Coord. Chem. Rev. 2010, 254, 707−728. (20) Ward, A. J.; Masters, A. F.; Maschmeyer, T. Metallasilsesquioxanes: Molecular Analogues of Heterogeneous Catalysts. Adv. Silicon Sci. 2011, 3, 135−166. (21) Levitsky, M. M.; Yalymov, A. I.; Kulakova, A. N.; Petrov, A. A.; Bilyachenko, A. N. Cage-like metallsilsesquioxanes in catalysis: A review. J. Mol. Catal. A: Chem. 2017, 426, 297−304. (22) Levitsky, M. M.; Bilyachenko, A. N.; Shul’pin, G. B. Oxidation of C−H compounds with peroxides catalyzed by polynuclear transition metal complexes in Si- or Ge-sesquioxane frameworks. J. Organomet. Chem. 2017, 849−850, 201−218. (23) Ventura, M.; Tabernero, V.; Cuenca, T.; Royo, B.; Jiménez, G. Cyclopentadienyl−Silsesquioxane Titanium Catalysts: Factors Affecting Their Formation and Activity in Olefin Epoxidation with Aqueous Hydrogen Peroxide. Eur. J. Inorg. Chem. 2016, 2016, 2843−2849. (24) Białek, M.; Pochwała, M.; Franczyk, A.; Czaja, K.; Marciniec, B. Synthesis and catalytic properties for olefin polymerization of new vanadium complexes containing silsesquioxane ligands with different denticity. Polym. Int. 2017, 66, 960−967. (25) Guillo, P.; Lipschutz, M. I.; Fasulo, M. E.; Tilley, T. D. Tantalum−Polyhedral Oligosilsesquioxane Complexes as Structural Models and Functional Catalysts for Epoxidation. ACS Catal. 2017, 7, 2303−2312. (26) Han, J.; Zheng, S. Organic−inorganic hybrid brushes consisting of macrocyclic oligomeric silsesquioxane and poly(ε-caprolactone): Synthesis, characterization, and supramolecular inclusion complexation with α-cyclodextrin. J. Polym. Sci., Part A: Polym. Chem. 2009, 47, 6894−6907. (27) Han, J.; Zhu, L.; Zheng, S. Synthesis and characterization of organic−inorganic macrocyclic molecular brushes with poly(εcaprolactone) side chains. Eur. Polym. J. 2012, 48, 730−742. (28) Yi, Y.; Zheng, S. Synthesis and self-assembly behavior of organic−inorganic macrocyclic molecular brushes composed of macrocyclic oligomeric silsesquioxane and poly(N-isopropylacrylamide). RSC Adv. 2014, 4, 28439−28450. (29) Zhu, L.; Zhang, C.; Han, J.; Zheng, S.; Li, X. Formation of nanophases in epoxy thermosets containing an organic−inorganic macrocyclic molecular brush with poly(ε-caprolactone)-block-polystyrene side chains. Soft Matter 2012, 8, 7062−7072. (30) Yoshikawa, M.; Shiba, H.; Kanezashi, M.; Wada, H.; Shimojima, A.; Tsuru, T.; Kuroda, K. Synthesis of a 12-membered cyclic siloxane possessing alkoxysilyl groups as a nanobuilding block and its use for preparation of gas permeable membranes. RSC Adv. 2017, 7, 48683− 48691. (31) Davies, G.-L.; O’Brien, J.; Gun’ko, Y. K. Rare Earth Doped Silica Nanoparticles via Thermolysis of a Single Source Metallasilsesquioxane Precursor. Sci. Rep. 2017, 7, 45862. (32) Dronova, M. S. Ph.D. thesis, Moscow, 2013. (33) Korlyukov, A. A.; Vologzhanina, A. V.; Buzin, M. I.; Sergienko, N. V.; Zavin, B. G.; Muzafarov, A. M. Cu(II)-Silsesquioxanes as Secondary Building Units for Construction of Coordination Polymers: A Case Study of Cesium-Containing Compounds. Cryst. Cryst. Growth Des. 2016, 16, 1968−1977. (34) Bilyachenko, A. N.; Korlyukov, A. A.; Vologzhanina, A. V.; Khrustalev, V. N.; Kulakova, A. N.; Long, J.; Larionova, J.; Guari, Y.; Dronova, M. S.; Tsareva, U. S.; Dorovatovskii, P. V.; Shubina, E. S.; Levitsky, M. M. Levitsky, Tuning linkage isomerism and magnetic
properties of bi- and tri-metallic cage silsesquioxanes by cation and solvent effects. Dalton Trans. 2017, 46, 12935−12949. (35) Maxim, N.; Overweg, A.; Kooyman, P. J.; van Wolput, J. H. M. C.; Hanssen, R. W. J. M.; van Santen, R. A.; Abbenhuis, H. C. L. Synthesis and Characterization of Microporous Fe−Si−O Materials with Tailored Iron Content from Silsesquioxane Precursors. J. Phys. Chem. B 2002, 106, 2203−2209. (36) Murugavel, R.; Davis, P.; Shete, V. S. Reactivity Studies, Structural Characterization, and Thermolysis of Cubic Titanosiloxanes: Precursors to Titanosilicate Materials Which Catalyze Olefin Epoxidation. Inorg. Chem. 2003, 42, 4696−4706. (37) Beletskiy, E. V.; Hou, X.; Shen, Z.; Gallagher, J. R.; Miller, J. T.; Wu, Y.; Li, T.; Kung, M. C.; Kung, H. H. Supported Tetrahedral OxoSn Catalyst: Single Site, Two Modes of Catalysis. J. Am. Chem. Soc. 2016, 138, 4294−4297. (38) Sergienko, N. V.; Korlyukov, A. A.; Arkhipov, D. E.; Novikov, V. V.; Eskova, M. A.; Zavin, B. G. Metallosiloxanes containing period 5 transition metals: synthesis and X-ray studies of three cadmium siloxanes. Mendeleev Commun. 2016, 26, 344−346. (39) Kononevich, Y. N.; Anisimov, A. A.; Korlyukov, A. A.; Tsareva, U. S.; Shchegolikhina, O. I.; Muzafarov, A. M. Synthesis and structures of novel four- and pentanuclear copper sandwich-like metallasiloxanes with pyridine ligands. Mendeleev Commun. 2017, 27, 332−334. (40) Bilyachenko, A. N.; Kulakova, A. N.; Shul’pina, L. S.; Levitsky, M. M.; Korlyukov, A. A.; Khrustalev, V. N.; Zubavichus, Y. V.; Dorovatovskii, P. V.; Tsareva, U. S.; Shubina, E. S.; Petrov, A. A.; Vorontsov, N. V.; Shul’pin, G. B. Family of penta- and hexanuclear metallasilsesquioxanes: Synthesis, structure and catalytic properties in oxidations. J. Organomet. Chem. 2017, DOI: 10.1016/j.jorganchem.2017.10.033. (41) Bilyachenko, A. N.; Levitsky, M. M.; Korlyukov, A. A.; Khrustalev, V. N.; Zubavichus, Y. V.; Shul’pina, L. S.; Shubina, E. S.; Vologzhanina, A. V.; Shul’pin, G. B. Heptanuclear Cage Cu(II)Silsesquioxanes. Features of Synthesis, Structure and Catalytic Activity. Eur. J. Inorg. Chem. 2018, DOI: 10.1002/ejic.201701340. (42) Zherlitsyna, L.; Auner, N.; Bolte, M. Bis(μ6-cis2,4,6,8,10,12,14,16-octamethylcyclooctasiloxane-2,4,6,8,10,12,14,16octolato)octa-kis[(dimethylformamide)copper(II)] dimethylformamide solvate enclosing a pyrazine molecule. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 2006, 62, m199−200. (43) Bilyachenko, A. N.; Kulakova, A. N.; Levitsky, M. M.; Petrov, A. A.; Korlyukov, A. A.; Shul’pina, L. S.; Khrustalev, V. N.; Dorovatovskii, P. V.; Vologzhanina, A. V.; Tsareva, U. S.; Golub, I. E.; Gulyaeva, E. S.; Shubina, E. S.; Shul’pin, G. B. Unusual tri-, hexa- and nonanuclear Cu(II) cage methylsilsesquioxanes: Synthesis, Structures and Catalytic Activity in Oxidations with Peroxides. Inorg. Chem. 2017, 56, 4093− 4103. (44) Lickiss, P. D.; Rataboul, F. Fully Condensed Polyhedral Oligosilsesquioxanes (POSS): From Synthesis to Application. In Adv. Organomet. Chem.; Anthony, F. H., Mark, J. F., Eds.; Academic Press, 2008; Vol. 57, pp 1−116. (45) Taylor, P. G.; Bassindale, A. R.; El Aziz, Y.; Pourny, M.; Stevenson, R.; Hursthouse, M. B.; Coles, S. J. Further studies of fluoride ion entrapment in octasilsesquioxane cages; X-ray crystal structure studies and factors that affect their formation. Dalton Trans. 2012, 41, 2048−2059. (46) El Aziz, Y.; Bassindale, A. R.; Taylor, P. G.; Horton, P. N.; Stephenson, R. A.; Hursthouse, M. B. Facile Synthesis of Novel Functionalized Silsesquioxane Nanostructures Containing an Encapsulated Fluoride Anion. Organometallics 2012, 31, 6032−6040. (47) El Aziz, Y.; Taylor, P. G.; Bassindale, A. R.; Coles, S. J.; Pitak, M. B. Synthesis and Structures of Novel Molecular Ionic Compounds Based on Encapsulation of Anions and Cations. Organometallics 2016, 35, 4004−4013. (48) Chanmungkalakul, S.; Ervithayasuporn, V.; Hanprasit, S.; Masik, M.; Prigyai, N.; Kiatkamjornwong, S. Silsesquioxane cages as fluoride sensors. Chem. Commun. 2017, 53, 12108−12111. 2456
DOI: 10.1021/acs.cgd.8b00082 Cryst. Growth Des. 2018, 18, 2452−2457
Crystal Growth & Design
Article
(49) Smirnov, K. S.; Thibault-Starzyk, F. Confinement of Acetonitrile Molecules in Mordenite. A Computer Modeling Study. J. Phys. Chem. B 1999, 103, 8595−8601. (50) Kellersberger, K. A.; Anderson, J. D.; Ward, S. M.; Krakowiak, K. E.; Dearden, D. V. Encapsulation of N2, O2, Methanol, or Acetonitrile by Decamethylcucurbit[5]uril(NH4+)2 Complexes in the Gas Phase: Influence of the Guest on “Lid” Tightness. J. Am. Chem. Soc. 2001, 123, 11316−11317. (51) Songkram, C.; Ohta, K.; Yamaguchi, K.; Pichierri, F.; Endo, Y. Conformational Control of Benzyl-o-carboranylbenzene Derivatives and Molecular Encapsulation of Acetone in the Dynamically Formed Space of 1,3,5-Tris(2-benzyl-o-carboran-1-yl)benzene. Inorg. Chem. 2010, 49, 11174−11183. (52) Voronkov, M. G., Lavrent’yev, V. I. () Polyhedral oligosilsesquioxanes and their homo derivatives. In Inorganic Ring Systems. Topics in Current Chemistry; Springer: Berlin, Heidelberg, 1982; Vol. 102. (53) Feher, F. J. Polyhedral oligosilsesquioxanes and heterosilsesquioxanes. In Silicon Compounds: Silanes and Silicones; Arkles, B., Larson, G. L., Eds.; Gelest Inc.: Morrisville, 2004. (54) Lickiss, P. D.; Rataboul, F. Fully Condensed Polyhedral Oligosilsesquioxanes (POSS): From Synthesis to Application. Adv. Organomet. Chem. 2008, 57, 1−116. (55) Cordes, D. B.; Lickiss, P. D.; Rataboul, F. Recent Developments in the Chemistry of Cubic Polyhedral Oligosilsesquioxanes. Chem. Rev. 2010, 110, 2081−2173. (56) Cordes, D. B.; Lickiss, P. D. Preparation and Characterization of Polyhedral Oligosilsesquioxanes. Adv. Silicon Sci. 2011, 3, 47−133. (57) Kickelbick, G., Silsesquioxanes, In Functional Molecular Silicon Compounds I; Springer, 2014; pp 1−28. (58) Unno, M.; Tanaka, R. Silanols and silsesquioxanes. In Efficient Methods for Preparing Silicon Compounds; Roesky, H. W., Eds.; Elsevier Inc., 2016; pp 399−440. (59) Lindeman, S. V.; Shchegolikhina, O. I.; Molodtsova, Y. A.; Zhdanov, A. A. Hexakis(dimethylformamide)bis(hexaphenylcyclohexasiloxanehexaolato)-hexacopper(II) Dimethylformamide Solvate. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 1997, 53, 305−309. (60) Gun’ko, Y. K.; Reilly, R.; Edelmann, F. T.; Schmidt, H.-G. The First CeIV Metallasilsesquioxane Complex [Ce{(cC6H11)8Si8O13}2(py)3]. Angew. Chem., Int. Ed. 2001, 40, 1279−1281. (61) Schax, F.; Bill, E.; Herwig, C.; Limberg, C. Dioxygen Activation by Chromium(II)- and Chromium(IV)-Siloxide Complexes. Angew. Chem., Int. Ed. 2014, 53, 12741−12745. (62) Bilyachenko, A. N.; Levitsky, M. M.; Khrustalev, V. N.; Zubavichus, Y. V.; Shul'pina, L. S.; Shul’pin, G. B.; Shubina, E. S. Mild and Regioselective Hydroxylation of Methyl Group in Neocuproine: Approach to an N,O-Ligated Cu6 Cage Phenylsilsesquioxane. Organometallics 2018, 37, 168−171. (63) Kulakova, A. N.; Bilyachenko, A. N.; Levitsky, M. M.; Khrustalev, V. N.; Korlyukov, A. A.; Zubavichus, Y. V.; Dorovatovskii, P. V.; Lamaty, F.; Bantreil, X.; Villemejeanne, B.; Martinez, J.; Shul’pina, L. S.; Shubina, E. S.; Gutsul, E. I.; Mikhailov, I. A.; Ikonnikov, N. S.; Shul’pin, G. B.; Tsareva, U. S. Si10Cu6N4 Cage Hexacoppersilsesquioxanes Containing N-Ligands: Synthesis, Structure, and High Catalytic Activity in Peroxide Oxidations. Inorg. Chem. 2017, 56, 15026−15040. (64) Hay, M. T.; Hainaut, B. J.; Geib, S. J. Synthesis and characterization of a novel iron(III) silsesquioxane compound. Inorg. Chem. Commun. 2003, 6, 431−434. (65) Kostakis, G. E.; Blatov, V. A.; Proserpio, D. M. A method for topological analysis of high nuclearity coordination clusters and its application to Mn coordination compounds. Dalton Trans. 2012, 41, 4634−4640.
2457
DOI: 10.1021/acs.cgd.8b00082 Cryst. Growth Des. 2018, 18, 2452−2457