74 Hydrogen Generation by Steam Reformation of n-Hexane over Zeolite Catalysts C. S. BROOKS Downloaded by UNIV OF PITTSBURGH on January 21, 2016 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch074
United Aircraft Research Laboratories, East Hartford, Conn. 06108
High-activity nickel and cobalt catalysts for hydrogen generation by the steam—hydrocarbon reforming reaction were prepared by ion exchange from synthetic zeolites. The activity of the catalysts for steam-reforming of hydrocarbons was evaluated with n-hexane at 400° to 500°C. The specific reforming activity exceeded by factors of 2 to 30 that obtained for an active commercial nickel-on-alumina zeolite under comparable conditions. The superior activity was attributed to the high state of nickel dispersion in the catalysts prepared by ion exchange. The cobalt zeolites had comparable initial activity but rapidly lost their reforming activity owing to oxidation with reactant steam. Mordenite and faujasite zeolite catalysts with nickel contents less than 4 wt% demonstrated the highest specific reforming activity.
/
i
T h e successful m e t h a n e r e f o r m i n g catalysts (2) A
are p r i m a r i l y n i c k e l -
o n - a l u m i n a w i t h r e l a t i v e l y h e a v y m e t a l l o a d i n g s ( ^ 15 w t % ) .
The
p r i n c i p a l causes o f catalyst d e g r a d a t i o n i n the r e f o r m i n g of l i q u i d h y d r o carbons seem to b e loss o f c a t a l y t i c a l l y active m e t a l surface a n d h e a v y c a r b o n d e p o s i t i o n . It w o u l d appear f r u i t f u l to e x a m i n e the
difference
b e t w e e n m e t h a n e a n d h i g h e r h y d r o c a r b o n r e f o r m i n g a n d the properties d e s i r e d i n a s t e a m - r e f o r m i n g catalyst. T h e o b v i o u s difference i n the ref o r m i n g of l i q u i d h y d r o c a r b o n s a n d of m e t h a n e is that the d e s i r e d catalyst s h o u l d i n c o r p o r a t e efficiency for C — C b o n d r u p t u r e w i t h a m i n i m u m of c o k i n g . T h e zeolites h a v e several u n i q u e s t r u c t u r a l features w h i c h p r o v i d e t h e m w i t h s p e c i a l interest as catalyst substrates. T h e s e features are extensive i n t r a l a t t i c e p o r e v o l u m e , a p o r e size of m o l e c u l a r d i m e n s i o n s , a l a r g e p o p u l a t i o n of c a t i o n exchange sites, a n d the l o c a t i o n of the ex426
In Molecular Sieve Zeolites-II; Flanigen, Edith M., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
74.
Hydrogen
BROOKS
Generation
by Steam
427
Reformation
c h a n g e c a t i o n w i t h i n the i n t r a l a t t i c e p o r e v o l u m e . T h e s e s t r u c t u r a l fea tures are of s p e c i a l interest i n v a r i o u s h y d r o c a r b o n reactions,
notably
h y d r o c a r b o n — w a t e r interactions, because of the p o s s i b i l i t i e s f o r
surface
reactions w i t h i n a lattice cage, p r o v i d i n g a n a c i d substrate to f a c i l i t a t e C — C b o n d r u p t u r e , a n d i n t r o d u c i n g c a t a l y t i c metals i n a h i g h l y disperse state o n the c r y s t a l lattice surface a n d w i t h i n the p o r e v o l u m e cages of the zeolites.
Downloaded by UNIV OF PITTSBURGH on January 21, 2016 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch074
Experimental Selection of Zeolites. T h e selected zeolites consisted of the 2 p r i n c i p a l c r y s t a l l o g r a p h i c types—i.e., m o r d e n i t e a n d f a u j a s i t e — w h i c h p r o v i d e an i n t e r e s t i n g r a n g e of i n t r a c r y s t a l l i n e cage v o l u m e s of 0.29 a n d 0.54 c m p e r c m z e o l i t e , r e s p e c t i v e l y ; net charges p e r surface o x y g e n of 0.083 a n d 0.214 e u n i t s , r e s p e c t i v e l y ; a n d free c a v i t y diameters of a b o u t 9 a n d 11.8 A , respectively ( 3 ) . 3
3
A faujasite z e o l i t e , s u c h as L i n d e 1 3 X ( U n i o n C a r b i d e ) , has the e m p i r i c a l f o r m u l a N a e ( A K > ) ( S i 0 ) ιοβ ' 264 H 0 w h i c h c o r r e s p o n d s to a S i 0 / A 1 0 r a t i o of 1.23 a n d a c a t i o n e x c h a n g e c a p a c i t y ( C E C ) of 4.7 m e q / g r a m . A m o r d e n i t e z e o l i t e , s u c h as N o r t o n s o d i u m Z e o l o n ( N o r t o n C o . ) , has a n e m p i r i c a l f o r m u l a N a ( A 1 0 ) ( S i 0 ) o * 24 H 0 w h i c h corresponds to a S i 0 / A 1 0 r a t i o of 5.0 a n d a C E C of 2.4 m e q / g r a m . C l a y b i n d e r to the extent of 1 7 % was u s e d w i t h L i n d e 13X. T h e N o r t o n Z e o l o n a n d the L i n d e 1 3 X w e r e i n the f o r m of 1 / 1 6 - i n c h c y l i n d r i c a l pellets. T h e L i n d e Y z e o l i t e ( S K 4 0 0 ) is also a faujasite t y p e b u t w i t h a greater S i : A l r a t i o ( > 1.5) t h a n the S i : A l ratio of a b o u t 1.23 c h a r acteristic o f the X z e o l i t e . T h e Y z e o l i t e h a d a C E C of 4.04 m e q / g r a m a n d w a s u s e d i n the f o r m of 3 / 1 6 - i n c h c y l i n d r i c a l pellets. A d d i t i o n a l details o n t h e p r o p e r t i e s of these zeolites are a v a i l a b l e i n the p u b l i s h e d literature (3,4,14). 8
2
2
8 6
2
2
2
8
2
2
8
2
4
2
2
Catalyst Preparation. C a t a l y s t p r e p a r a t i o n consisted of the ex c h a n g e of n i c k e l or c o b a l t nitrate f o r the s o d i u m c a t i o n . R a t i o s of n i c k e l o r c o b a l t to s o d i u m of 20:1 w e r e u s e d f o r m a x i m u m exchange a n d the i o n e x c h a n g e d z e o l i t e pellets w e r e l e a c h e d w i t h d e i o n i z e d w a t e r . Cat alyst p r e p a r a t i o n s w e r e r e d u c e d f o r 16 hours at 4 0 0 ° C i n a stream of h y d r o g e n . S i m i l a r p r o c e d u r e s h a v e b e e n r e p o r t e d (5, 6). Catalyst Characterization. C h e m i c a l analyses, x-ray d i f f r a c t i o n a n alyses, a n d gas a d s o r p t i o n p r o c e d u r e s w e r e u s e d to c h a r a c t e r i z e the c o m p o s i t i o n , c r y s t a l l o g r a p h i c character, a n d surface structure of the n i c k e l a n d c o b a l t z e o l i t e catalyst p r e p a r a t i o n s . T h e c h e m i c a l a n d x - r a y p r o c e d u r e s w e r e s t a n d a r d m e t h o d s w i t h the latter d e s c r i b e d elsewhere (11). C a r b o n m o n o x i d e c h e m i s o r p t i o n measurements p r o v i d e u s e f u l estimates of the surface c o v e r e d b y n i c k e l atoms f r o m the z e o l i t e s u b strate (10). Hydrocarbon Steam Reforming Tests in Microcatalytic Reactor. C a t a l y s t p e r f o r m a n c e f o r steam r e f o r m i n g of n-hexane to p r o d u c e C H , C O , C 0 , a n d H at 4 0 0 ° to 500 ° C w a s e v a l u a t e d i n a stainless steel reactor w h i c h has b a s i c a l l y the same i n s t r u m e n t a t i o n u s e d p r e v i o u s l y f o r o x i d a t i o n catalyst studies (9, 12). T h e p r i n c i p a l m o d i f i c a t i o n s consisted 4
2
2
In Molecular Sieve Zeolites-II; Flanigen, Edith M., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
428
M O L E C U L A R SIEVE ZEOLITES
II
of the i n t r o d u c t i o n o f a d u a l i n j e c t i o n m e t e r i n g p u m p , a v a p o r i z e r , a v a p o r m i x e r , a n d a w a t e r c o o l e d condensate trap. C a t a l y s t charges r a n g e d f r o m 1-12 grams a n d w e r e interspersed t h r o u g h 1 / 8 - i n c h a l u m i n a pellets ( N o r t o n S u p p o r t S A 5 1 0 1 ) to f o r m the catalyst b e d ( 3 5 c m ) . T h e u n c o n v e r t e d n-hexane was c o l l e c t e d a n d w e i g h e d after the condensate w a s r e t r i e v e d f r o m t h e condensate t r a p . E f f l u e n t gases w e r e a n a l y z e d b y c h r o m a t o g r a p h y a n d mass s p e c t r o m e t r y for a l l v a p o r components u p to C hydrocarbons. 3
6
Downloaded by UNIV OF PITTSBURGH on January 21, 2016 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch074
Discussion Catalyst Composition. C h e m i c a l c o m p o s i t i o n s o f t y p i c a l n i c k e l a n d c o b a l t zeolites are s u m m a r i z e d i n T a b l e I . B a s e d o n the t o t a l C E C de r i v e d f r o m the i n i t i a l s o d i u m c o m p o s i t i o n , 23 t o 3 7 % 8.4%
o f the Z e o l o n a n d
o f the L i n d e S K 4 0 0 exchange sites are o c c u p i e d b y n i c k e l cations.
In Zeolon, 55%
o f the exchange sites are o c c u p i e d b y c o b a l t cations. A
r a t i o o f 1.41:1 for c o b a l t to n i c k e l o n the Z e o l o n exchange sites r e s u l t e d where n i c k e l and cobalt were exchanged under comparable Table I. Catalyst N a Zeolon N i - C o Zeolon N i ( N a ) Zeolon C o ( N a ) Zeolon Linde SK400 a 6
conditions.
Chemical Composition of Zeolites CEC,
Wt%
Cation Na+ Ni +-Co Ni + Co Na+-Ni + 2
2
2 +
2
2 +
5.33° 1.52-2.15* 3.24 3.77 8.7-0.76* δ
δ
Meq/Gram
2.32 0.52 N i + - 0 . 7 3 C o 1.10 1 28 3.78 N a + - 0 . 2 6 N i + 2
2 +
2
Atomic absorption. Wet analysis. Crystallographic Character of Zeolites. I t is essential f o r
adequate
c h a r a c t e r i z a t i o n o f the zeolite catalyst p r e p a r a t i o n s that v e r i f i c a t i o n o f s t r u c t u r a l i n t e g r i t y b e m a d e b y x - r a y d i f f r a c t i o n analysis.
Considerable
i n f o r m a t i o n o n the structure o f zeolites, s u c h as 1 3 X , has b e e n p u b l i s h e d (5, 6). X - r a y d i f f r a c t i o n analyses o f several o f the s o d i u m , n i c k e l , a n d c o b a l t zeolites e s t a b l i s h e d the p r i n c i p a l i n t e r p l a n a r d-spacings i n A n g s t r o m units a n d the r e l a t i v e intensity, l O O I / I o , o f these lines. T h e p r i n c i p a l conclusions w a r r a n t e d b y these x-ray d i f f r a c t i o n d a t a are that the z e o l i t e structure was essentially i n t a c t after e x c h a n g e of n i c k e l f o r s o d i u m i n Z e o l o n b u t n o t i n the case o f 13X, a significant a m o u n t o f n i c k e l crys tallites large e n o u g h f o r d e t e c t i o n b y x-ray w e r e present i n the h y d r o g e n r e d u c e d 1 3 X n i c k e l zeolite b u t not i n the case o f n i c k e l Z e o l o n , a n d there w a s i n n o instance e v i d e n c e o f a significant a m o u n t o f c o b a l t i n crystallites l a r g e e n o u g h f o r d e t e c t i o n b y x-ray d i f f r a c t i o n . State of Dispersion of Metal. C h e m i s o r p t i o n o f c a r b o n m o n o x i d e at 23 ° C a n d x - r a y d i f f r a c t i o n l i n e b r o a d e n i n g h a v e b e e n u s e d t o measure
In Molecular Sieve Zeolites-II; Flanigen, Edith M., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
74.
Hydrogen
BROOKS
Generation
by Steam
Reformation
429
the state of d i s p e r s i o n of the n i c k e l o n 3 of these catalyst p r e p a r a t i o n s . T h e s e results are g i v e n i n d e t a i l i n Ref. 10.
F o r e x a m p l e , the
carbon
m o n o x i d e c h e m i s o r p t i o n estimates of the n i c k e l areas r e s u l t e d i n a spe cific n i c k e l area of 30 m / g r a m of catalyst f o r the Z e o l o n s u p p o r t , c o m 2
p a r e d w i t h 10 m / g r a m of catalyst 2
case of G 5 6 . that 5 8 %
f o r the n i c k e l - o n - a l u m i n a i n
T h e x-ray d i f f r a c t i o n l i n e b r o a d e n i n g measurements
the
show
of the t o t a l n i c k e l surface area i n the case of the G 5 6 a l u m i n a
s u p p o r t e d catalyst is c o n t r i b u t e d b y n i c k e l crystallites greater t h a n 100 A . O n the other h a n d , o n l y 0.4%
of the n i c k e l area f o r n i c k e l Z e o l o n is c o n
Downloaded by UNIV OF PITTSBURGH on January 21, 2016 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch074
t r i b u t e d b y n i c k e l crystallites greater t h a n 100 A . F u r t h e r m o r e , i f the c a r b o n m o n o x i d e c h e m i s o r p t i o n is expressed
as m o l e c u l e s
of
carbon
m o n o x i d e p e r n i c k e l a t o m , a r a t i o of 1.03:1 is o b t a i n e d f o r n i c k e l Z e o l o n ( T a b l e I I I , Ref. 10).
T h i s last result demonstrates that the n i c k e l o n the
f r e s h l y p r e p a r e d n i c k e l Z e o l o n catalyst is present i n an a t o m i c state of dispersion. Steam Reforming of w-Hexane Over Nickel and Cobalt Catalysts. T h e p e r f o r m a n c e of s e v e r a l of the n i c k e l a n d c o b a l t z e o l i t e catalysts f o r steam r e f o r m i n g of n-hexane at 400°—500° C has b e e n e v a l u a t e d b y short test runs w i t h the reactor a n d the p r o c e d u r e s d e s c r i b e d a b o v e
(Table
II ). A G i r d l e r r e f o r m i n g catalyst ( G 5 6 ) was tested u n d e r the same c o n ditions as a c o m p a r a t i v e s t a n d a r d . A l l tests w e r e c o n d u c t e d at a t o t a l pressure of 1 a t m . Plateaus of sustained r e f o r m i n g a c t i v i t y w e r e estab l i s h e d w i t h i n 1 h o u r . T h e c o b a l t catalysts lost essentially a l l r e f o r m i n g a c t i v i t y w i t h i n 3 h o u r s , p r e s u m a b l y because of o x i d a t i o n b y steam.
The
space velocities r e p o r t e d are c a l c u l a t e d i n terms of t h e o r e t i c a l h y d r o g e n p r o d u c t i o n b a s e d o n the n-hexane i n j e c t i o n rate a n d extent of c o n v e r s i o n ( E q u a t i o n 2, T a b l e I I ). T h e e q u a t i o n for the steam r e f o r m i n g of n-hexane w i t h c o m p l e t e c o n v e r s i o n to c a r b o n d i o x i d e is C H 6
1 4
+
12 H 0 = 2
6 C0
2
+
19 H
(1)
2
S t e a m r e f o r m i n g was the p r i m a r y r e a c t i o n o v e r these n i c k e l catalysts. T h e presence of h y d r o c a r b o n s ( C
2
to C ) w h i c h w o u l d i n d i c a t e c r a c k i n g 5
reactions o c c u r r e d to the extent of less t h a n 1 0 % i n the r e a c t i o n p r o d u c t s . T h e presence of methane, w h i c h w o u l d i n d i c a t e p a r t i a l r e f o r m i n g , d i d n o t exceed 5 %
i n the r e a c t i o n p r o d u c t s . T h e r e does not a p p e a r to b e a n y
significant difference i n p r o d u c t s e l e c t i v i t y f o r the n-hexane steam
re
f o r m i n g r e a c t i o n over n i c k e l o n the 2 q u i t e different s u p p o r t s — z e o l i t e vs. a l u m i n a . C a r b o n a c e o u s residues a c c u m u l a t e d i n the case of a l l the n i c k e l catalysts w h e r e r e f o r m i n g a c t i v i t y was s u s t a i n e d a n d the c a r b o n d e p o s i t i o n o n the zeolite catalysts c o m p a r e d f a v o r a b l y w i t h G 5 6 . sv
=
OLFW (2.24
Χ 10 ) 4
V
(19)
(3600)
=
cm /ideal H 3
2
per c m c a t a l y s t 3
In Molecular Sieve Zeolites-II; Flanigen, Edith M., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
(2)
430
M O L E C U L A R SIEVE ZEOLITES
Table II.
Catalyst
Downloaded by UNIV OF PITTSBURGH on January 21, 2016 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch074
G56 N i Zeolon C o Zeolon G56 N i Zeolon Nickel Y
II
Reforming of w-Hexane
Κ
μ moles
Temp.
Test Period, Min.
500 500 500 500 430 430 430
40-455 73-475 75 200 40-340 60-385 55-390
Hr(Eq. 2)
G Cat Sec {Eq. 3)
1880 3660 920 71 244 556 560
0.28 0.54 0.42 0.015 0.26 0.60 0.60
1
0.36 0.54 0.20 0.006 0.104 0.114 0.115
w h e r e F is n-hexane i n j e c t i o n rate, moles p e r g r a m catalyst p e r sec, V is catalyst b e d v o l u m e , c m , W is w e i g h t of c a t a l y s t / g r a m , a n d a is f r a c t i o n 3
n-hexane r e f o r m e d t o c a r b o n m o n o x i d e , c a r b o n d i o x i d e , o r m e t h a n e . T h e r e f o r m i n g rate constant, K, d e f i n e d as moles n-hexane r e f o r m e d p e r g r a m catalyst p e r second, is g i v e n b y t h e r e l a t i o n
Κ =
F i n [1/(1 -
(3)
a)]
T h i s assumes a first-order r e a c t i o n w i t h respect to t h e n-hexane.
K' is t h e
r e f o r m i n g r a t e constant d e f i n e d as moles o f n-hexane r e f o r m e d p e r g r a m of n i c k e l p e r s e c o n d , a n d F represents moles of n-hexane i n j e c t e d p e r g r a m o f m e t a l p e r second. T h e h y d r o g e n p r o d u c t i o n efficiency, H , w h i c h is t h e ratio o f t h e p
a c t u a l to t h e i d e a l h y d r o g e n p r o d u c t i o n rate, is g i v e n b y H
where
H
2
p
=
H /19 2
(4)
FWOL
represents t h e h y d r o g e n p r o d u c t i o n rate as
moles/second
b a s e d o n t h e effluent gas c o m p o s i t i o n a n d FW represents t h e n-hexane i n j e c t i o n r a t e as ^ m o l e s / s e c o n d
( E q u a t i o n 1 ).
T h e r e f o r m i n g rate constants, K , r e f e r r e d to t h e t o t a l catalyst w e i g h t f o r a l l t h e n i c k e l catalysts, f a l l w i t h i n a c o m p a r a t i v e l y n a r r o w r a n g e of 0.26 to 0.60 /rnioles p e r g r a m of catalyst p e r second.
Cobalt Zeolon h a d
a n i n i t i a l r e f o r m i n g rate constant, K, c o m p a r a b l e t o that of t h e n i c k e l Z e o l o n b u t this d e c l i n e d r a p i d l y to a m u c h smaller v a l u e . T h e r e f o r m i n g rate constants, K', r e f e r r e d to t h e m e t a l content, s h o w that there is a s i g n i f i c a n t l y greater specific r e f o r m i n g a c t i v i t y b y factors o f 8 t o 30 f o r the n i c k e l zeolites, c o m p a r e d w i t h t h e n i c k e l - o n - a l u m i n a catalyst ( G 5 6 ). T h i s demonstrates
that t h e h i g h state of n i c k e l d i s p e r s i o n o n t h e z e o l i t e
catalysts does p r o v i d e a h i g h e r specific a c t i v i t y n i c k e l t h a n o b t a i n e d w i t h the m u c h h i g h e r n i c k e l c o n t e n t of t h e n i c k e l - o n - a l u m i n a catalysts.
In Molecular Sieve Zeolites-II; Flanigen, Edith M., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
This
74.
BROOKS
Hydrogen
Generation
Downloaded by UNIV OF PITTSBURGH on January 21, 2016 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch074
Over N i c k e l and Cobalt μ moles G Met Sec (Eq. S)
H (Eq. 4)
2.0 17.0 11.0 0.4 1.79 18.4 60.2
0.86 0.93 0.84 0.67 0.86 0.89 0.81
by Steam
Reformation
431
Catalysts
Mol
c,
p
H0 2
wt. %
C atom
1.4 3.95
2.3 2.5
1.08 3.57 1.78 0.95
2.6 2.4 2.4 2.4
-
-
r e s u l t is consistent w i t h t h e greater n i c k e l specific area d e t e r m i n e d b y carbon monoxide chemisorption. contradict
earlier conclusions
T h i s c o n c l u s i o n , h o w e v e r , appears to
reached
b y Selwood
b a s e d o n m a g n e t i c s u s c e p t i b i l i t y measurements
(13)
that a
which
finite
were
crystallite
size l a r g e e n o u g h to f o r m a f e r r o m a g n e t i c d o m a i n a n d s i g n i f i c a n t l y l a r g e r t h a n a n i c k e l a t o m is r e q u i r e d f o r c a t a l y t i c a c t i v i t y . T h e H
p
values f o r
a l l t h e n i c k e l catalysts w e r e h i g h a n d f e l l w i t h i n t h e r e l a t i v e l y n a r r o w r a n g e o f 0.81 to 0.93, i n d i c a t i n g that the r e f o r m i n g r e a c t i o n proceeds w e l l beyond methane
to c a r b o n
d i o x i d e , a n d that
side reactions,
s u c h as
c r a c k i n g , o c c u r to a m i n i m a l extent.
Conclusions Both mordenite
(nickel Zeolon)
a n d faujasite
(Linde Y SK400)
zeolites w i t h l o w n i c k e l l o a d i n g s , 3.24 a n d 0.76 w t % , r e s p e c t i v e l y , h a v e d e m o n s t r a t e d a c t i v i t y f o r s t e a m - r e f o r m i n g of n-hexane s u p e r i o r t o a c o m m e r c i a l n i c k e l - a l u m i n a catalyst of m u c h greater n i c k e l l o a d i n g . F u r t h e r m o r e , t h e r e f o r m i n g rates r e f e r r e d t o t h e c a t a l y t i c m e t a l e x c e e d that of the n i c k e l - a l u m i n a catalyst b y factors o f 8 to 30. Tests of 4 - 8 h o u r s ' duration resulted i n carbon accumulations
comparing quite
favorably
w i t h t h a t of t h e n i c k e l - a l u m i n a catalyst. H o w e v e r , t h e l o n g - t e r m s t a b i l i t y a n d r e f o r m i n g a c t i v i t y of these catalysts m u s t b e e s t a b l i s h e d b e f o r e t h e y c a n b e c o n s i d e r e d successful catalysts
competitors
with
alkali-promoted nickel
( J , 2, 7, 8) c u r r e n t l y u n d e r c o n s i d e r a t i o n f o r steam r e f o r m i n g
of l i q u i d h y d r o c a r b o n s .
T h e s t r u c t u r a l i n t e g r i t y of catalysts e x p o s e d f o r
e x t e n d e d p e r i o d s t o r e f o r m i n g process c o n d i t i o n s s h o u l d b e e s t a b l i s h e d b y x-ray d i f f r a c t i o n d e t e r m i n a t i o n of t h e zeolite c r y s t a l l o g r a p h y a n d m e t a l c r y s t a l l i t e size, a n d b y gas c h e m i s o r p t i o n measurements f o r d e t e r m i n a t i o n of t h e persistence o f c a t a l y t i c m e t a l surface area.
In Molecular Sieve Zeolites-II; Flanigen, Edith M., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
432
MOLECULAR
SIEVE
ZEOLITES
Π
Acknowledgment T h e a u t h o r expresses a p p r e c i a t i o n to the U n i t e d A i r c r a f t C o r p . f o r s u p p o r t of this w o r k a n d p e r m i s s i o n to p u b l i s h .
Downloaded by UNIV OF PITTSBURGH on January 21, 2016 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch074
Literature Cited (1) Andrew, S. P. S., Ind. Eng. Chem. Prod. Res. Develop. 1969, 8, 321. (2) Arnold, M. R., Atwood, K., Baugh, H . M., Smyser, H . D., Ind. Eng. Chem. 1952, 44, 999. (3) Barrer, R. M., Ber. Bunsengesellschaft 1965, 69, 786. (4) Breck, D. W., J. Chem. Educ. 1964, 41, 678. (5) Breck, D. W., Castor, C. R., Milton, R. M., U. S. Patent 3,013,990 (1961). (6) Breck, D. W., Milton, R. M., U. S. Patent 3,013,982 (1961). (7) Bridger, G. W., Wyrwar, W., Chem. Process. Eng. 1967, 48, 101. (8) Brogars, D. J., Ind. Chemist 1963, 39, 177. (9) Brooks, C. S., J. Catalysis 1965, 4, 535. (10) Brooks, C. S., Christopher, G. L. M., J. Catalysis 1968, 10, 211. (11) Klug, H. P., Alexander, L. E., "X-ray Diffraction Procedures," Wiley, New York, 1954. (12) Kokes, R. J., Emmett, P. H., J. Am. Chem. Soc. 1960, 82, 1037. (13) Selwood, P. W., Chem. Rev. 1946, 38, 41. (14) Turkevich, J., Catalysis Rev. 1967, 1, 1. RECEIVED February 4,
1970.
Discussion D . J . C . Y a t e s ( E s s o R e s e a r c h C o . , L i n d e n , N . J. 0 7 0 3 6 ) : It is inter e s t i n g that y o u find the same m i g r a t i o n effect of n i c k e l o n N a X zeolites that I f o u n d some t i m e ago o n samples r e d u c e d u n d e r m i l d e r c o n d i t i o n s t h a n y o u u s e d . D i d y o u find less m i g r a t i o n w i t h n i c k e l o n Z e o l o n ? I a m also c o n c e r n e d w i t h the use of C O f o r area m e a s u r e m e n t w i t h n i c k e l , as i t is easy to m a k e n i c k e l c a r b o n y l w i t h r e d u c e d n i c k e l even at q u i t e l o w C O pressures.
D i d y o u c h e c k y o u r results w i t h h y d r o g e n c h e m i s o r p t i o n ?
C . S. B r o o k s : R e g a r d i n g the q u e s t i o n of the m o b i l i t y of r e d u c e d n i c k e l m e t a l o n oxide supports, I t h i n k there is no q u e s t i o n that n i c k e l does h a v e a h i g h m o b i l i t y , a n d at r e l a t i v e l y l o w temperatures.
In order
to h a v e h i g h d i s p e r s i o n , the most f a v o r a b l e c o n d i t i o n s can be p r o v i d e d b y starting w i t h the highest possible state of d i s p e r s i o n , s u c h as is pos sible b y m o u n t i n g the m e t a l o n a zeolite b y c a t i o n exchange a n d b y u s i n g a relatively l o w metal loading, preferably below 1 w t % .
O f the zeolites
e x a m i n e d here, the n i c k e l m o r d e n i t e w i t h 3.2 w t % n i c k e l a n d n i c k e l Y faujasite w i t h 0.76 w t % n i c k e l d e m o n s t r a t e d the highest state of m e t a l d i s p e r s i o n a n d highest specific r e f o r m i n g a c t i v i t y . I n the case of some of the n i c k e l m o r d e n i t e p r e p a r a t i o n s , n i c k e l m e t a l crystallites w e r e de tected b y x-ray d i f f r a c t i o n analysis.
In Molecular Sieve Zeolites-II; Flanigen, Edith M., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
74.
BROOKS
Hydrogen
Generation
by Steam
Reformation
433
I n r e g a r d to the second q u e s t i o n r a i s e d a b o u t the p o s s i b l e m o b i l i t y of n i c k e l i n d u c e d b y the f o r m a t i o n of n i c k e l c a r b o n y l d u r i n g the C O c h e m i s o r p t i o n measurements, it is c o n s i d e r e d w e l l e s t a b l i s h e d that
the
i n i t i a l contact w i t h C O after h y d r o g e n r e d u c t i o n p r o v i d e s a r e l i a b l e measure of the i n i t i a l state of d i s p e r s i o n of the
reduced nickel metal.
T h e p r o c e d u r e u s e d was e v a l u a t e d i n c o n s i d e r a b l e d e t a i l ( R e f . 10).
It
was p o i n t e d out i n d i s c u s s i o n of this e v a l u a t i o n that n i c k e l d i s p l a c e m e n t b y c a r b o n y l f o r m a t i o n m i g h t o c c u r u p o n h e a t i n g a n d d e s o r p t i o n of the c h e m i s o r b e d c a r b o n m o n o x i d e u p o n c o m p l e t i o n of the i n i t i a l C O c h e m i Downloaded by UNIV OF PITTSBURGH on January 21, 2016 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch074
s o r p t i o n measurement. I n the a c c o u n t of this c h e m i s o r p t i o n w o r k , h y d r o g e n c h e m i s o r p t i o n was also d e s c r i b e d . H y d r o g e n c h e m i s o r p t i o n was consistently less t h a n the C O ( a f t e r c o r r e c t i o n for substrate c o n t r i b u t i o n ) a n d i t is suggested that this difference is o w i n g to the n e e d for n i c k e l crystallites large e n o u g h to p r o v i d e adjacent sites for dissociative a d s o r p t i o n of h y d r o g e n atoms, whereas the C O c a n a d s o r b as an u n d i s s o c i a t e d m o l e c u l e o n i n d i v i d u a l surface n i c k e l atoms. C h e m i s o r p t i o n measurements of either C O or h y d r o g e n o n t r a n s i t i o n metals m o u n t e d o n zeolite substrates r e q u i r e c o n s i d e r a b l e care f o r ade q u a t e i n t e r p r e t a t i o n . T h e z e o l i t e lattices after h i g h - t e m p e r a t u r e e v a c u a t i o n c a n a d s o r b large amounts of h y d r o g e n , a n d d i v a l e n t cations s u c h as c a l c i u m c a n adsorb l a r g e amounts of C O .
In Molecular Sieve Zeolites-II; Flanigen, Edith M., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.