Improved Ferroelectric Switching Endurance of La-Doped Hf0.5Zr0

Dec 28, 2017 - This can be ascribed to the much higher coercive field (Ec) of these materials (∼1 MV/cm) compared to that of conventional perovskite...
0 downloads 8 Views 2MB Size
Subscriber access provided by READING UNIV

Article

Improved ferroelectric switching endurance of La-doped Hf0.5Zr0.5O2 thin films Anna G Chernikova, Maxim G Kozodaev, Dmitry V Negrov, Evgeny V Korostylev, Min Hyuk Park, Uwe Schroeder, Cheol Seong Hwang, and Andrey M. Markeev ACS Appl. Mater. Interfaces, Just Accepted Manuscript • DOI: 10.1021/acsami.7b15110 • Publication Date (Web): 28 Dec 2017 Downloaded from http://pubs.acs.org on December 29, 2017

Just Accepted “Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.

ACS Applied Materials & Interfaces is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Page 1 of 24 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Applied Materials & Interfaces

Improved ferroelectric switching endurance of La-doped Hf0.5Zr0.5O2 thin films Anna G. Chernikova1, Maxim G. Kozodaev1, Dmitry V. Negrov1, Evgeny V. Korostylev1, Min Hyuk Park2, Uwe Schroeder2, Cheol Seong Hwang1,3 and Andrey M. Markeev1* 1

Moscow Institute of Physics and Technology, Institutskii per. 9, 141700 Dolgoprudny, Moscow region, Russia 2 3

NaMLab gGmbH/TU Dresden, Noethnitzer Strasse 64, 01187 Dresden, Germany

Department of Materials Science and Engineering and Inter-University Semiconductor Research Center, Seoul National University, Seoul 08826, Republic of Korea

*Corresponding author: [email protected]

ABSTRACT Hf0.5Zr0.5O2 thin films are one of the most appealing HfO2-based ferroelectric thin films, which have been researched extensively for their applications in ferroelectric memory devices. In this work, a 1 mol. % La-doped Hf0.5Zr0.5O2 thin film was grown by a plasma-assisted atomic layer deposition and annealed at temperatures of 450 and 500 °C to crystallize the film into the desired orthorhombic phase. Despite the use of a lower temperature than in previous reports, the film showed highly promising ferroelectric properties – a remnant polarization of ~19 µC/cm2 and switching cycle endurance up to 4·1010. The performance was much better than that of undoped Hf0.5Zr0.5O2 thin films, demonstrating the positive influence of La doping. Such improvements were mainly attributed to the decreased coercive field (by ~30% compared to the undoped film), which allowed for use of a lower applied field to drive the cycling tests while keeping a high polarization value. La doping also decreased the leakage current by ~3 orders of magnitude compared to the undoped film, which also contributed to the strongly improved endurance. Nonetheless, the La-doped film required a larger number of wake-up cycles (~106 cycles) to reach a saturated remnant polarization value. This behaviour might be explained by the increased generation of oxygen vacancies and slower migration of these vacancies from the interface to the bulk region. However, the maximum number of wake-up cycle was less than 1 ACS Paragon Plus Environment

ACS Applied Materials & Interfaces 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

0.01% of the total possible cycles, and therefore, initializing the film to the maximum performance state would not be a serious burden.

Keywords: hafnium oxide, multicomponent oxide, thin films, ferroelectricity, non-volatile memory, atomic layer deposition

INTRODUCTION Hf0.5Zr0.5O2 (HZO) thin films are the leading candidate material among the various cationdoped HfO2-based ferroelectric (FE) thin films for semiconductor memory applications. This is mainly due to the lower processing temperature in the film deposition and annealing of the material (less than 500 °C for annealing is required for crystallization1-3) compared to other films, such as Si- or Al-doped HfO2 films, which require at least ~ 800 °C for sufficient crystallization4-6. The most feasible film deposition method is atomic layer deposition (ALD), which offers high reproducibility, precise thickness control, and conformal coverage over extreme three-dimensional structures. Moreover, it can be applied not only for growth of functional ferroelectric layers, but also for CMOS-compatible electrodes, including TiN, Ru, Ir, etc7,8. ZrO2 thin films have a lower crystallization temperature compared to HfO2, making the crystallization of HZO films feasible at such a low temperature. The low processing temperature is critical for integrating the metal-ferroelectric-metal (MFM) structure, where the typical electrode metal is TiN, into the back-end-of-line (BEOL) process, which requires a low temperature (preferably 1010), and therefore, wake-up can be quickly performed before actual device use.

CONFLICTS OF INTERESTS There are no conflicts of interest to declare.

ACKNOWLEDGMENTS ALD growth of the HZLO and HZO films and their electrical property investigations were supported by Russian Science Foundation (Project. No 14-19-01645-P) using equipment at the MIPT Shared Facilities Center supported from the Ministry of Education and Science of Russian Federation (Grant No. RFMEFI59417X0014). Structural investigations of the mentioned films were supported by Moscow Institute of Physics and Technology and Russian Academic Excellence Project 5-100 (Contract № 19VP/2017).

19 ACS Paragon Plus Environment

ACS Applied Materials & Interfaces 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

REFERENCES (1)

Mueller, J.; Boescke, T. S.; Shroeder, U.; Mueller, S.; Brauhaus, D.; Boettger, U.; Frey,

L.; Mikolajick, T. Ferroelectricity in Simple Binary ZrO2 and HfO2. Nano Lett. 2012, 12, 43184323. (2)

Park, M. H.; Kim, H. J.; Kim, Y. J.; Lee, W.; Moon, T.; Hwang, C. S. Evolution of

phases and ferroelectric properties of thin Hf0.5Zr0.5O2 films according to the thickness and annealing temperature. Appl. Phys. Lett., 2013, 102, 242905. (3)

Chernikova, A.; Kozodaev, M.; Markeev, A.; Matveev, Yu.; Negrov, D.; Orlov, O.

Confinement-free annealing induced ferroelectricity in Hf0.5Zr0.5O2 thin films. Microelectronic Eng., 2015, 147, 15 – 18. (4)

Boescke, T. S.; Mueller, J.; Brauhaus, D.; Schroeder, U.; Boettger, U. Ferroelectricity

in hafnium oxide thin films. Appl. Phys. Lett., 2011, 99, 102903. (5)

Starschich, S.; Boettger, U. An extensive study oft he influence of dopants on the

ferroelectric properties of HfO2. J. Mater. Chem. C, 2017, 5, 333-338. (6)

Park, M. H.; Lee, Y. H.; Kim, H. J.; Kim, Y. J.; Moon, T.; Kim, K. D.; Mueller, J.;

Kersch, A.; Schroeder, U.; Mikolajick, T.; Hwang, C. S. Ferroelectricity and Antiferroelectricity of Doped Thin HfO2-Based Films. Adv. Mater., 2015, 27 (11), 1811–1831. (7)

Mattinen, M.; Hamalainen, J.; Vehkamaki, M.; Heikkila, M. J.; Mizohata, K.; Jalkanen,

P.; Raisanen, J.; Ritala, M.; Leskela, M. Atomic Layer Deposition of Iridium Thin Films Using Sequental Oxygen and Hydrogen Pulses. J. Phys. Chem. C, 2016, 120 (28), 15235-15243. (8)

Egorov, K. V.; Lebedinskii, Y. Y.; Soloviev, A. A.; Chouprik, A. A.; Azarov, A. Y.;

Markeev, A. M. Initial and steady-state Ru growth by atomic layer deposition studied by in situ Angle Resolved X-ray Photoelectron Spectroscopy. Appl. Surf. Sci., 2017, 419, 107-113. (9)

Park, M. H.; Kim, H. J.; Kim, Y. J.; Moon, T.; Kim, K. D.; Lee, Y. H.; Hyun, S. D.;

Hwang, C. S. Study on the internal field and conduction mechanism of atomic layer deposited ferroelectric Hf0.5Zr0.5O2 thin films. J. Mater. Chem. C, 2015, 3, 6291-6300. (10) Zarubin, S.; Suvorova, E.; Spiridonov, M.; Negrov, D.; Chernikova, A.; Markeev, A.; Zenkevich, A. Fully ALD-grown TiN/Hf0.5Zr0.5O2/TiN stacks: Ferroelectric and structural properties. Appl. Phys. Lett., 2016, 109, 192903. (11) Park, I.-S.; Ryu, K.-M.; Jeong, J.; Ahn, J. Dielectric stacking effect of Al2O3 and HfO2 in metal-insulator-metal capacitor. IEEE Electron Dev. Lett., 2013, 34 (1), 120-122. 20 ACS Paragon Plus Environment

Page 20 of 24

Page 21 of 24 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Applied Materials & Interfaces

(12) Materlik, R.; Künneth, C.; Kersch, A. The origin of ferroelectricity in Hf1-xZrxO2: A computational investigation and a surface energy model. J. Appl. Phys., 2015, 117, 134109. (13) Huan, T. D.; Sharma, V.; Rossetti, G. A. Jr.; Ramprasad, R. Pathways towards ferroelectricity in hafnia. Phys. Rev. B, 2014, 90, 064111. (14) Park, M. H.; Lee, Y. H.; Kim, H. J.; Kim, Y. J.; Moon, T. H.; Kim, K. D.; Hyun, S. D.; Mikolajick, T.; Schroeder, U.; Hwang, C. S. Understanding the formation of the metastable ferroelectric phase in hafnia-zirconia solid solution thin films. Nanoscale, 2017, Accepted manuscript (15) Zhang, H.; Gao, B.; Yu, S.; Lai, L.; Zeng, L.; Sun, B.; Liu, L.; Liu, X.; Lu, J.; Han, R.; Kang, J. Effects of ionic doping on the behaviors of oxygen vacancies in HfO2 and ZrO2: A first principles study. International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), 2009. (16) Muller, J.; Boscke, T. S.; Muller, S.; Yurchuk, E.; Polakowski, P.; Paul, J.; Martin, D.; Schenk, T.; Khullar, K.; Kersch, A.; Weinreich, W.; Riedel, S.; Seidel, K.; Kumar, A.; Arruda, T. M.; Kalinin, S. V.; Schlosser, T.; Boschke, R.; Bentum, Van R.; Schroder, U.; Mikolajick, T. Ferroelectric hafnium oxide: A CMOS-compatible and highly scalable approach to future ferroelectric memories. Electron Devices Meeting (IEDM), IEEE International, Washington, 2013, 10.8.1-10.8.4. (17) Chernikova, A. G.; Kuzmichev, D. S.; Negrov, D. V.; Kozodaev, M. G.; Polyakov, S. N.; Markeev, A. M. Ferroelectric properties of full plasma-enhanced ALD TiN/La:HfO2/TiN stacks. Appl. Phys. Lett., 2016, 108, 242905. (18) Duran P. Phase relations in the systems hafnium dioxide-lanthanum oxide and hafnium dioxide-neodymium oxide. Ceram. Int., 1975, 1 (1), 10-13. (19) Ushakov S. V; Brown, C. E.; Navrotsky, A. Effect of La and Y on Crystallization Temperatures of Hafnia and Zirconia. J. Mater. Res., 2004, 19(3), 693-696. (20) Kozodaev, M. G.; Lebedinskii, Y. Y.; Chernikova, A. G.; Polyakov, S. N.; Markeev, A. M. Low temperature plasma-enhanced ALD TiN ultrathin films for Hf0.5Zr0.5O2-based ferroelectric MIM structures. Phys. Status Solidi A, 2017, 214 (6), 1700056. (21) Park, M. H.; Schenk, T.; Fancher, C. M.; Grimley, E. D.; Zhou, C.; Richter, C.; LeBeau, J. M.; Jones, J. L.; Mikolajick, T.; Schroeder, U. A comprehensive study on the structural evolution of HfO2 thin films doped with various dopants. J. Mater. Chem. C, 2017, 5, 4677-4690. 21 ACS Paragon Plus Environment

ACS Applied Materials & Interfaces 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

(22) Chernikova, A.; Kozodaev, M.; Markeev, A.; Negrov, D.; Spiridonov, M.; Zarubin, S.; Bak O.; Buragohain, P.; Lu, H.; Suvorova, E.; Gruverman, A.; Zenkevich, A. Ultrathin Hf0.5Zr0.5O2 Ferroelectric Films on Si. ACS Appl. Mater. Interfaces, 2016, 8 (11), 7232 – 7237. (23) Chouprik, A.; Chernikova, A.; Markeev, A.; Mikheev, V.; Negrov, D.; Spiridonov, M.; Zarubin, S.; Zenkevich, A. Electron transport across ultrathin ferroelectric Hf0.5Zr0.5O2 films on Si. Microelectronic Eng., 2017, 178 (C), 250–253. (24) Islamov, D. R.; Chernikova, A. G.; Kozodaev, M. G.; Markeev, A. M.; Perevalov, T. V.; Gritsenko, V. A.; Orlov, O. M. Charge transport mechanism in thin films of amorphous and ferroelectric Hf0.5Zr0.5O2. JETP Letters, 2015, 102 (8), 544-547. (25) Nečas, D.; Klapetek, P. Gwyddion: an open-source software for SPM data analysis. Cent. Eur. J. Phys. 2012, 10, 181-188 (26) Kozodaev, M. G.; Chernikova, A. G.; Korostylev, E. V.; Park, M. H.; Schroeder, U.; Hwang, C. S.; Markeev, A. M. Ferroelectric properties of lightly doped La:HfO2 thin films grown by plasma-assisted atomic layer deposition. Appl. Phys. Lett., 2017, 111, 132903. (27) Preisach, F. Über die Magnetische Nachwirkung. Z. Physik, 1935, 94, 277-302. (28) Pešić, M.; Fengler, F. P. G.; Larcher, L.; Padovani, A.; Schenk, T.; Grimley, E. D.; Sang, X.; LeBeau, J. M.; Slesazeck, S.; Schroeder, U.; Mikolajick, T. Physical Mechanisms behind the Field-Cycling Behavior of HfO2-based Ferroelectric Capacitors. Adv. Funct. Mater., 2016, 26 (25), 4601–4612. (29) Schenk, T.; Hoffmann, M.; Ocker, J.; Pešić, M.; Mikolajick, T.; Schroeder, U. Complex Internal Bias Fields in Ferroelectric Hafnium Oxide. ACS Appl. Mater. Interfaces, 2015, 7, 20224−20233. (30) Grimley, E. D.; Schenk, T.; Sang, X.; Pesic, M.; Schroeder, U.; Mikolajick, T.; LeBeau, J. M. Structural changes Underlying Field-Cycling Phenomena in Ferroelectric HfO2 thin films. Adv. Electron. Mater., 2016, 2, 1600173. (31) Warren, W. L.; Dimos, D.; Tuttle, B. A.; Nasby, R. D.; Pike, G. E. Electron domain pinning in Pb(Zt,Ti)O3 thin films and its role in fatigue. Appl. Phys. Lett., 1994, 65, 1018. (32) Richter, C.; Schenk, T.; Park, M. H.; Tscharntke, F. A.; Grimley, E. D.; LeBeau, J. M.; Zhou, C.; Fancher, C. M.; Jones, J. L.; Mikolajick, T.; Schroeder, U. Si Doped Hafnium Oxide-A “Fragile” Ferroelectric System. Adv. Electron. Mater., 2017, 3, 1700131.

22 ACS Paragon Plus Environment

Page 22 of 24

Page 23 of 24 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Applied Materials & Interfaces

(33)

Gao, B.; Zhang, H. W.; Yu, S.; Sun, B.; Liu, L. F.; Liu, X. Y.; Wang, Y.; Han, R.

Q.; Kang, J. F.; Yu, B.; Wang, Y. Y. Oxide-Based RRAM: Uniformity Improvement Using A New Material-Oriented Methodology. Digest of Technical Papers - Symposium on VLSI Technology, Kyoto, 2009, P.30-31.

23 ACS Paragon Plus Environment

ACS Applied Materials & Interfaces 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

For table of Contents only

24 ACS Paragon Plus Environment

Page 24 of 24