Inductively Coupled Plasma-Atomic Emission Spectroscopy with

Jul 23, 2009 - The figures of merit of primary interest to analytical chemist that are discussed are: noise characteristics ... Disclaimer ACS Reagent...
0 downloads 0 Views 3MB Size
4 Inductively Coupled Plasma-Atomic Emission Spectroscopy with Multichannel Array Detection FREDERICK GRABAU1 Ames Laboratory, U.S. Department of Energy, Ames, IA 50010 YAIR T A L M I Princeton Instruments, Inc., P.O. Box 2318, Princeton, N J 08540

Array detectors provide an attractive alternative to the polychrometers commonly used with ICP-AES, because they provide the capability of simultaneous detection of spectral lines and spectral background dispersed on hundreds of virtually independent optical channels. In this paper a critical evaluation of self-scanned photodiode arrays as radiation detectors for ICP-AES i s presented. Limited comparisons are also drawn for silicon intensified target vidicons (SIT) and intensified self-scanning photodiode array detectors (ISPD). The figures of merit of primary interest to analytical chemist that are discussed are: noise chara c t e r i s t i c s and powers of detection, l i n e a r i t y and dynamic range, spectral stripping and interpolative correction for variable underlying background, compromise between resolution and spectral coverage and application to nonideal " r e a l " samples.

I n a n a l y t i c a l a t o m i c e m i s s i o n s p e c t r o s c o p y , t h e most p o p u l a r approach t o s i m u l t a n e o u s m u l t i e l e m e n t d e t e r m i n a t i o n s has been b a s e d on t h e u s e o f m u l t i p l e d e t e c t o r s t h a t m o n i t o r d i s c r e t e wavelengths. The most common f o r m o f t h i s a p p r o a c h h a s i n v o l v e d f i x e d a r r a y s of narrow s l i t s prearranged along t h e e x i t f o c a l plane o f a s p e c t r o m e t e r , w i t h c o r r e s p o n d i n g a r r a y s o f p h o t o m u l t i p l i e r tube (PMT) d e t e c t o r s t o m o n i t o r t h e r a d i a t i o n t r a n s m i t t e d t h r o u g h t h e s e slits. These i n s t r u m e n t s a r e i d e a l l y s u i t e d f o r t h e r o u t i n e , s i m u l t a n e o u s m u l t i e l e m e n t d e t e r m i n a t i o n o f t h e same s e t o f e l e m e n t s , w h i c h may number up t o 30 o r more, i n s a m p l e s o f s i m i l a r t o t a l composition. F o r these p u r p o s e s , p o l y c h r o m a t o r s have p r o v i d e d t h e w i d e dynamic r a n g e , f a s t r e s p o n s e a n d e x c e l l e n t s i g n a l - t o - n o i s e (SNR) p e r f o r m a n c e c h a r a c t e r i s t i c o f PMT's, s p e c i f i c a l l y when 1Current address: St. Louis County Water Company, Chesterfield, MO 63017.

0097-6156/83/0236-0075S11.50/0 © 1983 American Chemical Society

MULTICHANNEL IMAGE DETECTORS

76

o p e r a t e d as e n e r g y ( i n t e g r a t o r s ) r a t h e r t h a n power ( c u r r e n t ) d e t ectors . When t h e a n a l y s t i s f a c e d w i t h t h e d e t e r m i n a t i o n of a b r o a d r a n g e of e l e m e n t s i n s a m p l e s of w i d e l y v a r y i n g c o m p o s i t i o n , t h e l i m i t e d s e t of l i n e s o b s e r v a b l e w i t h a p o l y c h r o m a t o r r e s t r i c t s t h e s c o p e of a p p l i c a t i o n and o p t i m i z a t i o n of t h e s e i n s t r u m e n t s . O p t o e l e c t r o n i c image d e v i c e s ( O I D ) ( 1 - 3 9 ) , p a r t i c u l a r l y s e l f s c a n n e d p h o t o d i o d e a r r a y s ( S P D ) , p r o v i d e an a t t r a c t i v e a l t e r n a t i v e t o the p o l y c h r o m a t o r a p p r o a c h b e c a u s e t h e y t o o p r o v i d e t h e c a p a b i l i t y o f s i m u l t a n e o u s d e t e c t i o n of d i s p e r s e d r a d i a t i o n . When these d e t e c t o r s are i n t e r f a c e d w i t h a p p r o p r i a t e o n - l i n e computer c o n t r o l and d a t a p r o c e s s i n g f a c i l i t i e s , the s i g n a l s f r o m h u n d r e d s of v i r t u a l l y i n d e p e n d e n t , o p t i c a l ( s p e c t r a l ) c h a n n e l s can be i n t e g r a t e d and d i g i t i z e d s i m u l t a n e o u s l y . I n a d d i t i o n , the c o n t r i b u t i o n of c o n t i n u u m s p e c t r a l b a c k g r o u n d o r u n d e s i r a b l e o v e r l a p p i n g s p e c t r a l f e a t u r e s p r e s e n t i n t h e " b l a n k " s p e c t r u m can be s u b t r a c t e d or " s t r i p p e d " from the t o t a l s i g n a l f o r a l l c h a n n e l s . I f d e s i r a b l e , random o r f a s t - a c c e s s t o t h e s p e c i f i c s p e c t r a l f e a t u r e s of i n t e r e s t may be employed t o c o n s e r v e c o m p u t e r memory s p a c e and t i m e ( 4 0 ) . O t h e r c a p a b i l i t i e s p r o v i d e d by t h e s e d e t e c t o r s i n c l u d e : a) F l e x i b i l i t y i n c h o i c e of mode o f s i g n a l i n t e g r a t i o n and p r o c e s s i n g ; r e a l - t i m e , in-memory i n t e g r a t i o n o r ont a r g e t i n t e g r a t i o n ; b) m o n i t o r i n g of u l t r a r a p i d s p e c t r o s c o p i c e v e n t s ; c) c o m p e n s a t i o n f o r s o u r c e f l u c t u a t i o n s and f o r s e n s i t i v i t y and s p e c t r a l r e s p o n s e v a r i a t i o n ; d) h i g h quantum e f f i c i e n c y ; and e) l i n e a r r e s p o n s e . These d e s i r a b l e f e a t u r e s o f O I D s a r e o f f s e t , a t l e a s t p a r t i a l l y , by a few u n d e s i r a b l e f e a t u r e s t h a t impose u l t i m a t e l i m i t s on t h e a t o m i c s p e c t r o m e t r i c p e r f o r m a n c e o f t h e s e d e t e c t o r s . A f o r e m o s t l i m i t a i t o n i s s e t by the number of d i o d e s i n c o m m e r c i a l l y a v a i l a b l e d i o d e a r r a y s , and t h e i r p h y s i c a l a r r a n g e m e n t and s p a t i a l r e s o l u t i o n . I n a d d i t i o n , t h e low a m p l i f i c a t i o n g a i n o f t h e SPD r e q u i r e s l o n g e r s i g n a l i n t e g r a t i o n t i m e s , and f i n a l l y , t h e dynamic r a n g e o f t h e SPD i s n a r r o w e r t h a n t h a t of t h e PMT. As shown i n t h e d i s c u s s i o n a b o v e , t h e r e a r e a m u l t i p l i c i t y of d e s i r a b l e and u n d e s i r a b l e f e a t u r e s o f OID's t h a t i m p a c t t h e i r g e n e r a l a p p l i c a t i o n as d e t e c t o r s i n a n a l y t i c a l a t o m i c e m i s s i o n spectrometry. I t i s t h e r e f o r e a p p r o p r i a t e t o compare, i n a c r i t i c a l and o b j e c t i v e s e n s e , t h e e x p e r i m e n t a l f i g u r e s o f m e r i t o f these d e v i c e s v i s - a - v i s the c l a s s i c a l p o l y c h r o m a t o r p h o t o m u l t i p l i e r a p p r o a c h . These c o m p a r i s o n s s h o u l d be p e r f o r m e d v i r t u a l l y on a c o n t i n u i n g b a s i s b e c a u s e of a d v a n c e s i n p e r f o r m a n c e s , n o t o n l y of the a r r a y d e t e c t o r s t h e m s e l v e s b u t a l s o i n t h e a s s o c i a t e d spectroscopic e x c i t a t i o n sources. An e v a l u a t i o n of t h e o v e r a l l p e r f o r m a n c e f i g u r e s of m e r i t of OID's when t h e y a r e employed i n c o n j u n c t i o n w i t h i n d u c t i o n - c o u p l e d p l a s m a e x c i t a t i o n i s of* p a r t i c u l a r c u r r e n t i n t e r e s t b e c a u s e of t h e p o p u l a r i t y t h a t t h i s source i s a t t a i n i n g f o r the simultaneous d e t e r m i n a t i o n of the e l ements a t a l l c o n c e n t r a t i o n l e v e l s . I n t h i s p a p e r we p r e s e n t s u c h an e v a l u a t i o n f o r s e l f - s c a n n e d , p h o t o d i o d e a r r a y d e t e c t o r s 1

4.

GRAB AU AND

TALMI

Coupled

Plasma-Atomic

Emission

Spectroscopy

11

(SPD) and draw c o m p a r i s o n s t o PMT a r r a y s as u s e d i n c l a s s i c a l p o l y c h r o m a t o r s . To a l e s s e r e x t e n t , some c o m p a r i s o n s a r e drawn w i t h s i l i c o n i n t e n s i f i e d t a r g e t v i d i c o n s ( S I T ) and i n t e n s i f i e d s e l f canning photodiode array detectors (ISPD). A similar evaluation of t h e SPD f o r s p e c t r o p h o t o m e t r y and s p e c t r o f l u o r o m e t r y was r e c e n t l y published elsewhere (41). A p p a r a t u s And

Procedure

The e x p e r i m e n t a l f a c i l i t i e s and o p e r a t i n g c o n d i t i o n s u t i l i z e d i n t h i s s t u d y a r e summarized i n T a b l e I . B o t h s p e c t r o m e t e r s were u s e d e i t h e r as m o n o c h r o m a t o r s , i n t h e s i n g l e w a v e l e n g t h d e t e c t i o n mode, o r as p o l y c h r o m a t o r s i n t h e m u l t i c h a n n e l d e t e c t i o n mode. The c o n v e r s i o n of t h e J a r r e l l - A s h s p e c t r o m e t e r t o a p o l y c h r o m a t o r was a c c o m p l i s h e d by r e p l a c i n g t h e camera a t t a c h m e n t of t h e s p e c t r o m e t e r w i t h an OID a r r a y d e t e c t o r . A r o t a t i o n a l l y a d j u s t a b l e mount a l l o w e d t h e a r r a y d e t e c t o r c h a n n e l s t o be a l i g n e d p a r a l l e l w i t h t h e s l i t image. S p e c t r a l l i n e s l i t images were f o c u s e d on the d e t e c t o r s u r f a c e by a d j u s t m e n t o f a 45 folding m i r r o r t h a t d e f l e c t e d t h e e x i t s p e c t r u m o n t o t h e camera mount. S e l e c t i o n of e i t h e r s i n g l e c h a n n e l of m u l t i c h a n n e l d e t e c t i o n modes was made by r o t a t i o n o f t h e 45 m i r r o r t o one of two p o s i t i o n s , e i t h e r a l l o w i n g t h e e x i t s p e c t r u m t o r e a c h t h e e x i t s l i t or d e f l e c t i n g i t to the a r r a y d e t e c t o r . The s l i t - h e i g h t s e t t i n g f o r t h e SPD d e t e c t o r was 2.5 mm, e q u a l t o t h e h e i g h t of e a c h i n d i v i dual diode. The 1% HNO^ r e f e r e n c e s o l u t i o n s were p r e p a r e d f r o m d i s t i l l e d HNO^ and d e i o n i z e d d i s t i l l e d w a t e r . A n a l y s e s o f t h e US G e o l o g i c a l S u r v e y r e f e r e n c e s a m p l e s were p e r f o r m e d a f t e r d i s s o l u t i o n by sodium h y d r o x i d e f u s i o n ( 4 2 ) . R e f e r e n c e s o l u t i o n s n e c e s s a r y f o r t h e a n a l y s i s of t h e g l a s s s a m p l e s were p r e p a r e d i n a 2°L N a C l - H C l m a t r i x t o match t h e t o t a l a c i d and s a l t c o n t e n t o f t h e g l a s s samples. D e t e c t i o n l i m i t s , d e f i n e d as t h e c o n c e n t r a t i o n r e q u i r e d t o p r o v i d e n e t a n a l y t e s i g n a l s t h a t were t h r e e t i m e s g r e a t e r t h a n t h e s t a n d a r d d e v i a t i o n o f t h e b a c k g r o u n d s c a t t e r , were d e t e r m i n e d f r o m t e n t e n - s e c o n d i n t e g r a t i o n s of t h e b l a n k and d i l u t e r e f e r e n c e s o l u t i o n s f o r t h e PMT s y s t e m . S t a n d a r d d e v i a t i o n ( n o i s e ) o f t h e b a c k g r o u n d was c a l c u l a t e d f r o m the t e n b l a n k i n t e g r a t e d s i g n a l s . The m u l t i c h a n n e l n a t u r e o f t h e SPD and SIT d e t e c t o r s was u t i l i z e d to d e t e r m i n e d e t e c t i o n l i m i t s w i t h t h e s e s y s t e m s . P a i r s o f b l a n k s p e c t r a were s u b t r a c t e d f r o m e a c h o t h e r t o o b t a i n n e t d i f f e r e n c e spectra. These d i f f e r e n c e s p e c t r a r e p r e s e n t e d t h e n o i s e and t h e d r i f t between m e a s u r e m e n t s . The s t a n d a r d d e v i a t i o n of t e n a d j a c e n t d i o d e s i n t h e r e g i o n of the a n a l y t e w a v e l e n g t h was determined f o r e a c h of t h e n e t d i f f e r e n c e s p e c t r a . The s t a n d a r d d e v i a t i o n o f f i v e d i f f e r e n t s p e c t r a were t h e n a v e r a g e d t o p r o d u c e a representative noise l e v e l . To measure t h e b a c k g r o u n d i r r a d i a n c e of t h e ICP i n t h e 180440 nm r e g i o n , a p r e c a l i b r a t e d d e u t e r i u m a r c lamp was u s e d . The

78

MULTICHANNEL IMAGE DETECTORS

Table I .

I n s t r u m e n t Setup and O p e r a t i n g C o n d i t i o n s

Plasma

Power S u p p l y :

Plasma Therm, I n c . , M o d e l NFS-2500 D w i t h M o d e l AMN-3000 Ε impedance match­ ing network.

Plasma

Torch:

Ames L a b o r a t o r y c o n s t r u c t i o n ( 4 3 ) 20 L/min p l a s m a A r f l o w ; 1.0 L/min a e r o ­ sol c a r r i e r Ar flow.

Forward

Power:

1100W

Ultrasonic Nebulizer:

Ames L a b o r a t o r y c o n s t r u c t i o n ( 4 4 ) 1.4 MHz, w a t e r c o o l e d d e s o l v a t i o n , 2.6 m l / m i n sample i n t r o d u c t i o n r a t e .

Spectrometers :

1) J a r r e l l - A s h , M o d e l 78-466, 1 m e t e r f / 8 . 7 , C z e r n y - T u r n e r mount w i t h a 1180 g/mm g r a t i n g b l a z e d a t 250 nm, r e c i p ­ r o c a l l i n e a r d i s p e r s i o n o f 0.825 nm/mm (0.0206 n m / d i o d e ) . Entrance s l i t wid­ t h 20 urn, h e i g h t 2 mm. 2) M c P h e r s o n , M o d e l 2 0 5 1 , 1 m e t e r , f / 8 . 7 , C z e r n y - T u r n e r mount w i t h a 1800 g/mm h o l o g r a p h i c g r a t i n g b l a z e d a t 200-700 nm r e c i p r o c a l l i n e a r d i s p e r ­ s i o n o f 0.0138 n m / p h o t o d i o d e , e n t r a n c e s l i t 20 urn, h e i g h t 2 mm.

Lens :

Observation

Irradiance

S p h e r i c a l , 4 cm d i a m e t e r , 125 mm f o c a l l e n g t h 30 cm f r o m p l a s m a and e n t r a n c e slit. Region:

3 cm segment c e n t e r e d 15 mm above t h e load c o i l .

Reference:

O p t r o n i c L a b o r a t o r i e s , I n c . , M o d e l UV40 U l t r a - v i o l e t I r r a d i a n c e S t a n d a r d . C a l i b r a t e d a t 10 nm i n t e r v a l s f r o m 180 nm t o 400 nm.

4.

GRABAU AND TALMI

Coupled

Table I.

D e t e c t i o n System:

Plasma-Atomic

Emission

Spectroscopy

79

Continued

Multichannel: 1) EG&G PARC M o d e l 1412 SPD ( 2 . 5 mm h i g h p e r t u r e X 25 urn c e n t e r - t o - c e n t e r , 1024 d i o d e a r r a y , R e t i c o n RL/1024S) o p e r a t e d by d e t e c t o r c o n t r o l l e r EG&G PARC, M o d e l 1218 and d a t a - m a n i p u l a t i o n by t h e 0MA-2 c o n s o l e M o d e l 1215. SPD was m a i n t a i n e d a t -22° + 0.002°C. The s p e c t r a l window w i t h M o d e l 78-466 s p e c t r o m e t e r was 21.094 nm. 2) EG&G PARC, M o d e l 1254 s i l i c o n i n t e n s i f i e d v i d i c o n (SIT) detector with u l t r a v i o l e t t o v i s i b l e c o n v e r t e r , ope r a t e d by d e t e c t o r c o n t r o l l e r M o d e l 1216 v i a 0MA-2 c o n s o l e M o d e l 1215. Number o f c h a n n e l s 5 0 0 . S p e c t r a l w i n dow was 10.31 nm. 3) EG&G PARC, M o d e l 1420, m i c r o c h a n n e l p l a t e (MCP) i n t e n s i f i e d SPD w i t h 700 c h a n n e l s ( I S P D ) . Temperature: - 20°C. O p e r a t e d by d e t e c t o r c o n t r o l l e r M o d e l 1412. S i n g l e Channel ( S i g n a l

Integration):

PMT s i g n a l c o u n t e d 10 t i m e s f o r p e r i o d s o f 10 s e c o n d s e a c h u s i n g A n a l o g Technology C o r p o r a t i o n Model 151, wide range c u r r e n t - t o - f r e q u e n c y c o n v e r t e r . S a m p l i n g t i m e s were 100 ms. PMT; EMI M o d e l 978AQ, o p e r a t e d a t 700 V.

MULTICHANNEL IMAGE DETECTORS

80

d e u t e r i u m lamp was p l a c e d a t t h e same o p t i c a l p o s i t i o n n o r m a l l y o c c u p i e d by t h e p l a s m a , i . e . , 60 cm away f r o m t h e e n t r a n c e s l i t of t h e p o l y c h r o m a t o r . The PMT r e s p o n s e t o t h e c a l i b r a t e d a r c lamp was m e a s u r e d o v e r t h e 180-440 nm r e g i o n , i n w a v e l e n g t h i n t e r v a l s of 10 nm. These measurements were t h e n r e p e a t e d f o r t h e p l a s m a f e d w i t h a 1% HNO^ b l a n j ^ s o l u t i o n . The i r r a d i a n c e o f t h e p l a s m a ( I p ^ ) , i n m i c r o w a t t s / c m /nm, was t h e n d e t e r m i n e d a c c o r d i n g t o :

R

I , = p l X I ( a t 30 n

cm)

where R ^ and a r e t h e PMT r e s p o n s e c u r v e s (180-440 nm) f o r t h e p l a s m a End d e u t e r i u m lamp, r e s p e c t i v e l y , and I r e p r e s e n t s t h e c a l i b r a t e d i r r a d i a n c e of t h e d e u t e r i u m lamp, a t a d i s t a n c e of 30 cm away f r o m t h e e n t r a n c e s l i t . Because a l l o p t i c a l parameters r e m a i n e d unchanged f o r t h e c a l i b r a t e d lamp and ICP m e a s u r e m e n t s , p r i o r knowledge of the s p e c t r a l t r a n s f e r c h a r a c t e r i s t i c s of the spectrometer ( p a r t i c u l a r l y the g r a t i n g ) or the s p e c t r a l response of t h e photDcathode was n o t n e c e s s a r y . The m e a s u r e d I represent e d t h e b a c k g r o u n d i r r a d i a n c e a t a d i s t a n c e o f 30 cm^rrom t h e plasma. 1

R e s u l t s And

Discussion

L i n e a r i t y And Dynamic Range. T h e r e i s e x t e n s i v e e v i d e n c e t h a t e m i s s i o n i n t e n s i t i e s o f many a t o m i c l i n e s e x c i t e d i n an ICP source are l i n e a r l y r e l a t e d to c o n c e n t r a t i o n of the c o r r e s p o n d i n g a n a l y t e s o v e r a r a n g e o f a t l e a s t one m i l l i o n . T r a c e and m a j o r c o n s t i t u e n t s a r e t h e r e f o r e d e t e r m i n a b l e w i t h o u t changes i n t h e o p e r a t i n g c o n d i t i o n of t h e p l a s m a . Ideally, the d e t e c t i o n system s h o u l d have a c o m p a r a b l e l i n e a r dynamic r a n g e p e r f o r m a n c e . As p r e v i o u s l y d i s c u s s e d ( 4 5 ) , t h e r e a r e s e v e r a l d e f i n i t i o n s of dynamic r a n g e t h a t a r e a p p l i c a b l e t o t h e SPD d e t e c t i o n s y s t e m . F i r s t , t h e r e i s t h e s i n g l e d i o d e dynamic r a n g e f o r a f i x e d i n t e g r a t i o n t i m e , d e f i n e d h e r e as t h e a n a l y t e c o n c e n t r a t i o n r a n g e t h a t p r o d u c e s a l i n e a r s i g n a l r e s p o n s e . T h i s f o r m o f dynamic r a n g e c a n be s e v e r e l y r e d u c e d by t h e r m a l l y g e n e r a t e d d a r k c h a r g e , b e c a u s e i t r e d u c e s t h e e f f e c t i v e A/D c o n v e r t e r r a n g e a v a i l a b l e f o r r e a d o u t of p h o t o n g e n e r a t e d c h a r g e s ( s i g n a l ) . To r e d u c e t h e e f f e c t o f d a r k c h a r g e b u i l d up by a p p r o x i m a t e l y a f a c t o r of 100, t h e SPD a r r a y was c o o l e d t o -20°C. The c o o l i n g was done t h e r m o e l e c t r i c a l l y and t h e t e m p e r a t u r e was k e p t c o n s t a n t t o w i t h i n a few m i l l i d e g r e e s C e l s i u s . Under t h e s e c o n d i t i o n s a s i n g l e d i o d e dynamic r a n g e o f a p p r o x i m a t e l y 16,000:1 was r o u t i n e l y a c h i e v e d ( l i m i t e d o n l y by t h e 14 b i t s A/D c o n v e r t o r u s e d ) . To enhance t h e o v e r a l l dynamic r a n g e o f t h e SPD, t h e v a r i a b l e i n t e g r a t i o n t i m e ( V I T ) mode of o p e r a t i o n c a n be u s e d ( 4 1 ) . I n t h i s a p p r o a c h t h e s i g n a l s f r o m each s p e c t r a l window c a n be

4.

GRABAU AND

TALMI

Coupled

Plasma-Atomic

Emission

Spectroscopy

81

c o n s e c u t i v e l y o b t a i n e d a f t e r i n t e g r a t i o n o f 16 ms, 160 ms and 16 seconds. I n t h i s manner, t h e o r e t i c a l dynamic r a n g e s o f 1 t o 16,000, 10 t o 160,000 and 1,000 t o 16,000,000 c a n be a c h i e v e d w i t h an o v e r a l l l i n e a r dynamic r a n g e o f 1.6 X 10^. In r e a l i t y , t h e p h o t o n n o i s e and t h e combined d e t e c t o r d a r k c h a r g e and p l a s m a b a c k g r o u n d s i g n a l r e d u c e t h e u s e f u l VIT r a n g e of t h e SPD. The o v e r a l l r e a d o u t n o i s e a s s o c i a t e d w i t h a t y p i c a l 16 s e c o n d , on t a r g e t , ICP s i g n a l i n t e g r a t i o n was s i x c o u n t s rms ( m o s t l y r a d i o f r e q u e n c y i n t e r f e r e n c e as d i s c u s s e d b e l o w ) . A t t h e h i g h end, t h e maximum r e a d a b l e s i g n a l i s a l w a y s l i m i t e d by A/D c o n v e r t e r range. The l i m i t o f q u a n t i t a t i v e d e t e r m i n a t i o n (LQD) i s d e f i n e d as the c o n c e n t r a t i o n r e q u i r e d to y i e l d a net i n t e n s i t y t e n times g r e a t e r than the standard d e v i a t i o n of the readout s c a t t e r ( 4 0 ) . F o r i n s t a n c e , c o n s i d e r a 16 second s i g n a l i n t e g r a t i o n a t t h e Mn 257.6 nm l i n e where t h e combined d a r k c h a r g e and p l a s m a s p e c t r a l b a c k g r o u n d s i g n a l consumes a p p r o x i m a t e l y 20% o f t h e dynamic r a n g e of t h e A/D c o n v e r t e r (800 c o u n t s d a r k c h a r g e and 2600 c o u n t s p l a s m a b a c k g r o u n d ) . The r e s u l t a n t a n a l y t i c a l dynamic r a n g e ( s i n g l e d i o d e ) w o u l d be:

Maximum n e t s i g n a l _ 16,000 - 3400 _ Net s i g n a l a t LQD 10 X 6

2 1 Q

( w i t h p r o p o r t i o n a l l y low d a r k c h a r g e l e v e l s ) . Y e t , s h o r t e r ondetector integration times, usable at higher analyte concentra­ t i o n , w o u l d i n c r e a s e t h i s a n a l y t i c a l dynamic r a n g e . F o r t h e same Mn l i n e a t 257.6 nm c o n s e c u t i v e i n t e g r a t i o n s o f 16 msec, 160 msec and 16 sec w o u l d have an a c c u m u l a t e d ( V I T ) a n a l y t i c a l l i n e a r r a n g e o f a t l e a s t 2.1 Χ 1 0 . The e x c e l l e n t dynamic r a n g e a c h i e v e d by t h e VIT method i s r e p r e s e n t e d by t h e d a t a i n T a b l e I I and by t h e g r a p h i c a l p r e s e n ­ t a t i o n i n F i g u r e 1. L i n e a r i t y was r e t a i n e d , w i t h i n t h e e x p e r i ­ mental e r r o r of measurements, over a c o n c e n t r a t i o n range g r e a t e r t h a n 10^. I t s h o u l d be n o t e d , t h a t t h e l o w e s t p l o t t e d p o i n t s r e p r e s e n t LQD v a l u e s . }

5

D e t e c t o r and S p e c t r a l B a c k g r o u n d , S p e c t r a l I n t e r f e r e n c e s , and Spectral Stripping. For SPD s i t i s u s e f u l to d i s t i n g u i s h between t h e d e t e c t o r and s p e c t r a l b a c k g r o u n d u n d e r l y i n g most a n a l y t e lines. The m a j o r component o f t h e d e t e c t o r b a c k g r o u n d a r i s e s f r o m t h e r m a l l y g e n e r a t e d dark charge. There i s i n a d d i t i o n a c h a r a t e r i s t i c f i x e d p a t t e r n c a u s e d by s t r a y c a p a c i t i v e c o u p l i n g of t r a n ­ s i e n t s a r i s i n g f r o m t h e c l o c k d r i v i n g s i g n a l s and by d i o d e t o diode dark charge v a r i a t i o n ( 4 5 ) . Radio frequency i n t e r f e r e n c e f r o m ICP s o u r c e s may a l s o p r o d u c e a t i m e v a r i a b l e p a t t e r n n o i s e s u p e r i m p o s e d on t h e d e t e c t o r b a c k g r o u n d . The s p e c t r a l b a c k g r o u n d u s u a l l y r e s u l t s from the c u m u l a t i v e c o n t r i b u t i o n s from sources 1

82

MULTICHANNEL IMAGE DETECTORS

•—s

c e C

H

U

Λ U

Φ

1—1

ίο

4-1 Ο

•H -U Cd r—1

ε ε β o O o o


C Ο υ

ι C O

en

ι—I 1—1 cd

M M

φ

to

Φ

00 c eu •H

en •Η

en cd

PL.

Φ

Ο

ΡΜ CO

υ Φ

Q

Λ u

β

u

ec

Ο

ï»s en

CO 1 PH U M

Φ

CO •H CO W -—y VD Η Η VÛ Η τ—4 •H cd Φ 4J Ο Ο Ο Ο Ο Η Η Ο Ο ^ Ο •H H H

ε (U •enυ



co

c C •Ho 0 0 o •H 4J φ

ti

• u en β Ο ε Φ Ό

ι

r—4 cd

fi

Φ 4J cd

οοοοοοοοοοοοοοοοοο 3 3 3 3 ^ ί ΐ ε ε ε ο ο Ο Ο Ο Ο Ο ο ο

ο ο ο Ο τΗ ο

ο ο

ο ο

ο ο

τΗ

Ο Ο

cd

ε ε CO χ* ο υ υ ο cd < Ift

200C o 1200η

2

κκχ)

Ζ

ΘΟΟ

S

60O

δ

40O

S

200

IÔ0

2&0 3Ô0 400 800 CHANNEL NO.

KX>

200 aSo 400 500 CHANNEL NO. WAVELENGTH,(nm)

307.M 3*004 SttJO M4.M 3M22 M f i t

Figure 2. Efficiency of plasma background subtraction. Key: a, emission spectrum of 1 μg/mL Be, 7% HN0 ; b, emission spectrum of 1% HN0 blank; and c, difference spectrum obtained by subtracting Spectrum b from a. Spectra were obtained after on-target signal integration for 8 s. 3

3

85

MULTICHANNEL IMAGE DETECTORS

7000 6000 5000| 4000 5000

Si IS

£

100

WAVELENGTH (MIR) 55t.6

'

II

· 540.6

Figure 3. Efficiency of plasma background subtraction. Spectra obtained after ondetector integration for 1.6 s. Key: a, spectrum of 10 μg|mL Ti; b, detector and spectral background; and c, net difference spectrum.

4.

GRABAU AND

TALMI

Coupled

Plasma-Atomic

Emission

Spectroscopy

87

windows may be i n a d e q u a t e l y n a r r o w f o r some a p p l i c a t i o n s ) . The a n a l y s t may t h e n use a v i d e o d i s p l a y f o r : a) c h a r a c t e r i z i n g t h e n a t u r e o f t h e u n d e r l y i n g b a c k g r o u n d and d e t e r m i n i n g t h e most s u i t able analyte l i n e s ; b) d e t e r m i n i n g w h i c h a n a l y t e l i n e s a r e l e a s t s u s c e p t i b l e t o s h i f t s i n t h e b a c k g r o u n d m a g n i t u d e due t o changes i n t h e c o n c e n t r a t i o n s of t h e m a j o r c o n c o m i t a n t s ; and c) s e l e c t i n g the b e s t wavelengths ( d i o d e s ) f o r a p p l y i n g base l i n e background c o r r e c t i o n s f o r each a n a l y t e l i n e . I f a p p r o p r i a t e , a computer a l g o r i t h m may be u s e d t o d e t e r m i n e b a c k g r o u n d l e v e l s f r o m s e v e r a l off analyte l i n e diodes. The e f f i c i e n c y of b a c k g r o u n d c o r r e c t i o n t e c h n i q u e s may be j u d g e d by c o m p a r i n g a s e r i e s o f r e f e r e n c e w o r k i n g c u r v e s c o n t a i n i n g i n c r e a s i n g c o n c e n t r a t i o n s of c o n c o m i t a n t s . Errors arising f r o m u n c o r r e c t e d b a c k g r o u n d s h i f t s w i l l r e d u c e t h e s l o p e s of t h e s e r e f e r e n c e w o r k i n g c u r v e s a t low a n a l y t e c o n c e n t r a t i o n s . W i t h PMT p o l y c h r o m a t o r s , b a c k g r o u n d c o r r e c t i o n has been p r o v e n e f f e c t i v e down t o t h e LQD l e v e l , even a t h i g h c o n c o m i t a n t c o n c e n t r a t i o n l e v e l s , e.g., 5000 ug/ml Ca, 5000 ug/ml Mg and 500 ug/ml A l ( 5 0 ) . F o r our e v a l u a t i o n s , t h e TI 190.8 nm and t h e As 193.7 nm l i n e s were c h o s e n t o d e t e r m i n e t h e e f f i c i e n c y of b a c k g r o u n d c o r r e c t i o n a c h i e v a b l e w i t h SPD d e t e c t o r s . F i g u r e 4 shows t h e s p e c t r a a t and a b o u t t h e 190.8 nm TI l i n e m e a s u r e d f o r 15 ug/ml TI s o l u t i o n s ( 1 % HNO3 a q u e o u s ) w i t h and w i t h o u t t h e a d d i t i o n of c o n c o m i t a n t s . In both cases the blank s u b t r a c t i o n ( d e t e c t o r p l u s blank s p e c t r a l b a c k g r o u n d ) was p e r f o r m e d . I t i s apparent t h a t the r e l a t i v e l y f l a t b a c k g r o u n d i s amenable t o l i n e i n t e r p o l a t i o n c o r r e c t i o n s , i . e . , the c h o i c e of wavelength ( d i o d e ) f o r background c o r r e c t i o n , i s r a t h e r non c r i t i c a l . I n t h e c a s e o f t h e As 193.7 nm l i n e , c o r r e c t i o n o f t h e b a c k g r o u n d i s r e n d e r e d more d i f f i c u l t b e c a u s e t h e a n a l y t e l i n e i s s u p e r i m p o s e d on t h e w i n g of an a d j a c e n t A l c o n c o m i t a n t l i n e , F i g u r e 5. I n t h i s c a s e , a t l e a s t two c o r r e c t i o n v a l u e s m e a s u r e d a t w a v e l e n g t h s l o c a t e d on each s i d e of t h e As l i n e a r e n e e d e d . A s t r a i g h t l i n e i n t e r p o l a t i o n between t h e s e two w a v e l e n g t h s i s t h e n u s e d t o e s t i m a t e t h e b a c k g r o u n d l e v e l a t t h e a n a l y t e w a v e l e n g t h . A n a l y t i c a l c a l i b r a t i o n c u r v e s of TI and As a t f o u r c o n c o m i t a n t c o n c e n t r a t i o n l e v e l s , o b t a i n e d a f t e r b l a n k b a c k g r o u n d s u b t r a c t i o n o n l y , a r e shown i n F i g u r e s 6 and 7. Clearl y , a t t h e h i g h e s t c o n c o m i t a n t c o n c e n t r a t i o n s , t h e LQD a n a l y t e l e v e l shows an o r d e r of m a g n i t u d e e r r o r i n c o n c e n t r a t i o n due t o u n c o r r e c t e d background s h i f t s . When t h e interpolâtive b a c k g r o u n d c o r r e c t i o n s were a p p l i e d t o t h e same d a t a , t h e d e t e r m i n a t i o n e r r o r s were d r a s t i c a l l y r e d u c e d , as shown by F i g u r e s 8 and 9. I n f a c t , b a c k g r o u n d c o r r e c t i o n s a c h i e v e d w i t h SPD, f o r b o t h t y p e s of u n d e r l y i n g s p e c t r a l backgrounds, a r e comparable to t h a t a c h i e v e d w i t h t h e a r r a y PMT p o l y c h r o m a t o r (50)· The s h i f t s i n t h e a n a l y t i c a l c u r v e s , v i s i b l e i n F i g u r e s 8 and 9 r e f l e c t t h e r e d u c t i o n i n the n e b u l i z e r e f f i c i e n c y a t the h i g h or concomitant concentrations. T h i s m a t r i x e f f e c t c o u l d be e l i m i n a t e d by u t i l i z i n g the i n t e r n a l r e f e r e n c e l i n e p r i n c i p l e to n o r m a l i z e v a r i a t i o n s i n the n e b u l i z e r e f f i c i e n c y . For t h i s n o r m a l i z a t i o n procedure

88

MULTICHANNEL IMAGE DETECTORS

1905

WAVELENGTH (nm)

1*1.5

Figure 4. Net spectra after spectral stripping with 1% HN0 blank spectrum. Spectra obtained with Spectrometer 2, Table I. Key: a, 15 μg/mL TI with 5000 μg|mL Ca and Mg, and500 μg|mL Al; and b, 15 μg|mL 77. 3

ι

1955

194.0

WAVELENGTH (nm)

Figure 5. Net spectra after spectral stripping with 1% HN0 blank spectrum. Spectra obtained with Spectrometer 2, Table I. Key: a, 2.5 μg|mL As with 5000 μg|mL Ca and Mg, and500 μg|mL Al; and b, 2.5 μg|mL As. 3

GRABAU AND

Coupled

TALMI

I0«J

1 0.3

Plasma-Atomic

Emission

1 3.0

Spectroscopy

1 30

CONCENTRATION /uyml ) Figure 6. Analytical calibration for TI 190.8 nm after spectral stripping with 1% HN0 blank. Key: •, high concomitants level = Ca and Mg 5000 μg|mL, Al 500 μg|mL; A, medium concomitants level - Ca and Mg 750 μg|mL, A175 μ^\mL; o, low concomitants level - Ca and Mg 100 μ^ΙτηΕ, Al 10 ^glmL; and *, no concomitants. 3

blank. Concomitant

concentrations

are the same as in Figure 6.

MULTICHANNEL IMAGE DETECTORS

Figure 9. Analytical calibration for As 193.7 nm after spectral stripping with 1% HN0 blank and interpolative background correction. Concomitant concentrations are the same as in Figure 6.

3

4.

GRABAU AND

TALMI

Coupled

Plasma-Atomic

Emission

Spectroscopy

91

to be s u c c e s s f u l , t h e i n t e r n a l r e f e r e n c e l i n e s h o u l d f a l l i n t h e same SPD s p e c t r a l window. Although the b a s e l i n e , i n t e r p o l a t i v e background-correction method i s v e r y e f f e c t i v e i t s l i m i t a t i o n must be u n d e r s t o o d . Whereas s p e c t r a l i n t e r f e r e n c e s c a u s e d by u n i f o r m b a s e l i n e s h i f t s and by b r o a d s m o o t h l y s l o p i n g l i n e w i n g s ( f o r s p a t i a l f r e q u e n c y f e a t u r e s a t t h e SPD f o c a l p l a n e ) can be f a i r l y a c c u r a t e l y c o r r e c t e d , t h o s e c a u s e d by s p e c t r a l o v e r l a p p i n g w i t h c o n c o m i t a n t l i n e s c a n n o t be c o r r e c t e d by t h i s s i m p l e b a s e l i n e , i n t e r p o l a t i v e p r o c e d u r e . M o r e o v e r , r e g a r d l e s s of w h e t h e r a PMT o r an SPD d e t e c t o r i s used, a c c u r a c y of t h i s i n t e r p o l a t i v e background c o r r e c t i o n method depends on t h e s t r a y r a d i a n t e n e r g y (SRE) c h a r a c t e r i s t i c s o f the s p e c t r o m e t e r u s e d . T h i s e f f e c t i s demonst r a t e d by a c o m p a r i s o n b e t w e e n F i g u r e s 4 and 5 and F i g u r e s 10 and 11. The s p e c t r a shown i n F i g u r e s 4 and 5 were o b t a i n e d w i t h s p e c t r o m e t e r 2 ( T a b l e I ) e q u i p e d w i t h a low SRE h o l o g r a p h i c grating. Those shown i n F i g u r e s 10 and 11 were o b t a i n e d w i t h s p e c t r o m e t e r 1 ( T a b l e I ) e q u i p e d w i t h a m e c h a n i c a l l y r u l e d (and r a t h e r o l d ) g r a t i n g t h a t p r o d u c e d h i g h l y s t r u c t u r e d and i r r e g u l a r background s h i f t s . These s t r u c t u r e s , o f t e n o v e r l a p a n a lyte spectral lines. The e f f e c t of t h i s o v e r l a p was s i g n i f i c a n t even a t c o n c e n t r a t i o n l e v e l s w e l l above t h e l i m i t of q u a n t i t a t i v e determination. As shown i n F i g u r e 12, s i m i l a r l y s t r u c t u r e d b a c k g r o u n d s were o b s e r v e d f o r t h e SPD and t h e PMT, t h u s r u l i n g out SPD d i o d e - t o - d i o d e r e s p o n s e v a r i a t i o n s as the c a u s e f o r t h i s phenomenon. H i g h l y s t r u c t u r e d SRE b a c k g r o u n d s have a l s o been observed w i t h other spectrometers u t i l i z i n g r u l e d g r a t i n g s (46). A l t h o u g h most s t a t e of t h e a r t r u l e d g r a t i n g s do n o t p r o d u c e s t r u c t u r e d SRE f e a t u r e s , a l a r g e number of g r a t i n g s s t i l l i n s e r v i c e may be u n s u i t a b l e f o r a c c u r a t e b a c k g r o u n d s h i f t c o r r e c tion. When i t i s i m p o s s i b l e t o s e l e c t a n a l y t e l i n e s t h a t a r e comp l e t e l y f r e e f r o m s p e c t r a l o v e r l a p by c o n c o m i t a n t s p e c t r a l l i n e s , a r r a y d e t e c t o r s may be u s e d t o r e d u c e t h e a d v e r s e e f f e c t of s u c h s p e c t r a l i n t e r f e r e n c e s . To a c c o m p l i s h t h i s t a s k , t h e s p e c t r u m of t h e known c o n c o m i t a n t i s f i r s t m e a s u r e d and s t o r e d . One or more c o n c o m i t a n t l i n e s t h a t a r e known t o be l o c a t e d i n an i n t e r f e r e n c e f r e e zone w i t h i n t h e m e a s u r e d s p e c t r a l window a r e t h e n u s e d as i n t e r n a l r e f e r e n c e l i n e s . The r e l a t i v e i n t e n s i t i e s of t h e s e l i n e s i n t h e sample s p e c t r u m a r e t h e n u s e d t o e s t a b l i s h a c o r r e c t i o n f a c t o r by w h i c h the s t o r e d c o n c o m i t a n t s p e c t r u m i s m u l t i p l i e d and s u b t r a c t e d f r o m the sample s p e c t r u m . T h i s c o r r e c t i o n p r o c e d u r e can be p e r f o r m e d f o r e a c h known c o n c o m i t a n t p r e s e n t i n t h e s a m p l e . A p r i o r k n o w l e d g e of t h e c o n c e n t r a t i o n of each c o n c o m i t a n t i s n o t r e q u i r e d . A s i m p l i f i e d v e r s i o n of t h i s s p e c t r a l s t r i p p i n g technique was d e m o n s t r a t e d w i t h the SPD f o r the V d o u b l e t ( 3 0 9 . 2 7 , 309.31 nm), w h i c h i s u n r e s o l v e d f r o m t h e A l d o u b l e t ( 3 0 9 . 2 7 , 209.28 nm). The s p e c t r a of p u r e A l , p u r e V ( a s shown i n F i g u r e 1 3 ) , and v a r i o u s m i x t u r e s o l u t i o n s of t h e two were f i r s t measured and s t o r e d .

MULTICHANNEL IMAGE DETECTORS

20000 Γ -

15000

S υ

C m m 6 5000

WAVELENGTH (nm)

Figure 10. Net spectra as in Figure 4, but obtained with Spectrometer

191.4

1, Table I.

I IOOOOI—

5000

195.1

19 WAVELENGTH (nm)

Figure 11. Net spectra as in Figure 5, but obtained with Spectrometer

1, Table I.

GRABAU AND TALMI

Coupled

Plasma-Atomic

Emission

Spectroscopy

Figure 13. Spectra ofl% HN0 aqueous solutions of pure V (top) and AI (bottom)ata concentration of400 μg|mL. Signal integration time = 100 ms. 3

94

MULTICHANNEL IMAGE DETECTORS

The A l 309.3 / A l 308.2 i n t e n s i t y r a t i o was m e a s u r e d on t h e s p e c trum o f p u r e A l , and i n t e n s i t y o f t h e A l 308.22 nm r e f e r e n c e l i n e was measured i n each o f t h e A l , V m i x t u r e s p e c t r a and m u l t i p l i e d by t h i s c o r r e c t i o n r a t i o t o c a l c u l a t e t h e i n t e n s i t y c o n t r i b u t i o n o f A l t o t h e 309.3 nm u n r e s o l v e d A l , V d o u b l e t . The a c c u r a c y o f d e t e r m i n i n g t h e a c t u a l i n t e n s i t y o f V a t t h e 309.3 nm l i n e , i n t h i s f a s h i o n , T a b l e I I I , d e c r e a s e d as t h e A l / V c o n c e n t r a t i o n r a t i o i n c r e s e d . T h i s i s e x p e c t e d b e c a u s e t h e combined s i g n a l o f t h e r e s o l v e d V, A l d o u b l e t was m a i n t a i n e d a t a r e l a t i v e l y c o n s t a n t l e v e l and t h e r f o r e , a l s o i t s a s s o c i a t e d n o i s e i . e . , m o s t l y due t o p h o t o n n o i s e and s u p e r i m p o s e d RF i n t e r f e r e n c e . A t t h e same t i m e , t h e f r a c t i o n o f t h e V s i g n a l ( w i t h i n t h e combined s i g n a l ) was r e d u c e d , r e s u l t i n g i n a c o r r e s p o n d i n g r e d u c e d p r e c i s i o n and a c c u r a c y . When a n a l y z i n g " r e a l " s a m p l e s w i t h c o m p l e x m a t r i c e s , t h e a c c u r a c y o f s p e c t r a l s t r i p p i n g becomes v e r y d e p e n d e n t on t h e s e l e c t i o n o f a p p r o p r i a t e c o n c o m i t a n t r e f e r e n c e l i n e s . G e n e r a l l y , u n d e r such c i r c u m s t a n c e s , t h e a c c u r a c y o f s p e c t r a l s t r i p p i n g c a n be s i g n i f i c a n t l y i m p r o v e d by r e s o r t i n g t o m a t r i x f o r m , l e a s t - s q u a r e s d e c o n v o l u t i o n t e c h n i q u e s (5_1) t h a t r e l y on a much w i d e r s t a t i s t i c a l d a t a b a s e , i . e . , t h e e n t i r e d i g i t i z e d spectrum (1024 p o i n t s ) . F i n a l l y , i t i s i m p o r t a n t t o c l a r i f y a few common m i s c o n c e p t i o n s r e g a r d i n g these s p e c t r a l s t r i p p i n g techniques. First, e r r o r s may be c a u s e d by u n s t a b l e g e o m e t r i c r e g i s t r a t i o n , i . e . , wavelength-to-diode c a l i b r a t i o n , r e s u l t i n g from thermal expans i o n o r c o n t r a c t i o n of t h e polychromator system. Second, the s t a t i s t i c a l n a t u r e o f t h e s e t e c h n i q u e s s e t s a l i m i t on t h e i r a c c u r a c y , e.g., i t d e t e r i o r a t e s as t h e s u b t r a c t e d i n t e r f e r r i n g l i n e s become more i n t e n s e and t h e s o u g h t a n a l y t e l i n e s l e s s i n tense. D e t e c t i o n L i m i t s , N o i s e C h a r a c t e r i s t i c s and S/N C o n s i d e r a t i o n . The d e t e c t i o n l i m i t s m e a s u r e d w i t h t h e u n i n t e n s i f i e d SPD d e t e c t i o n s y s t e m o p e r a t e d i n t h e o n - t a r g e t i n t e g r a t i o n r e a d o u t mode a r e compared t o t h o s e o b t a i n e d w i t h t h e ISPD ( i n t e n s i f i e d SPD) and t h e SIT ( b o t h h i g h g a i n m u l t i c h a n n e l d e t e c t o r s ) and t h e PMT, a h i g h g a i n s i n g l e channel d e t e c t o r , Table IV. I t i s important t o r e a l i z e t h a t t h e S I T u s e d i n t h i s s t u d y was u n c o o l e d . I t i spossible t o c o o l a S I T t o d r y - i c e t e m p e r a t u r e s and t h u s e f f e c t i v e l y a c h i eve l o n g s i g n a l i n t e g r a t i o n t i m e s (52^)· However, c o o l i n g a S I T i s m e c h a n i c a l l y d i f f i c u l t , and r e q u i r e s e l a b o r a t e s c a n n i n g and t a r g e t p r e p a r a t i o n t e c h n i q u e s , t o overcome t h e h i g h d i s c h a r g e l a g c h a r a c t e r i s t i c s of v i d i c o n d e v i c e s . I t i s , g e n e r a l l y , r a t h e r d i f f i c u l t t o m a i n t a i n a good l i n e a r i t y ( s i g n a l r e c i p r o c i t y ) w i t h cooled SIT's. U l t r a s o n i c sample n e b u l i z a t i o n was u s e d t h r o u g h o u t t h i s study. These c o m p a r a t i v e d e t e c t i o n l i m i t v a l u e s , h o w e v e r , must be c a u t i o u s l y e v a l u a t e d s i n c e t h e a b s o l u t e p e r f o r m a n c e o f a l l f o u r d e t e c t o r s c a n v a r y by a f a c t o r o f 2 - 4. T h i s i s p a r t i c u l a r l y t r u e f o r t h e S I T , f o r w h i c h s p a t i a l and s p e c t r a l v a r i a t i o n s i n photocathode response, s i g n a l a m p l i f i c a t i o n , e f f i c i e n c y of the

GRAB AU AND

Coupled

TALMI

Plasma-Atomic

Ο

ο

ω

Ο 1

ε

^0

00

u CO u •

Emission





rH

ο

LO

—/ Φ rH CO CM u r i n e , by 3.5 t i m e s i n 507> serum, and by 14

GRABAU AND

TALMI

Coupled

Plasma-Atomic

Emission

Spectroscopy

11

Figure 19. Emission pulsefrom 100 μΖ,, 1.0 μg/mL Mn; 10 ng/mL Mn + 500 μg|mL Ca; and500 μg|mL Ca, observed with a PMT at 257.6 nm.

112

MULTICHANNEL IMAGE DETECTORS

t i m e s i n 1 0 % b l o o d compared t o v a l u e s r e p o r t e d f o r d i l u t e a c i d solutions. The n o r m a l c o n c e n t r a t i o n o f many t r a c e e l e m e n t s i n b i o l o g i c a l f l u i d s i s below the l i m i t of q u a n t i t a t i v e determinat i o n o f p u l s e d ( 1 0 0 u L ) ICP-AES. N e v e r t h e l e s s , c l i n i c a l l y s i g n i f i c a n t e l e m e n t s such a s Na, K, Mg, C a , P, F e , Cu and Zn c a n s t i l l be d e t e r m i n e d by t h i s t e c h n i q u e . S i g n i f i c a n t l y improved d e t e c t i o n l i m i t s , a l t h o u g h a t t h e expense of reduced s p e c t r a l r e s o l u t i o n , c o u l d be e x p e c t e d w i t h t h e ISPD d e t e c t o r .

T a b l e X I I . D e t e c t i o n l i m i t s o b t a i n e d w i t h a n S I T f r o m 100 uL s a m p l e s compared t o c o n t i n u o u s n e b u l i z a t i o n and compared t o AAS detection limits.

Element Al As Be Cd Co Cr Cu Fe Mn Mo Ni Pb Se V Zn

WaveLength 308.2 193.7 313.0 226.5 228.6 205.5 324.7 261.1 257.6 386.3 351.5 283.3 196.0 311.0 213.8

nm

D e t e c t i o n L i m i t s ng/ml ICP-AES pulsed continuous u l t r a sonic n e b u l i z a t i o n nebulization SIT PMT SIT 0.2 4 2 200 40 0.08 0.02 0.003 1.2 0.07 1.0 0.2 3 0.08 3 1 0.4 0.06 4 0.09 0.3 0.07 0.01 25 0.3 0.2 6 70 1 14 350 1 65 2 0.06 0.3 1 0.1 0.2

AAS graphite furnace 0.02 0.2 0.03 0.001 0.4 0.003 0.01 0.05 0.002 0.05 0.04 0.02 0.1 0.02 0.001

F i g u r e 19 i s a l s o an example o f t h e b a c k g r o u n d s h i f t e r r o r s e n c o u n t e r e d w i t h ICP-AES. The t h r e e e m i s s i o n ( 1 0 0 u L ) p u l s e s were m e a s u r e d w i t h a PMT a t 257.6 nm. W i t h o u t t h e b e n e f i t o f b a c k g r o u n d c o r r e c t i o n t h e c a l c i u m c o n c o m i t a n t c a u s e d an e r r o r o f 52% i n t h e d e t e r m i n a t i o n o f t h e Mn i n t h e Ca i n t e r f e r e d s o l u t i o n . W i t h t h e S I T , where an e n t i r e s p e c t r a l window was s i m u l t a n e o u s l y r e c o r d e d f o r t h e Mn + Ca s o l u t i o n s , b a c k g r o u n d s u b t r a c t i o n was p o s s i b l e and r e s u l t e d i n a mere 37 e r r o r i n t h e Mn measurement. T h i s e r r o r i s w i t h i n t h e 1-3% s a m p l i n g p r e c i s i o n o b t a i n e d w i t h 100 uL s a m p l e s . Copper and z i n c were d e t e r m i n e d i n 100 uL s a m p l e s o f w h o l e b l o o d , h o r s e b l o o d serum and human u r i n e t o d e m o n s t r a t e t h e a p p l i c a b i l i t y o f t h i s t e c h n i q u e t o r e a l s a m p l e s . Sample p r e p a r a t i o n was k e p t t o a minimum. S t r a i g h t f o r e w a r d d i l u t i o n was t h e c

4.

GRABAU AND

TALMI

Coupled

Plasma-Atomic

Emission

Spectroscopy

113

only preparatory step. I t was, h o w e v e r , f o u n d a d v a n t a g e o u s t o i n c o r p o r a t e an i n t e r n a l r e f e r e n c e , Y, i n t h e d i l u t e d s o l u t i o n i n o r d e r t o m o n i t o r t h e n e b u l i z a t i o n e f f i c i e n c y of e a c h s a m p l e . U l ­ t r a s o n i c n e b u l i z a t i o n of d i l u t e b l o o d s o l u t i o n s was g r e a t l y i m ­ p r o v e d by i n c r e a s i n g t h e power i n p u t t o t h e u l t r a s o n i c t r a n s d u c e r f r o m 100 w a t t s t o 150 w a t t s . The n e b u l i z a t i o n e f f i c i e n c y was m o n i t o r e d by o b s e r v i n g t h e n e t a n a l y t e i n t e n s i t i e s . The i n c r e a s e i n power i m p r o v e d t h e n e b u l i z a t i o n e f f i c i e n c y o f 1% H N O 3 s o l u t i o n by 2 5 % t h a t of 50% b l o o d serum, by 50% and t h a t o f 10% w h o l e b l o o d by 5007,· D e t e r m i n a t i o n o f c o p p e r and z i n c i n w h o l e b l o o d samples made f r o m a r e f e r e n c e c u r v e and by t h e method o f s t a n d a r d a d d i t i o n s a r e shown i n T a b l e X I I I . The z i n c 213.8 nm l i n e was s u p e r i m p o s e d as a s h o u l d e r on t h e i n t e n s e Ρ 213.6 nm l i n e and b a s e l i n e i n t e r p o l a t i o n was n e c e s s a r y t o compensate f o r Ρ s p e c t r a l interference. S i m i l a r l y a l l u s e f u l Cu l i n e s were s p e c t r a l l y o v e r l a p p e d by i r o n l i n e s . The c o r r e c t i o n s f o r t h e i r o n i n t e r ­ f e r e n c e s were p e r f o r m e d t h r o u g h l i n e r a t i o c o m p a r i s o n s w i t h o t h e r n o n - i n t e r f e r e d i r o n l i n e s , s i m u l t a n e o u s l y measured. Without t h e s e c o r r e c t i o n p r o c e d u r e s , c o n c e n t r a t i o n e r r o r s f o r Cu and Zn w o u l d h a v e e x c e e d e d 1007>. I t seems, t h e r e f o r e , t h a t p u l s e d ICP-AES (100 uL) c o u l d be s u c c e s s f u l l y employed i n t h e d e t e r m i n a t i o n o f c l i n i c a l l y s i g n i ­ f i c a n t e l e m e n t s s u c h as Na, K, Mg, Ca, P, F e , Cu and Zn i n w h o l e b l o o d , b l o o d serum, u r i n e and s p i n a l f l u i d s . The a r r a y d e t e c t o r s have a d e f i n i t e a d v a n t a g e i n c o m p e n s a t i n g f o r b a c k g r o u n d and specific spectral interferences. W i t h the d e t e c t o r s used i n t h i s s t u d y , a l l of the c l i n i c a l l y s i g n i f i c a n t e l e m e n t s c o u l d n o t have been o b s e r v e d s i m u l t a n e o u s l y i n a s i n g l e s p e c t r a l window. W i t h t h e SPD d e t e c t o r Mg, P, F e , Cu and Zn a r e d e t e r m i n a b l e i n a s i n g l e s i m u l t a n e o u s s p e c t r a l window, 202-225 nm. The r e m a i n i n g t h r e e may be d e t e r m i n e d i n a 40 nm window as shown by B u s c h (K 808.8 nm; Na 818.3 nm, s e c o n d o r d e r ; Ca 845.4 nm, s e c o n d o r d e r ) , s i n c e a l o w e r s p e c t r a l r e s o l u t i o n i s required in this region. Conclusion This study suggests that determinations w i t h accuracy s i m i ­ l a r t o PMT s y s t e m s can be a c h i e v e d w i t h SPD d e t e c t o r s i f p o l y c h r o m a t e r s w i t h h i g h e r d i s p e r s i o n and h i g h q u a l i t y g r a t i n g s a r e u s e d . However, f o r s u c h s y s t e m s t o be p r a c t i c a l , t h e s p e c t r a l window ( r e d u c e d by t h e i n c r e a s e d d i s p e r s i o n ) must a l s o be i n ­ creased. A new 4096 e l e m e n t d i o d e a r r a y i s now a v a i l a b l e f r o m R e t i c o n ( M o d e l RL-4096/20 w i t h a 15 um c e n t e r s and a 508 um d i o d e height). The a s p e c t r a t i o , h o w e v e r , i s o n l y 34:1 compared t o t h e 100:1 r a t i o o f t h e RL-10245 d e t e c t o r . Consequently, photon c o l ­ l e c t i o n i s a l s o l e s s e f f i c i e n t , t h e o r e t i c a l l y r e s u l t i n g i n worse detection limits. T h i s l o s s i n p h o t o n c o l l e c t i o n c a n be g r e a t l y a l l e v i a t e d by ' c o n c e n t r a t i n g t h e s p e c t r a l s i g n a l w i t h a c y l i n d ­ r i c a l l e n s , d i r e c t l y a t t a c h e d t o the a r r a y ( 5 4 ) . 1

114

MULTICHANNEL IMAGE DETECTORS

The s i l u l t a n e o u s s p e c t r a l window o f t h i s new 4096 e l e m e n t d e t e c t o r , w i t h a P M T - l i k e s p e c t r a l r e s o l u t i o n w i l l be e x t e n d e d t o a t l e a s t 32 nm. B e c a u s e a n a l y t e s p e c t r a l l i n e s a r e r a n d o m l y d i s t r i b u t e d across the e n t i r e U V - v i s i b l e spectrum, the i n c r e a s e i n t h e p r o b a b i l i t y o f t h e i r i n c l u s i o n i n e a c h expanded s p e c t r a l w i n dow i s more t h a n j u s t f o u r f o l d . Most p r o b a b l y , f o r t h e m a j o r i t y of a n a l y t i c a l a p p l i c a t i o n s o n l y 3-5 s u c h expanded s p e c t r a l w i n dows w i l l s u f f i c e t o i n c l u d e a l l a n a l y t e l i n e s s o u g h t . A d i f f e r e n t s o l u t i o n t o t h i s s p e c t r a l window v s . s p e c t r a l r e s o l u t i o n dilemma m a i n t a i n s t h e 1024 d i o d e a r r a y b u t r e s o r t s t o t h e u s e o f a m u l t i p l e e n t r a n c e s l i t S P D / p l y c h r o m a t o r scheme ( 8 ) t h a t s h o u l d be a b l e t o p r o d u c e a r a p i d s u c c e s s i o n o f c o n s e c u t i v e l y i n t e r c h a n g i n g and s e l e c t i v e l y c h o s e n s p e c t r a l windows. W i t h t h i s t e c h n i q u e a r a n d o m l y a c c e s s e d s p e c t r a l window may be o b s e r ved w i t h o u t t h e r e q u i r e m e n t o f a h i g h t o l e r a n c e m e c h a n i c a l scanning device. F i n a l l y , t h e e f f e c t s o f s p e c t r a l i n t e r f e r e n c e s c o u l d be a t l e a s t p a r t i a l l y a l l e v i a t e d by more e f f e c t i v e l y e x p l o i t i n g t h e m u l t i c h a n n e l n a t u r e o f t h e SPD. S p e c t r a l i n t e r f e r e n c e s c o u l d be e a s i l y r e c o g n i z e d v i a l i n e i n t e n s i t y r a t i o s and a l t e r n a t i v e , n o n i n t e r f e r e d a n a l y t e l i n e s c o u l d be c h o s e n o r s p e c t r a l s t r i p p i n g p r o c e d u r e s may be u s e d , as p r e v i o u s l y d i s c u s s e d .

Acknowledgments We w o u l d l i k e t o t h a n k D r . V e l m e r F a s s e l , i n whose l a b o r a t o r y t h i s work was p e r f o r m e d , f o r h i s h o s p i t a l i t y and h i g h l y a p p r e c i a t ed a s s i s t a n c e i n r e v i e w i n g t h i s m a n u s c r i p t .

Literature Cited 1. Aldous, K.M.; M i t c h e l l , D.G.; Jackson, K.W. Anal. Chem. 1975, 47, 1035. 2. Betty, K.R.; Horlick, G. Appl. Spectrosc. 1978, 32, 31. 3. Boumans, P.W.J.M.; Brouwer, G. Spectrochimica Acta 1972, 27B, 247. 4. Boumans, P.W.J.M.; Rumphorst, R.E.; Williamson, L.; DeBoer, F.J. Spectrochim Acta 1973, 28B, 277. 5. Busch, K.W.; Howell, N.G.; Morrison, G.H. Anal. Chem. 1974, 46, 575. 6. Busch, K.W.; Howell, N.G.; Morrison, G.H. Anal. Chem. 1974, 46, 1231. 7. Busch, K.W.; Howell, N.G.; Morrison, G.H. Anal. Chem. 1974, 46, 2047. 8. Busch, K.W.; Malloy, B.; Talmi, Y. Anal. Chem. 1979, 51, 670. 9. Chester, T.L.; Haraguchi, H.; Knapp, D.O.; Messman, J.D.; Winefordner, J.D. Applied Spectroscopy 1976, 30, 410. 10. Chuang, F.S.; Natusch, D.F.S.; O'Keefe, K.R. Anal. Chem. 1978, 50, 525. 11. Codding, E.G.; Horlick, G. Applied Spectroscopy 1973, 27, 366.

4.

12. 13. 14. 15. 16. 17. 18. 19. 20 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 40. 41. 42. 43.

GRABAU AND TALMI

Coupled

Plasma-Atomic

Emission

Spectroscopy

115

Codding, E.G.; Horlick, G. Spectrosc. Letters 1974, 7, 33. Cook, T.; Milano, M.; Pardue, H.L. C l i n i c a l Chem. 1974, 20, 1422. Cook, T.E.; Santini, R.E.; Pardue, H.L. Anal. Chem. 1977, 49, 871. Cooney, R.P.; B o u t i l i e r , G.D.; Winefordner, J.D. Anal. Chem. 1977, 49, 1048. Felkel, Jr.,H.L.; Pardue, H.L. Anal. Chem. 1977, 49, 1112. Felkel, Jr.,H.L.; Pardue, H.L. Anal. Chem. 1978, 50, 603. Franklin, M.; Barber, C.; Koirtyohann, S.R. Spectrochimica Acta 1976, 31B, 589. Friche, F.L.; Rose, O.; Caruso, J.A. Anal. Chem. 1975, 47, 2018. Furuta, Ν.; McLeod, C.W.; Haraguchi, H.; Fuwa, F. B u l l e t i n of the Chemical Society of Japan 1979, 52, 2913. Furuta, N.; McLeod, C.W.; Haraguchi, H.; Fuwa, F. Applied Spectro­ scopy 1980, 34, 211. Ganjei, J.D.; Howell, N.G.; Rogh, J.R.; Morrison, G.H. Anal. Chem. 1976, 48, 505. Gustausson, Α.; Ingman, F. Spectrochimica Acta 1978, 34B, 31. Horlick, G. Applied Spectroscopy 1976, 30, 113. Horlick, G.; Codding, E.G. Anal. Chem. 1973, 45, 1490. Horlick, G.; Codding, E.G. Anal. Chem. 1974, 46, 133. Horlick, G.; Codding, E.G.; Leung, S.T. Applied Spectroscopy 1975, 29, 48. Horlick, G.; Codding, E.G. Applied Spectroscopy 1975, 29, 167. Howell, N.G.; Ganjei, J.D.; Morrison, G.H. Anal. Chem. 1976, 48, 319. Howell, N.G.; Morrison, G.H. Anal. Chem. 1977, 49, 106. Jackson, K.W.; Aldous, K.M.; Mitchel, D.G. Spectrosc. Letters 1973, 6, 315. Jackson, K.W.; Aldous, K.M.; M i t c h e l l , D.G. Applied Spectroscopy 1974, 28, 569. Knapp, D.O.; Omenetto, N.; Hart, L.P.; Plankey, F.W.; Winefordner, J.D. Analytica Chimica Acta 1974, 69, 455. Milano, M.J.; Pardue, H.L.; Cook, T.E.; Santini, R.E.; Margerum, D.W.; Raycheba, J.M.T. Anal. Chem. 1974, 46, 374. M i t c h e l l , D.G.; Jackson, K.W.; Aldous, K.M. Anal. Chem. 1973, 45, 1215A. Talmi, Y., Ed.; "Multichannel Image Detectors", ACS MONOGRAPH SERIES No. 102, ACS: Wachington, D.C, 1979. VanDerPiepen, H.; Claase, C; D e V i l l i e r s , D.B. Spectroschimica Acta 1976, 31B, 389. Wood, D.L.; Dargis, A.B.; Nash, D.L. Applied Spectroscopy 1975, 29, 310. Hughes, S.K.; Brown, R.M.; Fry, R.C. Applied Spectroscopy 1981, 35, 396. Butler, C.C.; Kniseley, R.N.; Fassel, V.A.; Anal. Chem. 1975, 47, 825. Talmi, Y. Applied Spectroscopy 1982, 36, 1. Floyd, M.A.; Fassel, V.A.; Katzenberger, J.M.; D'Silva, A.P. Anal. Chem. 1980, 52, 431-438. Fassel, V.A.; Kniseley, R.N. Anal. Chem. 1974, 46, 1110A-1155A.

116

MULTICHANNEL IMAGE

DETECTORS

44. Olson, K.W.; Haas, W.J.; Fassel, V.A. Anal. Chem 1977, 49, 632. 45. Talmi, Y.; Simpson, R.W. Applied Optics 1980, 19, 1401. 46. Larson, G.F.; Fassel, V.A.; Winge, R.K.; Kniseley, R.N. Applied Spectroscopy 1976, 30, 384. 47. Larson, G.F.; Fassel, V.A. accepted for publication i n Applied Spectroscopy. 48. Skogerboe, R.K.; Lamothe, P.J.; Bastiaans, G.J.; Freeland, S.J.; Coleman, G.N. Applied Spectroscopy 1976, 30, 495. 49. Koirtyohann, S.R.; Glass, E.D.; Yates, D.A.; Hinterberger, E.J.; Liche, F . E . Anal. Chem. 1977, 49, 1121. 50. Haas, W.J.; Winge, R.K.; Fassel, V.A.; Kniseley, R.N. Proc. 29th Pittsburgh Conference on Analytical Chemistry and Applied Spectroscopy 1978. 51. Stermberg, J.C.; Stillo, H.S.; Schwendeman, R.H. Anal. Chem. 1960, 32, 84. 52. Talmi, Y.; Baker, D.C.; Jadamec, J.R.; Saner, W.A. Anal. Chem. 1978, 50, 937A. 53. Kniseley, R.N.; Fassel, V.A.; Butler, C.C. Clinical Chemistry 1973, 19, 801. 54. Talmi, Y. unpublished data 1978. RECEIVED

September 23, 1983