Infrared Spectroscopy

formic acid (507), fumarates (and malé- ales) (776), furaldehyde (719), fused ring carbon;ds (561), gas chromatog- raphy detector (432), glycerides (1...
1 downloads 0 Views 2MB Size
REVIEW OF FUNDAMENTAL DEVELOPMENTS

I

I

. I

I

’ I

I

ROBERT C. GORE Stamford Research laboratories, American Cyanamid Co., Stamford, Conn.

T

HE UTILITY of the infrared spectrometer in aiding the chemist in his many endeavors is now well established. As more and more use is made of this aid, the task of the reviewer has become larger and larger. The 1954 review, the last with any semblance of being comprehensiye, contained 656 references. This review, with no greater coverage, contains over 800. With the advent of the cheaper do-ityourself spectrometers introduced during 1957 by several instrument manufacturers, no relief is in sight. The number of papers dealing with infrared spectrometry must necessarily increase for several years. The author of this review must ask your forgiveness, if your finest work of the year has been overlooked or if your favorite subject is scattered through several categories in this collection. It is not surprising that many colleges and universities are offering sumnier short courses in molecular spectroscopy for students and industrial trainees. Attendance a t the various syiiiposia and conferences is holding up well. The 1956 Gordon Conference, even though it mas directed toward those interested in absolute absorption intensities, mainly from academic institutions, was well attended by analytical and industrial spectroscopists. During the past two years, the existing collections of spectra such as those of the American Petroleuni Institute Project 44, the ASTM, the National Bureau of Standards-National Research Council, and commercial projects have continued to grow. The British-German Documentation of Molecular Spectroscopy System (D.M.S.) mas started and distributed several thousand punch cards with printed spectra. This effort, in this reviewer’s opinion, is a very important contribution and should be supported by most spectroscopists. Several discussions on the general applications of infrared spectroscopy mere published (56, 752, 753). Cannon (139) discussed application to the textile industry. Levy (426), of the United States Patent office, has attempted to obtain a uniform presentation of spectral data on antibiotic patent applications. Such uniformity would be of help in processing these applications. A

570

ANALYTICAL CHEMISTRY

review on infrared analyzers (649) is of general interest, 1:s well as a paper (814) on odor and mo1e:ular vibration. The outstanding book published during the period is Volume IX of Weissberger’s “Technique of Organic Chemistry” entitled “Chemical Applications of Spectroscopy’’ (782). The infrared sections by A. B . P. Duncan, R. Norman Jones, and C. Sandorfy are of great use. W.West’s $;enera1introduction to spectroscopy is 1u:id and well done. INSTRUMENTATION AND TECHNIQUES

Stamnireich (707) has described the excitation of Rarnan spectra with red and near-infrared radiation. This opens up an entirely new field for experimentation. The zirconium arc (147) as a source emits about four times the energy that the (>lobar does a t 4 microns and two a r d a half times a t 14 microns. I n eneigy-starved situations this can be a distinct advantage. The new indium antirnonide detectors (31, 636) may help in 1,hese situations in the proper spectral I-egion. Golay (268) has compared various infrared spectrometric systems, and other spectrometers have been dexribed (63,121, 295, 406, 407, 636, 81s) including those wit8h gratings (486, 753). Interference filters (i?75), interferometry (276, 567, 626, 716), and refi-actonietry (358, 459) have been discussei. Calibration me ;hods and inaterials (72, 609, 610) haire been proposed for prism spectronietxs. A method for linearizing spectra obtained with older prism instruments (87) may help those using these, and a,i automatic band integrator (715) will aid the quantitative analyst. Several pieces of equipment for high pressure spectrometry have been devised (236, 578) and infrared transmitting g1as:es (266, 399, 655) measured. The rvfraction and dispersion of thallium bromide-iodide have been carefully meariured (639) and silver halide crystals of high purity have been prepared (530). For those who would like auxiliary recorders attached to their spectrometers, two systems (488, 554) have been devised. Differential spectrophotometric meisurements with attendant difficulties have been discussed (361, 479, 779).

The potassium bromide pressed disk technique has been studied in great detail, along with other solid phase difficulties (35, 36, WWW, 442, 464, 510, 637, 638). Water solutions have been used to obtain spectra, even though water is a strong absorber (199, 711). Those who still use cells may find a new selection of variable, hot, cold, and coated cells (3, 25.2, 255, 339, 485). Gas analyzer problems were investigated (38, 577, 813) and Platt has studied the wavelength dependence of noise limits in infrared photoconductors (605). NEAR- A N D FAR-INFRARED

Aliphatic acids (246) have been investigated in the near-infrared along with chlorophyll (898) and its analogs. Some of the work published in the far-infrared is included in other sections of this review such as the sections on theoretical and molecular or qualitative analysis. Lord (446) has described a spectrometer operating out to 200 microns, Plyler (607) has measured many materials to 125 microns, and the Ohio State group has determined pure rotational spectra to 600 microns (571-573). ADSORPTION A N D SURFACE CHEMISTRY

Considerable interest has been shown in the application of infrared methods to the study of adsorption and surface chemistry during the past two years. Ethyl alcohol on aluminuni oxide (Si?), carbon monoxide on silica (207), hydroxyl groups in silica and nonpolar molecules (463), heavy mater on glass (547), olefins and acetylene (606), and amnionin on glass (S19) are some of the systems studied. REFLECTION A N D EMISSION SPECTRA

Scott (668) has measured the width of reflection bands and the reflection and transmission of various silica niodifications between 7 and 24 microns wave length have been determined (671). The emission spectra of OH (7), high frequency discharges in carbon dioxide ( I @ ) , gaseous B20a (197), other gases (235, 583), and the luminescence of iodine (241) were investigated.

REACTIONS A N D COMBUSTION

Ion exchange equilibrium constants (699), the exchange of deuterium between decaborane and diborane (376), and reaction products of octafluoroisobutene (296) have been studied. The preflame reactions of n-butane (&I), the thermal decomposition of hydrogen peroxide vapor (266), the spectra of propellant flames (186), and the analyses of combustion products (120) have been reported. POLARIZATION STUDIES, CRYSTALS, A N D INORGANICS

The dichroism of acetanilide ( I ) , partially oriented polymers (52, @0), flow (77), polycrystalline layers (491), poly(vinyl alcohol) (731), and polyethylene (709, 768) has been measured. Further polarization studies are reported in the polymers section of this review. General papers on crystals (284-286)discuss the underlying theory, while some treat special materials such as iodoform ( S I @ , minerals (375), alkali halide mixed crystals (381), bound water in hydrates (453), crystal-liquid interfaces (468), afwillite (589), hydrogen sulfide and deuterium sulfide (629), and crystalline fatty acids (726). Inorganic materials studied include peroxides, hydrates, and superoxides (go), nitrides, carbides, and borides (91), hydrated oxides (122, 123), copper and nickel manganites ( I % ' ) ,solid sulfur dioxide (262), nitrous oxide (254, 611 ) , graphitic oxide (290), gypsum (SUU), boric acid (SZS), oxygen in silicon (328, 368), aluminum chloride (388), lithium halides ( % I O ) , cuprous chloride vapor (391), mercuric chloride (389), barium titanate (417), boron halides (435), deuterated germanes (437), germanium chloride (436),boron anhydride (&XI), NTlCl (521), boron nitride (542), SiH3F (545): phosphorus pentafluoride (602), rubidium and cesium chlorides (634),fluorosulfates (676), silicon (YO@, rare earth borates (708), kaolinite (718), PC15 (809), S?Flo (Sod), perrhenate and tungstate ions (810), sulfur pentafluoride (811), and titania and silica conipounds (826). QUALITATIVE ANALYSIS

Qualitative determinations of the spectra of various types of compounds and of individual compounds include acetals (107, 595), acetone and water (668), acetoplienones (239, 851, 738), acetyl acetone (QQO), acids (94, 161,188, 280, 5'03, 321, 566, 497, 784), alcohols (22, 149, 743), aldehydes (699), alkaloids (4.24, allenic compounds (816), amidines (217, 618), amides (511, 512), amido acids (Z42),amines (41, 63, 128, 129, 291, S08, 4S3, 654), amino acids (623), amyrin (152), aromatic alkali compounds (,$IC), aromatic methyl

groups ( 6 2 4 , arsenic and antimony trioxides (86), asphalts ( 7 1 4 , azides (434, 506, 620), azo compounds (162, 421, g22, 765), barbiturates (&ab), substituted benzenes (963, 299, 358, 369, 403, 626), benzene-iodine solution (227), borate esters (785), butylene oxide (551), carbamates (GOO), carbon diselenide (769), carbinols (,$.SO), carbohydrates (57, SSS, 334, 631, 633, 791), carbonyl compounds (493, 66U), cigarette smoke (592), coal (248, 397), coumarin (124), cyanogen halides (246), cyclohexanes (160), cyclopentanones ( l o g ) , detergents (642), diazo compounds (821), dicarboxylic acids (663, 664), dichlorocyclohexane (822), dioiies of cyclohexane (137), diphenyl (413), epoxide groups (Sll),essential oils (419), esters (549,550, 777), halogenated ethanes (189), ethers (96),ethylenes (279, 313), formic acid (607), fumarates (and maleates) (???), furaldehyde (719), fused ring carbonyls (561), gas chromatography detector (Q32),glycerides (I%?), glyoximes (86), guanidinium ion (815), halohydrins ( 6 4 4 , heteropoly acid salts (676), hexathiadamantane (701), humic acids (210), hydrazides (341, 555), hydrazine halides (QS),hydrogenated (partially) aromatics (J29), hydronium ion (221, 745), hydroxamic acids (768), hydroxides (69S),imines ( 2 ) , indole ketones (742), ionic solutions (81, 164, 223, SS5), iron, dodecacarbonyl (165), isocyanates (184, 326), jacobine (88), ketones (95, 131, 416, 418), lactones (106), leuconic acid (688), methanol (482, 663), methoxyanthraquinones (799), methoxy groups (SI@, Ar-acetyl compounds (664, naphthalenes (136, $YO), nitrates (392), nitril oxides (130), nitrites (420), nitrobenzenes ( 4 0 4 , nitroso compounds (272, 302, 456), nitrofluorene @@), oils @do), ostreasterol (125), oxazolones (270), oximes (127, 187, 538, 663), oxindole (380), oxygen carriers (767), ozonides (97, 176, %4), paint vehicles (500), palustric acid ( l o g ) , peroxides (69), peroxy acids (ria),petroleum products (827), phenol (659), phenoxazones (527), diphosgene ( 2 9 4 , phosphorus compounds (158, 269, 457, 458, 465, 480, ,$SI, 525, 528, 644), polyphenyls ( 6 ) , pyrrole (505, 565, 669), pyridine (156, 163, 441, 612, 667, 700), pyridones (261), pyrimidines (741, 800), quinones (355, 566, 820), rosin (110), selenium acids (185), semicarbazones (180), silanes (113, 659, 786),stearins (IJO),sterculic acid (177), steroids (44, 54, 496, 570, 630, 6 4 ~ 9 , styrils (164), succinonitrile (840), sulfamic acid (772), sulfates (732), sulfites (691, 727), sulfides (304), sulfonamide (288), sulfonates (198,689,690),sulfones (64U), sulfonyl chlorides (688),surface coatings (566), terpenes (16, 160 161), t,hiabutane (S06), thiazoline (566), thiazoles (744),thio groups (499), thioacetic acid ( 4 9 4 , thiocarbonyl group ( S o l ) , thiocyanate (S@), thiohydantoins (21S),

urea and subsldtuted ureas (46, 47, 712), and water and heavy water (263, 775). QUAbITITAIIVE ANALYSIS

General papers on quantitative analysis include the use of infrared spectroscopy in atomic energy (.257), hints in recording qua ititative analysis (586), a general procedure in setting up differential analyseii of multicomponent mistures (586), using fractional milligram quantities (Shy), vapor spectra (ddo), and the use of water solutions for analysis (614). Specific analyses reported include fractional percentages of acetic acid (740), alkyl L romatic amine mixtures (7QU), apatite mixtures (254),carbon monoxide in blood (526), chlorotoluene (244), cellulos: (476, 609, 56S), detergents in water and sewage (220),deoxyribonucleic acid (667), an excellent paper on commo 1 gases (596), insecticides (89, 114, @2), malonic esters (780, 781), nitrate crystals (292), phenol in tar (219) and in oil (34), petroleum (617), pitches (620), polymers (76, 604, 796), pyridines (16t), sandalwood oil (39), soils (498),so) bean sterols (SgZ), naphthalenesulfonic acids (739), a-pinene (733), 8-pinene (734), borneol (736), terphenyls (I&!), dithiocarbamate (232), toluene diisoqqanates (449), water in hydrazines (15,3),water in fuming nitric acid (795), dcuterium oxide in water (70),and heaT7.i water (268, 259). HYDRt3GEN B O N D I N G

General pap1:rs on hydrogen bonding include a review (167), the relationship between stretching frequencies and distance of bonding (535, 783) and stretching frequencies and Taft's sigma (5629, the role of E'ranck-Condon principle (6967, potenti2 1 function model (665), and intensities (2S1, 331, 761). Studies on specific systems of hydrogen bonds include those with SH groups (357),nonanediol (112), oximes (126), alcohols ($la), effect of pressure on frequency (236), haloforni-base association (267), nicotine (269), phosphoryl components with chloroforin (295, d97), inner hydrogen bonds 1325, 327, S84), acetonewater solutions (452), polypeptides (619),formaldcmhyde (662), and the use of matrix is0 ation techniques (769, 770). ElOlOGlCAL

Biological subjects may not all be reported in this scxtion. Interested readers should check other sections for peptides and steroids which may not be reported here. Among the biological spectra are six adrenocortical hormones (S07), amide groups ( I % ) , amino acids (305), bacteria and phages (277, 410 411, 635), ephelrine (571-S7S), the nucleohistone of {he thymus (451), polyVOL. 30, NO. 4, APRIL 1958

* 571

peptides (79, 208, 209, 271, 310, 332, 492,773), thiopeptides (464),thiohydantoins of amino acids (621), and steroids (352-364, 693, 694, 696). POLYMERS

General papers of interest to the whole polymer field include the general theory ( 4 3 l ) , differentiation of crystalline and amorphous polymers (477, 505), and materials of high molecular weight (105, 4.28, 728). Specific polymer studies include those on cellulose (478, 760), epoxide resins (224), polyamides (656), dichroism in nylon (134, 135, 416, 767), polychlorobenzenes (608), polyethylene (174, 367, 401, 646, 757), polyisoprenes (539), poly(viny1 alcohol) (402, 529, 729, 730), poly(viny1idene chloride) (COO), poly(ethy1ene terephthalate) (679, 756, 778), polyphenyls (175), polypyrroles (359), pyrolyzed organic films (21), polytetraff uoroethylene (336, 429), and rubbers (144, 179, 622, 623).

.

published a general paper on the effect of carbon dioxidr? variation on climate (604) From the astrophysical viewpoint the displacements of infrared lines from the sun have been measured (316). ABSORPTION INTENSITIES

General papers on the measurement of absorption intensities, which was the major topic for discussion a t the 1956 Gordon Conference, include several of great value (27, 65, 168, 652, 771). The measuremen bs of absorption intensities on individud materials include the N H group (651), BF3 (4G6), carbonylbearing molecules (111, 7 5 4 , chloroform (365), hydrogen chloride (66, 67), hydroxyl group (42, 102-104, 762), methyl halides ( i 87), the nitrile radical (469, 755), paraflins (350, 455, 652, 619), solutions and liquids (226, 337), and sulfur dioxidl? (487). THEORETICAL A N D MOLECULAR

COORDINATION COMPLEXES, CHELATES

The number of papers in this category is surprising as none appeared in earlier reviews. As a single paper may contain the results on several different complexes or chelates, it is difficult to subdivide this category. Coordination compounds involving the following groups have been reported: thiocyanato-S ( l 4 2 ) , platinum-amine (143),aquo (250), nitrato (266), ammonium (534), mercury amido (531), cobalt ammine (580), metal-urea (581), copper cyanide (582), palladium and platinum (615, 616, 725), titanium (64I), oxalato (661),amine (722),and aluminum (824). Chelates have been studied involving copper(I1) (65), cyanide (80, 829,molybdenum (82)l phenylpyridine (si?), hydroxycarbonyl (93), hydroxyquinoline (141), cyano-nickel (211), cyano-cobalt (216), AIBr3 and SnClr (229), oxalates (251), imidazoles (298), cyano-iron ( 3 1 4 , cobalt (SdO), 1,3-diketones (Sag), cyano-silver (344), cyano-gold (345), cyano-mercury (346) hydrogen sulfide (360), cobalt-EDTA (524, 532), oximes (594), amino acids (643), aluminumacetyl (721), hydroxyazobenxene (764), and acetylacetone (766). ATMOSPHERE A N D ASTROPHYSICAL

Infrared methods have been used extensively to study the atmosphere and atmospheric pollution. The transmission of haze and fog has been measured (29), synthetic and natural atmospheres examined (115, 116, 173, 324, 374, 393, 674, 676,746) , and the infrared radiation measured (260, 603, 695). Pollution studies include a general paper (247), carbon tetrachloride and ethylene dichloride measurement (317 ) , monitoring (&O), and the identification of polynuclear hydrocarbons (681). Plass has

572

ANALYTICAL CHEMISTRY

The papers of more general interest include two on higher order rotationalvibrational energies in polyatomic molecules (17, 19), sir papers by Bellamy on polar effects (57-62), the conjugation effect (816), interaction between intramolecular and laihice vibrations in crystals (278), the calculation of thermal vibration amplitudes (319), temperature dependence of infrared spectra (??SO), force constants in aldehydes (613), additional information on type molecules (118, 200, 378, 495, 613, 674, 692, 697), intramolecular effects (444), simultaneous transitions in liquid mixtures (383),rotalion line intensities ( I S , 309, 315), potential energy and internuclear distance (4 S9), temperature (28) and pressure effects on gases (166, 584), C H out-of-plan. bending vibrations (405, 792), widths of bands in liquids and solids (794), and thermodynamic properties (4W7,d G I ) . The individual molecules studied from a more theoreticd aspect include acetaldehyde and hahgenated acetaldehyde (191, 215, 386), acids (SO.%'), acetylene and deuterated acetylene (6, 13, 15,567, 690), alcohols $83, 717), aldehydes (205, 591), allene (568, 627, 6839, amides (515, 516), amines (40, 517), ammines (43), ammonia and deuterated ammonia (68, 1Y0, 467, 484, 703), aromatic and subsldtuted aromatics (601, 635-537, 640) and the azide ion (274, 507), biphosphine (548), boron compounds (30, 48, ?4,75,470,632,672, 673, 687, 713, 720, 7@), bromine in benzene (5S7)),butadiene and halogenated butadiene (4, 218), butene (724), carbon dioxide (163, 646, 647), carbon disulfide (IO),carbonyl sulfide (11), chloroacetamide (518), chlorine dioxide (167), chromium hexacarbonyl (6859, cyclobutene (447), cyclc'hexane (464), cyclo-octatriene (438), cyclopentane (171),cy-

anoacetylene (7G3),cyanuric acid (569), deuterium iodide (347), deuterium sulfide (It?), diazines (443), diborane (99), digermane (195, 196), diketene (502), diphenyl (396), ethane and substituted ethane (362, 363, 394, 545, 650, 761, 823, S26), ethylene and substituted ethylenes (71, 101, 181, 193, 471, 472-47.4, 679,743,760),polyethylene (22S),ethylene carbonate @$), ethylene oxide (446), formaldehyde (78),formic acid (138),formates (514, 803), fluoroacetic acid (364), glycidic esters (523), graphite (67S), guanidinium ion (24), heterocyclic C-H bands (7$6), hexamethylenetetramine (145), hydrazoic acid (60, 51), hydrides (tetrahedral) (601),hydrogen (282,283), hydrogen bromide (666), hydrogen cyanide (14,172,697), hydrogen fluoride (dog), hydrogen sulfide (8, 9, 660), hydrogen telluride (648), isobutane (214), ketene (25, 26), mesitylene (395),methanol (737), methyl acetylenes (ICs), methylamines (273), methyl cyanides (202, 203, 676, 774), methyl isocyanide (801), methane and substituted methanes (20, 182, 201, 386, 62S, 680, S05, 807), naphthalene (670), nitrato acids (460), nitric acid (476), nitric oxide (238, 677), nitrite ion (408, 686, 788), nitrogen dioxide (379, 787), nitrogen tetroxide (698, 793), nitrous oxide (194, 412), nitryl fluoride (192), paraffin hydrocarbons (183, 206, 225, 747, 748), polymethylene halides (loo), potassium ferrocyanide (84), perchloryl fluoride (433), phosphines (45), propenes (684), propylene (723), pyridines (808), silicon-bearing molecules (73, 190, 377, 448, 489, 522, 685), stilbenes (558), succinonitrile (237), sulfur dibromide (38W), sulfur dioxide (797), tetramethyltin (204), tellurium hexafluoride (117), toluene (806), trioxane (706),t r i k ium compounds (348, 349, 704, 705), urea and substituted ureas (33,43, 817), vinyl halides (281),vanadium trichloride (503),and water (64,119). LITERATURE CITED

Abbott, N. B., Elliott, A., Proc. Roy. SOC. (London) 234, 247 (1956).

Abramovitch, R. A., J. Chem. SOC. 1957, 1413. Adams, R. M., Katz, J. J., J. Opt. SOC.Am. 46, 895 (1956).

Albright, J. C., Nielsen, J. R., J. Chem. Phys. 26, 370 (1957). Alexander, R. L., Jr., J . Org. Chem. 21, 1464 (1956).

Allen, H. C., Jr., Blaine, L. R., Plyler, E. K., J. Research Natl. Bur. Standards 56, 279 (1956). (7) Allen, H. C., Jr., Blaine, L. R., Plyler, E. K., Spectrochim. Acta 9, 126 (1957).

Allen, H. C., Jr., Blaine, L. R., Plyler, E. K., Cross, P. C., J . Chetn. Phys. 24, 35 (1956). Allen, H. C., Jr., Plyler, E. K., Ibid., 25, 1132 (1956).

Allen, H. C., Jr., Plyler, E. IC., Blaine, L. R., J . Ant. Chem. SOC. 78, 4843 (1956).

Allen, H. C., Jr., Plyler, E. K.,

Blaine, L. R., J. Chem. Phys. 26, 400 (1957). Allen, H. C., Jr., Plyler, E. K., Blaine, L. R., J. Research NaU. Bur. Standards 59, 211 (1957). Allen, H. C., Jr., Tidwell, E. D., Plyler, E. K., J. Am. C h . SOC. 78, 3034 (1956). Allen, H. C., Jr., Tidwell, E. D., Plyler, E. K., J. C h . Phys. 25, 302 (1956). Allen, H. C., Jr., Tidwell, E. D., Plyler, E. K., J . Research Nail. Bur. Standards 57, 213 (1956). Allsop, I. L., Cole, A. R. H., White, D. E., Willix, R. L. S., J . Chem. SOC.1956, 4868. Amat, G., Goldsmith, M., Nielsen, H. H.. J. C h m . Phus. 27. 832 (1957): Amat, G., Nielsen, H. H., Compt. rend. 244, 2302 (1957). Amat, G., Nielsen, H. H., J. Chem. Phys. 27,845 (1957). Andersen, F. A., Bak, B., Broderaen, S., Ibid., 24, 989 (1956). Andrew, J. F., J . Opt. Soc. Am. 46, 209 (1956). Anet, F. A. L., Bavin, P. M. G., Can. J. Chem. 34, 1756 (1956). Angell, C. L., Trans. Faraday SOC. 52, 1178 (1956). Angell, C. L., Sheppard, N., Yamaguchi, A., Shimanouchi, T., Miyazara, T., Mizushima, S., Ibid., 53, 589 (1957). Arendale, W. F., Fletcher, W. H., J. Chem. Phys. 24, 581 (1956). Ibid., 26, 793 (1957). Arencls, C. B., Eggers, D. F., Jr., Rev. Sci. Instr. 27, 939 (1956). Arnold, J. W.,McCoubrey, J. C., Ubbelohde, A. R., Trans. Faraday SOC.53, 738 (1957). Arnulf, A., Bricard, J., Curie, E., Veret, C., J. Opt. SOC.Am. 47, 491 (1957). Atoji, M., Wheatley, P. J., Lipscomb, IT7. N., J. Chem. Phys. 27, 196 (1957). Avery, D. G., Goodwin, D. W., Rennie. A. E., J. Sci. Instr. 34, 394 (1957). . (32) Babushkin, A. A., Uvarov, A. V., Dokladu Alcad. Nauk (S.S.S.R.) 110, 58i (1956). Badger, R. hl., Waldron, R. D., J . Chem. Phys. 26, 255 (1957). Bain, G. H., Appl. Spectroscopy 10, 193 (1956). Bak, B., Christensen, D., Acta Chem. Scand. 10, 692 (1956). Baker, A. W., J. Chem. Phys. 61, 450 (1957). Baker, S. A., Bourne, E. J., Weigel, H.. Whiffen. D. H.. Chem. &. Inh. (Londonj 1956,315. Baker, M7. J., ANAL. CHEY. 28, (38) 1391 (1956). (39) Balakrishnan, V. K., Dasgupta, S., Bhattacharyya, S. C., Perfumery Essent. Oil Record 47, 383-90 (1956). Barcelo, J. R., Bellanato, J., Spectrochim. Acta 8,27-40 (1956). Barr, D. A., Hasseldine, R. N., J . Chem. SOC.1955, 4169. Barrow. G. M.. J. Phvs. Chem. 59. 1129 ’(1955).’ Barrow, G. M., Krueger, R. H., Basolo. F.. J. Inora. & Nuclear Chem. 2 , 340 (1956): (44) Barton, D. H. R., Page, J. E., Shoppee, C. W., J. Chem. SOC. 1956. 331. (45) Beacheil, H. C., Katlafsky, B., J . Chem. Phys. 27, 182 (1957). (46) Becher, H. J., Chem. Ber. 89, 1593 (1956).

Ibid., p. 1951. Becher, H. J., 2.Anurg. algem. Chem. 291, 151 (1957). Becher, H. J., Griffel, F., Naturwissaschafkn 13, 467 (1956). Becker, E. D., Pimentel, G. C., Van Thiel, M., J. C h . Phys. 26, 145 (1957). 146. (51) Ibid., Proc. Roy. SOC.(London) (52) Beer, A236, 136 (1956). (53) Beevers, R. B., Conn, C. K. T., Hammon. J.. J . Opt. SOC.Am. 46, $97 (i956). (54) Beher, W. T., Parsons, Jonathan, Baker, G. D., ANAL.CHEY. 29, 1147 (1957). (55) Belford, R. L., Calvin, M., Belford, G., J . Chem. Phys. 26, 1165 (1957). Bellamy, L. J., Chem. &: Ind. (London) 1957 26. Bellamy, L. J., J. Chem. SOC.1955, 4221. Bellamy, L. J., Thomas, L. C., Williams, R. L., Ibid., 1956,3704. Bellamy, L. J., Williams, R. L., Ibid., 1956, 2753. Ibid., 1957,861. Ibid., p. 863. Ibid., p. 4294. Bellamy, L. J., Williams, R. L., Spectrochim. Acta 9, 341 (1957). (64) Benedict, W. S., Gailar, N., Plyler, E. K.. J. Chem. Phus. 24, 1139

b.,

(91) Brame, E. G., Jr., Margrave, J. L., hlelo:he, V. W., Ibid., 5, 48 (1957). Iranch, R. F., Nature 177, 672 (92) E (1956). (93) Bratoz, S., Hadzi, D., Rossmy, G.. l’rans. Faraday SOC.52, 464 (195€). (94) Bratoz, S., Hadzi, D Sheppard, N., Spectrochim. A b a 8 , 249 (1956). (95) Braude, E. A., Timmons, C. J., J. Cbem. SOC.1955,3766. (96) Briggs, L. H., Colebrook, L. D., ANAL.CHEM.29, 904 (1957). (97) Briner, E., Dallwigk, E., Compt. rend. 244, 1695 (1957). (98) Brodewen, K., Z. anorg. u. allgem. C h . 290, 24-34 (April 1957): (99) Brown, D. A., Longuet-Hlgglns, H. C., J. Inmg. & Nuclear Chenf. 1, 352 (1955). (100) Brown, J. K., Sheppard, N., PTOC. Roy. SOC. (London) 231A, 555

(65)

(1957). Berglund-Larsson, U., Acta Chem. Scand. 10, 701 (1956). Bernstein, H. J., Can. J. Chem. 34, 617 (1956). Bethke, G. W., J. O p t . SOC.Am. 46, 560 (1956). Bethke, G. W., Wilson, M. K., J . Chem. Phys. 26, 1107 (1957). Ibid.,p. 1118. Ibid., 27, 978 (1957). Binder, J. L., Ransaw, H. C., ANAL. CHEW29, 503 (1957). Bird, G. R., Blout, E. R., J. Chem. Phys. 25, 798 (1956). Blau, H. H., Jr., Nielsen, H. H., J. Mol. Spectroscopy 1, 124 (1957). Blout, E. R., Asadourian, A., J . Am. Chem. SOC.78, 955 (1956). Bonino, G. B., Atti accad. naz. Lincei 20, 418 (1956). Bonino, G. B., Fabbri, G., Ibid., 20. 414 (1956). Ibid.; p. 566. ’ (83j Ibid., 22, 402 (1957). (84) Bonino, G. B., Salvetti, O., Ibid., 20, 150 (1956). Borello, E., Colombo, M., Gam. chim. ital. 87, 615 (1957). Borgen, O., Krogh-hloe, J., Acta Chem. Scand. 10, 265 (1956). Brackett, F. S., J . Opt. SOC.Am. 47, 636 (1957). Bradbury, R. B., Willis, J. B., Australian J. C h . 9, 258 (1956). Braid, P. E., Le Boeuf, J., ANAL. CHEX. 29, 1625 (1957). Brame, E. G., Jr., Cohen, S., Margrave, J. L., Meloche, V. W.. J. Inoro. & Nuclear Chem. 4, 90 (1957)”. VOL. 30, NO. 4, APRIL 1958

573

Campbell, R. D., Cromrvell, N. H., J . Am. Chem. SOC. 79, 3456 (1957). Cannon, C. G., Chem. & Ind. (London) 1957, 29. Cannon, C. G., J . Chem. Phys. 24, 491 (1956). Caroti, G., Dusenbury, J. H., Nature 178, 162 (1956). Caroti, G., Dusenbury, J. H., J . Polymer Sci. 22, 399 (1956). Cencelj, L., Hadzi, D., Spectrochim Acta 7, 274 (1955). Chan, W. R., Hassall, C. H., J . Chenz. SOC.1956, 3495. Chapman, D., Zbid., 1956,225. Ibid., p. 2522. Ibid., 1957, 2715. Charles, R. G., Freiser, H., Friedel, R., Hilliard, L. E., Johnston, ITT. D., Spectrochinz. Acta 8, 1-8 (1956). Chatt, J., Duncanson, L. A , Nature 178, 997 (1956). Chatt, J., Duncanson, L. A., Venanzi, L. M., J . Chem. SOC. 1956,2712.

Checkland, P. B., Davison, W.H. T., Trans. Faraday SOC.52, 151 (1956). Cheutin, A., Mathiem, J. P., J . china. phys. 53, 106 (1956). Christensen, &I. T., Thompson, H. W.,Trans. Faraday Soc. 52, 1439 (1956). Cloud, W.H., J . Opt. Sac. Am. 46, 899 (1956). Cohen, David, Lowe, Robert, Hampson, John, J . Appl. Phys. 28, 737 (1957). Cole, A. R. H., Jefferies, P. R., J . Chem. SOC. 1956, 4391. Cole, A. R. H., Thornton, D. W.. Zbid., 1956, 1007. Zbid., 1957, 1332. Cole, A. R. H., Thornton, D. W., White, D. E., Chem. & Ind. (London) 1956, 795. Colichman, E. L., Fish, R. F., Bjarke, G. O., Anal. Chim. Acta 16, 250 (1957). Cook, D. J., Yunghaus, R. S., Hoogenboom, B. E., J . Org. Chem. 22, 211 (1957). Cook, G. L., Church, F. &I., ANAL.CHEJf. 28, 993 (1956). Cook, G. L., Hume, D. H., J . Phys. Chem. 61, 458 (1957). Coon, J. B., Ortiz, M., J . Mol. Spectroscopy 1, 81 (1957). Corbridge, D. E. C., J . Appl. Chem. 6, 456 (1956). Cordes, H. F., Tait, C. W.,ANAL. CHEM.29, 485 (1957). Corey, E. J., Howell, M. G., Boston, A., Young, R. L., Soreen, R. A., J . Am. Chem. SOC.78, 5036 (1956). Corish, P. J., Chapman, D., J . Chena. SOC.1957, 1746. Costa, G., Ann. china. (Rome) 46, 649 (1956). Costa, G., Blasina, P., Sartori, G., 2. physik. Chem. 7, 123 (1956). Costa, G., Paluzzi, E., Puxeddu, A., Gazz. china. ital. 87, 885 (1957). Cotton, F. A., Williinson, G., J . Ana. Chem. SOC.79, 752 (1957). Coulon, R., Galatry, L., Robin, J., Vodor, B., Discussions Faraday SOC., No.22,22 (1956). Coulson, C. A., Research 10, 149 119.571. -~ , \

(168) Coulson, C. A., Stephen, M. J., Trans. Faraday SOC. 53, 272 (1957). (169) Courtoy, C. P., Can. J . Phys. 35, 608 (1957).

574

ANALYTICAL CHEMISTRY

Cumniing, C , Zbid., 33, 635 (1955). Curnutte, B., Jr., Shaffer, W. H., J . Mol. Spectroscopy 1, 239 (1957). Dagg, I. R., Thompson, H. W., Trans. Fc'raday SOC. 52, 455 (1956). Dalby, F. W.,Nielsen, H. H., J . Chena. I'hys. 25, 934 (1956). Dale, J., Acta Chem. Scand. 11, 265 (1957). (175) Zbid.. 6. 646. (l76j Dallkigk,- -E., Briner, E., HeEv. Chim. Acta 39, 1826 (1956). (177) Dasgupta, S., Nath, B., Aggarwal, J. S., J . Indian Chem. SOC. 33. 111 (1956). Dasgupta, S., Sinha, A. P. B., Trans. Faraday SOC. 53, 909 (lP57). Davison, W. H. T., Chem. & Ind. (Lpndon) 1357, 131. Davison, ITT. W. T., Christie, P. E., J . Chem. Soc. 1955,3389. de Croes, M., Perlinghi, M., van Riet, R., 3 ~ 1 1 . acad. roy. Belg. 1956, 379. De Graaf, E. E., Sutherland, G. R. B., J . Chem. Phys. 26, 716 (1957). De Loach, B. C., Shaffer, W. H., Ibid., 24, 1114 (1956). Derkosch, J., Gchloge, K., Woidich, H., Monatsia. 88, 35 (1957). Detoni, S., Kadzi, D., J . china. phys. 1956,760. Dickson, A. D., Crawford, B. L., Jr., Rotenberg, D. L., Znd. Eng. Chem. 48,759 (1956). Dickson, A. D., Mills, I. hl., Crawford. B. L.. Jr.. J . Chem.

El-Sayed, M. F Sheline, R. I