Subscriber access provided by University of Pennsylvania Libraries
Article
Host-symbiont interaction model explains non-monotonic response of soybean growth and seed production to nano-CeO2 exposure Tin Klanjscek, Erik B Muller, Patricia A. Holden, and Roger M. Nisbet Environ. Sci. Technol., Just Accepted Manuscript • DOI: 10.1021/acs.est.6b06618 • Publication Date (Web): 23 Mar 2017 Downloaded from http://pubs.acs.org on March 26, 2017
Just Accepted “Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.
Environmental Science & Technology is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.
Page 1 of 25
Environmental Science & Technology
1
Host-symbiont interaction model
2
explains non-monotonic response of
3
soybean growth and seed production
4
to nano-CeO2 exposure
5
Tin Klanjšček*1,2, Erik B. Muller3, Patricia A. Holden4, Roger M. Nisbet1
6
1
7
Santa Barbara, CA 93106-9610, USA
8
2
9
3
Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara,
Ruđer Bošković Institute, Zagreb, 10000 Croatia Marine Science Institute, University of California Santa Barbara, Santa Barbara, CA 93106-
10
9610, USA
11
4
12
Barbara, Santa Barbara, CA 93106-5131, USA
13
* corresponding author, Tin Klanjscek, ORCID: 0000-0002-9341-344X
14
Address: Ruđer Bošković Institute, P.O. Box 180, Bijenička 54, HR-10000 Zagreb, Croatia.
15
E-mail:
[email protected],
[email protected] 16
Phone: +38514561131; Fax: +38514680242
Bren School of Environmental Science and Management, University of California Santa
17
ACS Paragon Plus Environment
1
Environmental Science & Technology
Page 2 of 25
18
Abstract
19
Recent nanotoxicity studies have demonstrated non-monotonic dose-response mechanisms for
20
planted soybean that have a symbiotic relationship with bacteroids in their root nodules:
21
reduction of growth and seed production was greater for low, as compared to high, exposures.
22
To investigate mechanistic underpinnings of the observed patterns, we formulated an energy
23
budget model coupled to a toxicokinetic module describing bioaccumulation, and two
24
toxicodynamic modules describing respectively toxic effects on host plant and symbionts. By
25
fitting data on plants exposed to engineered CeO2 nanoparticles to the newly formulated model,
26
we show that the non-monotonic patterns can be explained as the interaction of two, individually
27
monotonic, dose-response processes: one for the plant, and the other for the symbiont. We
28
further validate the newly formulated model by showing that, without the need for additional
29
parameters, the model successfully predicts changes in dinitrogen fixation potential as a
30
function of exposure (dinitrogen fixation potential data not used in model fitting). The symbiont
31
buffers overall toxicity only when, in the absence of exposure to a toxicant, it has a parasitic
32
interaction with the host plant. If the interaction is mutualistic or commensal, there is no
33
buffering and only monotonic toxic responses are possible. Since the model is based on general
34
biological principles, we expect it to be applicable to other similar symbiotic systems, especially
35
other nodule-forming legumes.
36
Introduction
37
Ecological nanotoxicology bridges multiple levels of biological organization to help understand
38
and minimize negative impacts of an ever-increasing input of engineered nanomaterials (ENMs)
39
on ecosystem function and resulting ecosystem services(1). Recent efforts in ecological
40
nanotoxicology include coherent experimental and theoretical efforts to investigate mechanisms
41
of ENM action and toxicity on many aquatic and terrestrial (eco)systems (e.g. Xia et al. (2) and
ACS Paragon Plus Environment
2
Page 3 of 25
Environmental Science & Technology
42
references therein). These efforts have identified a number of mechanisms specific to ENMs
43
and materials that comprise ENMs. In particular, elevated oxidative stress has for long been
44
identified as a major contributor to cellular damage resulting from ENM exposure (3–6). The
45
cascading effects of oxidative stress from biochemical, to individual, to population-level scales
46
of biological organization have been modeled using Dynamic Energy Budget (DEB) models (7–
47
9). These models assume that exposure increases oxidative stress, which results in damage to
48
cells and potentially to whole organisms; in particular, Klanjscek et al. (10) developed theory
49
showing that with only some non-restrictive assumptions, correlation between exposure, ROS,
50
and cellular damage is expected. In the absence of other confounding factors, this would at the
51
organism level translate into a monotonic dose-response pattern, i.e. negative effects that
52
increase with exposure. Such monotonic responses in many endpoints to metal oxide
53
nanoparticles have been reported for a number of plants (see Du et al. (11) for a comprehensive
54
review).
55
Recent studies on effects of CeO2 nanoparticles on soybean revealed a much more complex
56
pattern of impacts. Prior publications (6,12) report on a large number of endpoints
57
characterizing the effects on soybean of exposure to three levels of CeO2 nanoparticle. Of
58
particular importance was their finding that dinitrogen fixation potential was impacted, as has
59
been observed for some other plants (13) (but see Moll et al. (14), who found no change in
60
dinitrogen fixation by clover in response to nano-CeO2 exposure). Since dinitrogen fixation is an
61
important function directly related to ecosystem services (food production and nutrient cycling),
62
the impact could have far-reaching consequences. Prior publications (6,12) report that some
63
measured quantities such as bioaccumulation, oxidative stress, and leaf damage, exhibit
64
monotonic dose-responses. Other endpoints, however, exhibit a non-monotone, zig-zagged or
65
U-shaped dose-response. Stem length, pods and seeds per plant, leaf cover, dry mass, and
66
growth rate exhibit the largest effects for the smallest exposure (0.1 g/kg), while increasing the
ACS Paragon Plus Environment
3
Environmental Science & Technology
Page 4 of 25
67
exposure (to 0.5 g/kg and 1 g/kg) reduces the toxic effect. Effects of the exposure on the plant
68
may interact with the control on dinitrogen fixation to produce the atypical correlations between
69
exposure, oxidative stress, and other measured quantities (6).
70
From a modelling perspective, the non-monotone patterns suggest two competing processes,
71
one of which promotes, while the other mitigates the response. For example, Conolly and Lutz
72
(15) give four instances of non-monotone dose-responses involving competing molecular
73
processes. In the soybean studies described above (6,12), the promoting process is most
74
pronounced for low exposures, and the second process mitigates responses for mid- and high
75
exposures (with the potential for the promoting process to again dominate for large exposures).
76
Noting that endpoints exhibiting ‘standard’ toxicity patterns relate to mechanisms of toxicity (e.g.
77
oxidative stress), while the non-monotone patterns (e.g. growth rate) relate to energy utilization,
78
we hypothesize that understanding the origins of the patterns requires a coherent inclusion of
79
mechanisms governing both energetics and toxicity.
80
We investigate the hypothesis by creating a simple model that is able to integrate
81
measurements relating to both toxicity and energetics. The model differs from previous models
82
describing non-monotonic dose-response curves, in that one of the processes modeled involves
83
inter-organism interactions rather than molecular kinetics. Starting with a bioenergetic module
84
capturing energy utilization for growth and reproduction, we (i) implement a rudimentary
85
symbiotic interaction between the plant and bacteroids, (ii) integrate a toxicokinetic module (16)
86
for cerium bioaccumulation, and (iii) couple the toxicokinetic module to a toxicodynamic module
87
(17) that describes toxic effects on the plant and bacteroids. We fit the model to the measured
88
growth curves, bioaccumulation, and measures of reproductive output. We use data on
89
dinitrogen fixation potential to ground-truth the model and guide discussion of our results.
90
ACS Paragon Plus Environment
4
Page 5 of 25
Environmental Science & Technology
Methods
91 92
The model consists of three integrated modules: a bioenergetic module describing acquisition
93
and utilization of energy, a toxicokinetic module describing the distribution of cerium within the
94
compartments of the energy budget module, and a toxicodynamic module capturing the toxic
95
effects (Figure 1). An overview of model equations, state variables, parameters, and units is
96
provided in Table 1.
97
ACS Paragon Plus Environment
5
Environmental Science & Technology
Page 6 of 25
98 99
Figure 1: Overview of the model with energy budget, toxicokinetic, and toxicodynamic modules. Net
100
production flux (P) is the rate of production of utilizable photosynthesized energy left after subtracting the
101
maintenance needs of the plant, and accounting for the net energy loss or gain from supporting dinitrogen
102
fixation by bacteroids. The production flux is either committed to growth of the above- and below-ground
103
biomass (both proportional to total plant somatic biomass (excluding seeds), W), or reproductive output (S
104
or ∑, see text for definitions), with the ratio of the two commitments determined by Θ. Bioaccumulation
105
due to exposure of the root increases the bioaccumulated toxicant, Q, which affects the production flux by
106
decreasing photosynthesis and/or increasing maintenance, and reducing the interaction with N2-fixing
107
bacteroids (e.g. by instituting bacteroid mortality in response to the toxicant burden).
108 109
Our bioenergetics module tracks the utilization of energy from photosynthesis (Figure 1).
110
Photosynthesis results in gross production of photosynthate, Φ, part of which is used to meet
111
maintenance requirements and provide energy to support dinitrogen fixation by bacteroids. We
112
use the term production flux (P) to represent the rate at which the remaining energy becomes
113
available to support growth and reproduction, with a fraction Θ of the production flux assigned to
114
reproduction, and (1- Θ) to increase in plant biomass (growth). Both reproduction and growth
115
are assumed to be proportional to energy invested. We further assume:
ACS Paragon Plus Environment
6
Page 7 of 25
Environmental Science & Technology
116
1. environmental conditions are constant;
117
2. the ratio of above and below-ground biomass is constant (see Figure S1);
118
3. production flux is proportional to plant biomass;
119
4. bioaccumulation is proportional to the root biomass;
120
5. investment to reproduction starts at a fixed age denoted by tS;
121
6. in the absence of exposure to a toxicant, bacteroid biomass is proportional to below-
122 123 124
ground biomass, but contributes negligibly to the weight of the plant; 7. both the energy demands of the bacteroids and their contributions to the production flux are proportional to their biomass.
125
Assumption 6 ensures that the dynamics of bacteroid biomass can be represented
126
mathematically from the below-ground biomass, while assumption 2 ensures that both above-
127
and below-ground biomass can be represented by a single state variable (plant biomass).
128
Hence, through assumptions 2 and 6, the two state variables of the bioenergetic model (plant
129
biomass and reproductive output) account for four compartments: above-ground and below-
130
ground biomass, reproductive buffer, and bacteroids. Although we do not explicitly include
131
nitrogen dynamics in the model, the parameters linked to assumption 7 allow both positive and
132
negative net impact of N2-fixing bacteroids on production flux. We make no prior assumptions
133
about the impact of bacteroids on plant energy budgets, but infer this impact from the data and
134
model fits. The symbionts may, depending on species and environment, operate as mutualists
135
or parasites.
136
Protein biosynthesis represents a major cost of seed production and is, therefore, important for
137
estimating energy committed to reproduction. Data on seed production collected by the
138
experiment in Priester et al. (12) included seed count for each plant, and protein density of
139
seeds (mg protein per g of seed dry weight). However, total seed protein content could not be
140
determined because total seed weight per plant was not measured.
ACS Paragon Plus Environment
7
Environmental Science & Technology
Page 8 of 25
141
To extract as much information on seeds as possible, we used additional assumptions to create
142
two plausible measures of reproduction. First, by assuming that all seeds are of equal size,
143
weight, and protein density, we could use the recorded seed count, S, as a measure of
144
reproduction. Second, we assumed all seeds have equal mass. Then, we defined scaled seed
145
protein, ∑, as the seed count multiplied by the protein density. The scaled seed protein
146
represents total protein content of seeds scaled to mass of a single seed, thus representing
147
protein content. Since ∑ is the product of the two endpoints (scaled seed protein and seed
148
count), it scores both seed count and protein content.
149
The toxicokinetic module accounts for uptake of toxicant by the plant. Cerium, administered in
150
the form of nano-CeO2 has been shown to bioaccumulate primarily in the root, with some
151
transport to the aboveground biomass (12) including in the form of nano-CeO2 (18) that exerts
152
oxidative stress in the leaves (6). Using a common approach in cases where physico-chemical
153
details of toxicant transport are not known (e.g. Ashauer and Escher (19) and Jager et al. (20)),
154
we assumed that (i) the concentration of bioavailable cerium is proportional to nominal
155
concentration, (ii) toxicant uptake by the plant is a linear function of outside toxicant
156
concentration and the soil-plant interface area (which, in turn, is proportional to root biomass –
157
giving rise to Assumption 4 above), and (iii) the bioaccumulated toxicant is evenly distributed in
158
the root, with no transport to above-ground biomass.
159
The toxicodynamic module has two sub-modules that capture effects of bioaccumulated toxicant
160
on the plant and on the bacteroids. The plant sub-module (fP) reduces the production flux, while
161
the bacteroid sub-module (fR) reduces the total activity of bacteroids and their net contribution to
162
the production flux (shown to be negative during parameter estimation). While specifying
163
functional forms for the toxicodynamic sub-modules, we focused on minimizing the number of
164
parameters while keeping the overall response to exposure flexible yet realistic. The functional
165
forms needed to have no effect when there is no exposure (i.e. fP,R(0)=1), and converge to
ACS Paragon Plus Environment
8
Page 9 of 25
Environmental Science & Technology
166
maximum effect for large internal cerium concentration. Hill functions satisfy the requirements,
167
and are often utilized when investigating concentration-dependent effects of biological systems.
168
We used Hill functions to construct the toxicodynamic sub-modules presented in the main text
169
(Table 1). In the SI, we assess sensitivity of our analysis on the choice of functional form of the
170
toxicodynamic module by considering four alternative functional forms featuring (i) constant
171
negative effect upon exposure, (ii) exponential decay as a function of bioaccumulated toxicant
172
concentration, (iii) exponential decay towards a non-zero asymptote, and (iv) logarithmic
173
response. A total of 10 combinations of functional forms for the two sub-modules were
174
investigated (SI, Table S1).
175
Additional analysis using the original choice of toxicodynamc functions was performed to
176
ascertain the sensitivity of the unimodal effect to model parameters. We used two metrics to
177
characterize the strength of the unimodal response: the magnitudes of the initial decline, and of
178
the subsequent recovery. Details are in section “Parameter Sensitivity Analysis” of the SI.
179
Parameter estimation
180 181
The parameters in Table 1 were estimated by fitting to the following data from Priester et al.
182
(12): final biomass measurements of the leaf, stem, root, and nodule biomass, final
183
concentrations of cerium in roots and leaves, timing of flowering, final seed count, and time
184
series of plant height. Additionally, we used data on final fraction of protein in seeds from the
185
same experiments (6).
186
The fraction of below-ground biomass (qW) was estimated as the mean of final ratios of below-
187
ground and total dry weights (without seed weight). Time of maturation (ts) was taken to be
188
equal to the date of first observation of flowers. The time series used as a proxy for growth
189
(stem height) was converted to the state variable (biomass, W) using parameter δ calculated by
ACS Paragon Plus Environment
9
Environmental Science & Technology
Page 10 of 25
190
least squares fitting of the total biomass to final height measurements (Figure S1, bottom left
191
plot). The average of the initial plant height measurements for each treatment was used as the
192
initial height for all plants in that treatment in simulations, and converted to W using δ. The
193
toxicant partitioning coefficient (vQ) was estimated as the mean of the ratios of measured final
194
toxicant concentrations in leaf and root biomass using data for medium and high exposures (the
195
low exposure data were not used because bioaccumulation was extremely low). Note that
196
photosynthate (Φ) is only implicitly used, and that units of Φ (photosynthate units, ups) can be
197
set without any loss of generality. Since only the linear combination of yW and φ is used, we
198
choose such ups that φyW=1 ups(J day)-1.
199
Models were fitted to data by maximizing likelihoods while assuming deviations between models
200
and data were due to additive normally distributed error. First, growth-related parameters, pT
201
and Θ. were estimated from stem length data series. Parameters of the toxicokinetic and
202
toxicodynamic modules (specific to each module), reproductive yield (yS and y∑), and the net
203
energetic effect of dinitrogen fixation to the production flux (in terms of proportion, qR), were
204
estimated using growth series of exposed plants, data on bioaccumulation, and the reproductive
205
output by maximizing a sum of (1) log-likelihood function for growth series, and (2) log-likelihood
206
function for endpoints (bioaccumulation and a reproductive output). Both log-likelihood functions
207
were based on additive normally distributed error, with optimizations performed using the
208
Nelder-Mead simplex algorithm.
209
Note that growth data only allow estimates of the total production flux, so they could not be used
210
to fit the net contribution of bacteroids to plant growth, qR. Importantly, however, responses of
211
growth and reproduction to exposure allowed us to differentiate between contributions of
212
bacteroids and the plant to the production flux.
ACS Paragon Plus Environment
10
Page 11 of 25
Environmental Science & Technology
Results
213 214
Our hypothesis on the type of the symbiotic interaction is sufficient to explain the
215
observed patterns in growth, bioaccumulation, and reproduction. The model fits presented
216
in the first three plot columns of Figure 2 (titles ‘Growth’, ‘Bioaccumulation’, and ‘Reproduction’)
217
illustrate that the model is able to capture important features of the observed dynamics:
218
•
non-monotonic (negative) effect of exposure on plant (stem height) growth that is stronger for low exposures than for higher exposures,
219 220
•
bioaccumulation pattern that increases monotonically with exposure, and
221
•
non-monotonic pattern (lowest exposure begets the strongest effect) of reproductive
222
responses to exposure.
223
The reproductive patterns were simulated using a single set of initial conditions for all
224
exposures. The agreement between the data and the model improves further when the initial
225
condition is allowed to vary to match initial conditions used for the growth curves (Figure S3).
226
227 228
Figure 2: Model fits of the impact of nano-CeO2 exposure on soybean growth, bioaccumulation, and
229
reproduction, and predictions of bacteroid activity. Each row shows data and model runs for growth (first
230
column), bioaccumulation (second column), reproduction (third column), and predicted N2-fixing bacteroid
231
activity (fourth column). Top row has been simulated using scaled seed protein, and the second row using
ACS Paragon Plus Environment
11
Environmental Science & Technology
Page 12 of 25
232
seed count as a measure of reproductive output. Toxicodynamic modules listed in Table 1 (with only two
233
free parameters) have been used. Data plotted in the first three columns were used to fit the model:
234
growth curves (first column), cerium bioaccumulation (second column), and two measures of reproduction
235
(third column): recorded seed count (top), and scaled seed protein (bottom). The last column compares
236
predicted bacteroid activity with data on measured N2 fixation potential (normalized to root nodule dry
237
biomass (12)) as a proportion of the largest mean. The black curve represents model predictions of root
238
nodule bacteroid activity (normalized to maximum value) as a function of exposure. Blue lines, stars:
239
control (no exposure). Red lines, circles: low exposure (0.1 g/kg). Green lines, triangles upwards: medium
240
exposure (0.5 g/kg). Cyan lines, triangles downwards: high exposure (1 g/kg). Black lines: simulations.
241
In the absence of exposure, contribution of root nodule symbioses to plant growth is
242
negative (for particular experimental conditions). Although it is impossible to use only data
243
for the control to distinguish relative contributions to the production flux of the plant’s own
244
assimilation and of the net contribution from bacteroid activity, the data on toxicity help
245
distinguish the two. In particular, the increase in plant growth and reproduction observed at the
246
highest relative to the intermediate exposure level can only be achieved for negative
247
contributions of the symbioses to the production flux (qR0), our model would predict
346
that all toxicity patterns should be monotonic. However, mechanistic insight into the transition
347
from parasitism to mutualism would require a model that recognizes explicitly the nitrogen
348
fluxes, for example by invoking the formalism of dynamic energy budget theory as in one study
349
of the symbiosis of corals and their symbionts (29).
350
All legume-bacteroid symbioses are clearly potentially susceptible to the environmentally-
351
induced toxicity buffering mediated by the symbiotic interactions modeled here, but other similar
352
symbiotic systems may be susceptible as well. Plants and ectomycorrhizal fungi respond to
353
manipulation of the fungal community (30) and plant growth could thereby be buffered against
354
toxicity in environments where a fungal species (directly or indirectly) competes with the plant
355
for specific nutrients. Indeed, buffering of toxicity for a focal species through indirect effects
ACS Paragon Plus Environment
16
Page 17 of 25
Environmental Science & Technology
356
mediated by interaction with natural enemies is common in nature (31). We have here
357
demonstrated that similar responses are likely when a host organism interacts with its endo-
358
symbionts.
359
Supporting Information: cover sheet; argumentation to support height as a measure of weight;
360
list of alternative toxicodynamic modules; simulations for all toxicodynamic modules with a
361
unique initial condition; simulations for all toxicodynamic modules with interpolated initial
362
conditions; parameter values; parameter sensitivity analysis; and toxicokinetics and
363
toxicodynamics.
364
ACKNOWLEDGEMENTS
365
We thank J.H. Priester for providing data in digital form and helping with useful information and
366
insights, Y. Wang and J. Rohr for valuable discussions and advice, and T. Jager for sharing
367
statistical programs. This research was primarily funded by the National Science Foundation
368
(NSF) and the U.S. Environmental Protection Agency (EPA) under Cooperative Agreements
369
DBI-0830117 and 1266377 (to P.A.H and R.M.N.) and by the US Environmental Protection
370
Agency under STAR grant 835797 to RMN and EM. Additional funding was provided by the
371
Croatian National Science Foundation (HRZZ) under the project 2202-ACCTA. Any opinions,
372
findings, and conclusions expressed in this material are those of the author(s) and do not
373
necessarily reflect those of the NSF, the EPA, or the HRZZ. This work has not been subjected
374
to EPA review and no official endorsement should be inferred.
375
REFERENCES
376
(1)
Holden, P. A.; Nisbet, R. M.; Lenihan, H. S.; Miller, R. J.; Cherr, G. N.; Schimel, J. P.;
377
Gardea-Torresdey, J. L. Ecological nanotoxicology: integrating nanomaterial hazard
378
considerations across the subcellular, population, community, and ecosystems levels. Acc.
379
Chem. Res. 2013, 46 (3), 813–822.
ACS Paragon Plus Environment
17
Environmental Science & Technology
380
(2)
Page 18 of 25
Xia, T.; Malasarn, D.; Lin, S.; Ji, Z.; Zhang, H.; Miller, R. J.; Keller, A. A.; Nisbet, R. M.;
381
Harthorn, B. H.; Godwin, H. A.; et al. Implementation of a multidisciplinary approach to
382
solve complex nano EHS problems by the UC Center for the Environmental Implications of
383
Nanotechnology. Small Weinh. Bergstr. Ger. 2013, 9 (9–10), 1428–1443.
384
(3)
2006, 311 (5761), 622–627.
385 386
Nel, A.; Xia, T.; Mädler, L.; Li, N. Toxic Potential of Materials at the Nanolevel. Science
(4)
Priester, J. H.; Stoimenov, P. K.; Mielke, R. E.; Webb, S. M.; Ehrhardt, C.; Zhang, J. P.;
387
Stucky, G. D.; Holden, P. A. Effects of Soluble Cadmium Salts Versus CdSe Quantum
388
Dots on the Growth of Planktonic Pseudomonas aeruginosa. Environ. Sci. Technol. 2009,
389
43 (7), 2589–2594.
390
(5)
Kaweeteerawat, C.; Ivask, A.; Liu, R.; Zhang, H.; Chang, C. H.; Low-Kam, C.; Fischer, H.;
391
Ji, Z.; Pokhrel, S.; Cohen, Y.; et al. Toxicity of metal oxide nanoparticles in Escherichia coli
392
correlates with conduction band and hydration energies. Environ. Sci. Technol. 2015, 49
393
(2), 1105–1112.
394
(6)
Priester, J. H.; Moritz, S. C.; Espinosa, K.; Ge, Y.; Wang, Y.; Nisbet, R.M.; Schimel, J.P.;
395
Goggi, A.S.; Gardea-Torresdeyc, J.L.; Holden, P.A. Damage assessment for soybean
396
cultivated in soil with either CeO2 or ZnO manufactured nanomaterials. Sci. Total Environ.
397
2017, 579, 1756–1768.
398
(7)
van Leeuwen, I. M. M. van; Vera, J.; Wolkenhauer, O. Dynamic energy budget approaches
399
for modelling organismal ageing. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2010, 365
400
(1557), 3443–3454.
401
(8)
Klanjscek, T.; Nisbet, R. M.; Priester, J. H.; Holden, P. A. Modeling Physiological
402
Processes That Relate Toxicant Exposure and Bacterial Population Dynamics. PLOS ONE
403
2012, 7 (2), e26955.
ACS Paragon Plus Environment
18
Page 19 of 25
404
Environmental Science & Technology
(9)
Klanjscek, T.; Nisbet, R. M.; Priester, J. H.; Holden, P. A. Dynamic energy budget
405
approach to modeling mechanisms of CdSe quantum dot toxicity. Ecotoxicol. Lond. Engl.
406
2013, 22 (2), 319–330.
407 408 409
(10) Klanjscek, T.; Muller, E. B.; Nisbet, R. M. Feedbacks and tipping points in organismal response to oxidative stress. J. Theor. Biol. 2016, 404, 361–374. (11) Du, W.; Tan, W.; Peralta-Videa, J. R.; Gardea-Torresdey, J. L.; Ji, R.; Yin, Y.; Guo, H.
410
Interaction of metal oxide nanoparticles with higher terrestrial plants: Physiological and
411
biochemical aspects. Plant Physiol. Biochem. 2017, 110, 210–225.
412
(12) Priester, J. H.; Ge, Y.; Mielke, R. E.; Horst, A. M.; Moritz, S. C.; Espinosa, K.; Gelb, J.;
413
Walker, S. L.; Nisbet, R. M.; An, Y.-J.; et al. Soybean susceptibility to manufactured
414
nanomaterials with evidence for food quality and soil fertility interruption. Proc. Natl. Acad.
415
Sci. 2012, 109 (37), 14734–14735.
416 417 418
(13) Dimkpa, C. O. Can nanotechnology deliver the promised benefits without negatively impacting soil microbial life? J. Basic Microbiol. 2014, 54 (9), 889–904. (14) Moll, J.; Gogos, A.; Bucheli, T. D.; Widmer, F.; van der Heijden, M. G. A. Effect of
419
nanoparticles on red clover and its symbiotic microorganisms. J. Nanobiotechnology 2016,
420
14, 36.
421
(15) Conolly, R. B.; Lutz, W. K. Nonmonotonic Dose-Response Relationships: Mechanistic
422
Basis, Kinetic Modeling, and Implications for Risk Assessment. Toxicol. Sci. 2004, 77 (1),
423
151–157.
424
(16) Jager, T.; Heugens, E. H. W.; Kooijman, S. A. L. M. Making Sense of Ecotoxicological Test
425
Results: Towards Application of Process-based Models. Ecotoxicology 2006, 15 (3), 305–
426
314.
427 428
(17) Boelsterli, U. Mechanistic Toxicology: The molecular basis of how chemicals disrupt biological targets; 2003; pp 258–263.
ACS Paragon Plus Environment
19
Environmental Science & Technology
429
Page 20 of 25
(18) Hernandez-Viezcas, J. A.; Castillo-Michel, H.; Andrews, J. C.; Cotte, M.; Rico, C.; Peralta-
430
Videa, J. R.; Ge, Y.; Priester, J. H.; Holden, P. A.; Gardea-Torresdey, J. L. In Situ
431
Synchrotron X-ray Fluorescence Mapping and Speciation of CeO2 and ZnO Nanoparticles
432
in Soil Cultivated Soybean (Glycine max). ACS Nano 2013, 7 (2), 1415–1423.
433
(19) Ashauer, R.; Escher, B. I. Advantages of toxicokinetic and toxicodynamic modelling in
434
aquatic ecotoxicology and risk assessment. J. Environ. Monit. JEM 2010, 12 (11), 2056–
435
2061.
436
(20) Jager, T.; Albert, C.; Preuss, T. G.; Ashauer, R. General Unified Threshold Model of
437
Survival - a Toxicokinetic-Toxicodynamic Framework for Ecotoxicology. Environ. Sci.
438
Technol. 2011, 45 (7), 2529–2540.
439
(21) Amarger, N.; Mariotti, A.; Mariotti, F.; Durr, J. C.; Bourguignon, C.; Lagacherie, B. Estimate
440
of symbiotically fixed nitrogen in field grown soybeans using variations in 15N natural
441
abundance. Plant Soil 1979, 52 (2), 269–280.
442
(22) Manguiat, I. J.; Mendoza, D. M.; Perez, A. M.; Yoneyama, T. Comparison of 15N natural
443
abundance and difference methods for estimating N2 fixation of soybeans grown in a
444
tropical soil. Soil Sci. Plant Nutr. 1988, 34 (4), 593–604.
445
(23) Zhu, B.; Cheng, W. Nodulated soybean enhances rhizosphere priming effects on soil
446
organic matter decomposition more than non-nodulated soybean. Soil Biol. Biochem. 51,
447
56–65.
448
(24) Kohl, D. H.; Shearer, G.; Harper, J. E. Estimates of N2 Fixation Based on Differences in
449
the Natural Abundance of 15N in Nodulating and Nonnodulating Isolines of Soybeans 1.
450
Plant Physiol. 1980, 66 (1), 61–65.
451 452
(25) Djordjevic, M. A.; Gabriel, D. W.; Rolfe, B. G. Rhizobium-The Refined Parasite of Legumes. Annu. Rev. Phytopathol. 1987, 25 (1), 145–168.
ACS Paragon Plus Environment
20
Page 21 of 25
Environmental Science & Technology
453
(26) Salon, C.; Jean-Christophe, A.; Larmure, A.; Ourry, A.; Prudent, M.; Voisin, A.-S. Plant N
454
Fluxes and Modulation by Nitrogen, Heat and Water Stresses: A Review Based on
455
Comparison of Legumes and Non Legume Plants. 2011.
456 457 458
(27) Abd-Alla, M. H.; Issa, A. A.; Ohyama, T. Impact of Harsh Environmental Conditions on Nodule Formation and Dinitrogen Fixation of Legumes. 2014. (28) Peralta-Videa, J. R.; Hernandez-Viezcas, J. A.; Zhao, L.; Diaz, B. C.; Ge, Y.; Priester, J.
459
H.; Holden, P. A.; Gardea-Torresdey, J. L. Cerium dioxide and zinc oxide nanoparticles
460
alter the nutritional value of soil cultivated soybean plants. Plant Physiol. Biochem. PPB
461
2014, 80, 128–135.
462
(29) Muller; Doyle, F. J.; Nisbet, R. M.; Edmunds, P.; Kooijman, S. Dynamic energy budgets of
463
syntrophic symbiotic relationships between heterotrophic hosts and photoautotrophic
464
symbionts. Comp. Biochem. Physiol. – Mol. Integr. Physiol. Suppl. 2009, 153A, S145–
465
S145.
466 467 468 469
(30) Moeller, H. V.; Peay, K. G. Competition-function tradeoffs in ectomycorrhizal fungi. PeerJ 2016, 4, e2270. (31) Fleeger, J. W.; Carman, K. R.; Nisbet, R. M. Indirect effects of contaminants in aquatic ecosystems. Sci. Total Environ. 2003, 317 (1–3), 207–233.
470 471 472
ACS Paragon Plus Environment
21
Environmental Science & Technology
473
Page 22 of 25
Table 1: Summary of model dynamics.
MODEL EQUATIONS State variable Total plant dry biomass, W (g) Seed count, S (count), or Scaled seed protein (∑)
Dynamics
Parameters and units
dW = yW (1 − Θ) P dt
yW - growth yield (g/J)
dS = yS ΘP dt
yS - reproductive yield (seeds/J) yΣ - scaled seed protein yield in
OR
milligrams of protein per Joule time
dΣ = yΣ Θ P dt Bioaccumulated cerium in the plant, Q (mg of
gram of plant dry mass
dQ = vQ qW X AW dt
( mg Jg )
vQ - bioaccumulation rate constant
mg(Ce) g(root) day g (CeO2 ) kg ( soil )
cerium)
qW - fraction of below-ground biomass in total biomass (g(root)/g(plant))
X A - environmental toxicant concentration (g(CeO2)/kg(soil)) FUNCTIONALS Gross production of photosynthate, Φ
Φ = ϕW
φ - biomass-specific gross production rate (ups/(day g))
ACS Paragon Plus Environment
22
Page 23 of 25
Environmental Science & Technology
(ups/day) Net production flux, P
P = pT
(J/day)
fW + f R qR Φ (1 + qR )
pT –net production yield (J/ups) qR – net contribution or detraction to the production flux of supporting bacteroids and dinitrogen fixation (n.d.)
Fraction of P dedicated to reproduction (dimensionless)
Below-ground cerium
θ - reproductive switch rate (day-1) t < tS 0 Θ = θ (t − t S ) tS ≤ t ≤ θ −1 + tS , tS – age at the onset of reproduction otherwise 1
(
(day)
CB =
concentration, CB (mg
qQ Q
qQ – cerium partitioning coefficient
qW W
between above- and below-ground
Ce/g biomass) Reduction of
)
biomass (n.d.)
fP =
photosynthesis and/or increase in plant
1 γP
C 1+ B CP 50
.
CP50 – below-ground toxicant concentration (proportional to total concentration) for which the
maintenance in response
production (P) is reduced by 50%
to the burden (CB)
(mg/g)
(dimensionless)
γ P - strength of the effect, set to γ P = 1 in fitting (n.d.)
Reduction of net energetic cost (or benefit) of dinitrogen
fR =
1 γR
C 1+ B CR 50
.
CR50 – below-ground cerium concentration for which 50% of bacteroids die (mg/g)
ACS Paragon Plus Environment
23
Environmental Science & Technology
fixation in response to
γ R - strength of the effect,
the burden (CB)
set to γ R = 2 in fitting (n.d.)
Page 24 of 25
(dimensionless) Although ten different sets of the toxicodynamic modules (fP and fR) were investigated (Table S1, results shown in Figure S2 and Figure S3), only modules used to generate Figure 2 are listed below; for the nine other combinations of toxicodynamic modules, see Table S1. The units of reproductive yield listed in the table apply only when seeds are considered as the reproductive endpoint. Parameter values for the toxicodynamic modules used for Figure 2 are given in Table S2. The abbreviation ‘ups’ denotes (proprietary) units of photosynthate, and ‘n.d.’ denotes ‘non-dimensional’.
ACS Paragon Plus Environment
24
Page 25 of 25
Environmental Science & Technology
TOC/Abstract art 83x47mm (300 x 300 DPI)
ACS Paragon Plus Environment