Human Medicinal Agents from Plants - ACS Publications - American

applied rapidly to "fast-track" natural product leads as never before. The structural determination of novel plant constituents can now be per- formed...
0 downloads 0 Views 238KB Size
Preface

Downloaded by 80.82.77.83 on April 19, 2018 | https://pubs.acs.org Publication Date: May 5, 1993 | doi: 10.1021/bk-1993-0534.pr001

NATURAL SUBSTANCES ONCE SERVED AS THE SOURCES of

all drugs and medicinal agents, and higher plants provided most of these therapeutic entities. The serious and systematic studty of the chemistry and biological properties of natural products, which commenced in earnest at the start of the 19th century, has been a major factor in the development of modern synthetic organic chemistry. As the many interesting biologically active compounds described in the various chapters of this book exemplify, plants not only continue to retain their historical significance as important sources of new drugs but also are extremely useful as sources of "lead" compounds for structural modification and optimization that can also be employed as specific probes in biochemical studies. For all of these reasons, biologically active constituents of plants have served as sources of inspiration for generations of medicinal and organic chemists. In the foreseeable future, plants will no doubt continue to provide humankind with valuable agents of potential use in the investigation, prevention, and treatment of diseases such as cancer, acquired immunodeficiency syndrome (AIDS) and other viral infections, malaria, and schistosomiasis; disorders of the cardiovascular and central nervous systems; and many others. Powerful new chemical and biological technologies now permit receptor isolation and characterization so that drug design principles can be applied rapidly to "fast-track" natural product leads as never before. The structural determination of novel plant constituents can now be performed with minimal delay by using a combination of sophisticated spectroscopic and X-ray crystallographic techniques. High-throughput automated bioassays are widely available, so that a detailed biological profile can be obtained easily on just a few milligrams of a natural product. Thus, there is every indication that the direct utility and promise of plants for the improvement of human health will continue well into the 21st century. The publication of this volume is timely because during the closing stages of its preparation, the plant-derived drug taxol was accorded final approval by the U.S. Food and Drug Administration (FDA) for the treatment of refractory ovarian cancer [Holden, C Science (Washington, D.C.) 1993, 259, 181]. Although semisynthetic natural products have recently been approved, taxol is the first naturally occurring plant-derived drug product to gain F D A approval in more than a quarter of a century. Taxol xi Kinghorn and Balandrin; Human Medicinal Agents from Plants ACS Symposium Series; American Chemical Society: Washington, DC, 1993.

Downloaded by 80.82.77.83 on April 19, 2018 | https://pubs.acs.org Publication Date: May 5, 1993 | doi: 10.1021/bk-1993-0534.pr001

has attracted widespread interest in the United States not only for its therapeutic potential but also because of the need to preserve the native stands of the Pacific yew, the plant of origin of taxol, and at the same time ensure an adequate supply of the drug. Several of the chapters in this book touch on the crucial naturalproduct supply issue; information is also provided on a number of compounds that hold the potential for being the next approved plant-derived drugs after taxol. Contributions to this book address each of the various aspects involved in plant-derived drug discovery and development, including botany and taxonomy, phytochemistry, biological evaluation, and regulation. Attention is paid to the value of the tropical rain forests in affording important biologically active compounds, as well as to the urgent need to avoid further species extinction and consequent loss of biodiversity, which threaten our future ability to discover new drugs from these parts of the world. Current research endeavors in laboratories in academic, governmental, and large and small industrial settings are spotlighted. A major portion of the book is devoted to accounts of promising research results and current research strategies in the discovery of plant drugs for the treatment of cancer, AIDS, malaria, and other diseases. Some recent initiatives of the U.S. government in supporting plant drug discovery are included. This book shows that excellent progress in finding new therapeutic entities from plants is being made not only in North America but also in countries in western Europe, and in Japan, India, and China. The symposium on which this book is based was generously supported by the Division of Agricultural and Food Chemistry of the American Chemical Society and was cosponsored by the American Society of Pharmacognosy and the Society for Economic Botany. We are very grateful to the following companies, which made generous donations in support of the symposium: Bristol-Myers Squibb Pharmaceutical Research Institute; Glaxo Group Research Ltd.; Murdock Healthcare, Inc.; NPS Pharmaceuticals, Inc.; Phytopharm Ltd.; Schering-Plough Research Institute; Shaman Pharmaceuticals, Inc.; and Wyeth-Ayerst Laboratories. We thank the scientists who served as referees for the chapters in this book. Finally, during the course of completing this volume, we were very saddened to learn of the passing of one of the symposium participants and chapter authors, Daniel L . Klayman. A . DOUGLAS KINGHORN Program for Collaborative Research in the Pharmaceutical Sciences College of Pharmacy University of Illinois at Chicago Chicago, I L 60612

MANUEL F. BALANDRIN NPS Pharmaceuticals, Inc. University of Utah Research Park Salt Lake City, UT 84108

March 23, 1993 xii Kinghorn and Balandrin; Human Medicinal Agents from Plants ACS Symposium Series; American Chemical Society: Washington, DC, 1993.