Insecticides of Plant Origin - American Chemical Society

Our current concerns at ... for small-scale protection of stored grain; (b) i n s e c t i c i d a l plants ... Surprisingly, olfactometric tests with ...
2 downloads 0 Views 1MB Size
Downloaded by KTH ROYAL INST OF TECHNOLOGY on September 16, 2015 | http://pubs.acs.org Publication Date: February 23, 1989 | doi: 10.1021/bk-1989-0387.ch007

Chapter 7

Antipest Secondary Metabolites from African Plants Ahmed Hassanali and Wilber Lwande International Centre of Insect Physiology and Ecology, P.O. Box 30772, Nairobi, Kenya

African plants used in folk medicine and in traditional pest management practices continue to yield interesting and potentially useful research leads. The leaves of the wild shrub Ocimum suave and the flower buds (cloves) of Eugenia aromatica are traditionally used as effective stored grain protectants. Eugenol, a common constituent of the two, is repellant to the maize weevil, Sitophilus zeamais. The medicinal plants, Spilanthes mauritiana and Plumbago zeylanica contain insecticidal isobutyl amides and the naphthoquinone, plumbagin, respectively and may have potential in small-scale mosquito control programmes. Hildecarpin, a pterocarpan from Tephrosia hildebrandtii is an antifeedant against the legume pod borer, Maruca testulalis, and the rotenoids tephrosin and rotenone are very potent antifeedants against a number of lepidopteran larvae. Comparison of the antifeedant activities of citrus limonoids and some of their modifications against the spotted stalk borer, Chilo partellus suggest that the units associated with antifeedant activity are spread out in the limonoid skeleton. P l a n t p r o d u c t s have p l a y e d an i m p o r t a n t r o l e i n t r a d i t i o n a l m e d i c i n e and i n p r o t e c t i o n a g a i n s t p e s t s i n A f r i c a . Chemical i n v e s t i g a t i o n s of the p l a n t s i n v o l v e d have o f t e n l e d t o t h e i s o l a t i o n of s t r u c t u r a l l y and/or b i o l o g i c a l l y i n t e r e s t i n g compounds. Our c u r r e n t concerns a t ICIPE i n c l u d e (a) p l a n t s which may be used i n crude form f o r s m a l l - s c a l e p r o t e c t i o n o f s t o r e d g r a i n ; (b) i n s e c t i c i d a l p l a n t s which may have p o t e n t i a l i n s m a l l - s c a l e mosquito c o n t r o l ; (c) f l a v o n o i d s from Tephrosia P e r s . s p e c i e s (Leguminosae) f o r p o s s i b l e use i n crop p r o t e c t i o n ; and (d) t e t r a n o r t r i t e r p e n e s from l o c a l M e l i a c e a e , Rutaceae and Simaroubaceae s p e c i e s and t h e i r s y n t h e t i c m o d i f i c a t i o n s i n the hope of i d e n t i f y i n g new s o u r c e s o f p o t e n t insect-active limonoids. The p r e s e n t o v e r v i e w h i g h l i g h t s major accomplishments t o d a t e i n t h e s e s t u d i e s .

c

0097-6156/89/0387-0078$06.00/0 1989 American Chemical Society

In Insecticides of Plant Origin; Arnason, J., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

7.

HASSANALI & LWANDE

Antipest Secondary MetabolitesfromAfrica

Downloaded by KTH ROYAL INST OF TECHNOLOGY on September 16, 2015 | http://pubs.acs.org Publication Date: February 23, 1989 | doi: 10.1021/bk-1989-0387.ch007

P l a n t s used i n P r o t e c t i n g S t o r e d

Products

P l a n t m a t e r i a l s and m i n e r a l s have f o r l o n g been i n use as t r a d i t i o n a l p r o t e c t a n t s of s t o r e d p r o d u c t s ( 1 ) . I n E a s t e r n A f r i c a , communities i n d i f f e r e n t l o c a t i o n s appear t o have e v o l v e d t h e i r own g r a i n p r o t e c t i o n s t r a t e g i e s based on t h e s p e c i f i c s i t u a t i o n s i n t h e i r areas and t h e f l o r a a v a i l a b l e around them. Unfortunately, t h e s e p r a c t i c e s remain l a r g e l y undocumented and t h e s c i e n t i f i c r a t i o n a l e f o r t h e i r c o n t i n u e d use u n t i l r e c e n t times has remained, by and l a r g e , u n i n v e s t i g a t e d . At I C I P E , N a i r o b i , Kenya, we have s t a r t e d a modest s u r v e y of the p l a n t s used i n t h e p r o t e c t i o n of s t o r e d g r a i n s , a s i m p l e e v a l u a t i o n of t h e i r e f f i c a c i e s and c h e m i c a l i n v e s t i g a t i o n s of t h e i r secondary components w i t h t h e o b j e c t i v e of i d e n t i f y i n g t h e a c t i v e compounds. Our e v a l u a t i o n assay c o n s i s t s of undamaged maize seeds (10g) i n v i a l s ( 3 " χ 3/4") t o which a r e i n t r o d u c e d maize w e e v i l s , Sitophilus zeamais (10 males and 10 females) and powdered t e s t m a t e r i a l ( 1 , 2.5 and 5 % ) . These a r e then compared v i s u a l l y w i t h c o n t r o l s f o r 8 weeks. I n our f i r s t round of e v a l u a t i o n , two p l a n t m a t e r i a l s appeared t o show p r o t e c t i v e p r o p e r t i e s : t h e l e a v e s o f t h e w i l d shrub Ocimum suave ( L a b i a t a e ) and t h e f l o w e r buds ( c l o v e s ) of Eugenia aromatica (Zangibaraceae). The two a r e used m e d i c i n a l l y f o r stomach t r o u b l e s and coughs, and as i n s e c t r e p e l l a n t s ( p a r t i c u l a r l y a g a i n s t mosquitoes) and g r a i n p r o t e c t a n t s ( 2 , 3 ) . Gas chromatographic and mass s p e c t r o m e t r i c e x a m i n a t i o n of t h e e s s e n t i a l o i l of 0. suave ( F i g . 1) showed t h a t i n a d d i t i o n t o mono and s e s q u i t e r p e n e s i t c o n t a i n e d eugenol ( I ) which has been known t o be t h e p r i n c i p a l v o l a t i l e component of t h e o i l of c l o v e s ( 4 ) . A gas chromatogram of o i l of c l o v e s of E. aromatica i s shown i n F i g . 2 f o r comparison. A l i t e r a t u r e s e a r c h f o r b i o l o g i c a l a c t i v i t i e s of e u g e n o l , however, r e v e a l e d t h a t t h e p h e n y l p r o p a n o i d phenol had n o t been p r e v i o u s l y r e p o r t e d as an allomone of any i n s e c t . On t h e c o n t r a r y , eugenol has been r e p o r t e d t o be a component of an a t t r a c t a n t b l e n d f o r t h e Japanese b e e t l e , P o p i l l i a japonica ( 5 ) , and the pure compound has been demonstrated t o be an a t t r a c t a n t f o r t h e h o u s e f l y ( 6 ) . Our o b s e r v a t i o n s w i t h 5. zeamais w e e v i l s , however, s u g g e s t e d t h a t t h e s e might be r e p e l l e d by t h i s p h e n o l i c secondary m e t a b o l i t e , and i t became i m p e r a t i v e t o demonstrate t h i s i n a q u a n t i t a t i v e l y u n e q u i v o c a l f a s h i o n . F o r t h i s purpose, a number of Y-shaped o l f a c t o m e t e r d e s i g n s were c o n s t r u c t e d and t e s t e d . F i g . 3 i l l u s t r a t e s t h e one which gave t h e best r e s u l t s . Comparison of t h e b e h a v i o u r of t h e maize w e e v i l s toward d i f f e r e n t doses of eugenol and DEET (Ν,Ν-diethyltoluamide), a p o t e n t and w e l l s t u d i e d s y n t h e t i c i n s e c t r e p e l l a n t , c l e a r l y demonstrated t h e r e p e l l a n t p r o p e r t y of eugenol toward t h i s i n s e c t ( F i g . 4 ) . Eugenol was found t o be s i g n i f i c a n t l y more r e p e l l a n t than i t s isomer i s o e u g e n o l ( I I ) . S u r p r i s i n g l y , o l f a c t o m e t r i c t e s t s w i t h t h e o i l of 0. suave and t h e o i l minus eugenol suggested t h a t both t h e t e r p e n o i d and t h e p h e n o l i c f r a c t i o n s c o n t r i b u t e d t o t h e r e p e l l a n t a c t i v i t y of t h e e s s e n t i a l oil. The r e l a t i v e importance of the t e r p e n o i d components w i l l become c l e a r once t h e i r i d e n t i f i c a t i o n and assays on a u t h e n t i c samples a r e completed. I n view of i t s m i l d e r (and some say more

In Insecticides of Plant Origin; Arnason, J., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

79

Downloaded by KTH ROYAL INST OF TECHNOLOGY on September 16, 2015 | http://pubs.acs.org Publication Date: February 23, 1989 | doi: 10.1021/bk-1989-0387.ch007

INSECTICIDES OF PLANT ORIGIN

OH

CHoCH=CH

-A. * 0 Mins

10

2

ukL 20

30



F i g u r e 1. Gas chromatogram o f Ocimum suave o i l . Column: 15m c r o s s l i n k e d m e t h y l s i l i c o n e c a p i l l a r y column; temperature programme: 50°C (5 min) t o 270°C a t 50/min.

In Insecticides of Plant Origin; Arnason, J., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

Downloaded by KTH ROYAL INST OF TECHNOLOGY on September 16, 2015 | http://pubs.acs.org Publication Date: February 23, 1989 | doi: 10.1021/bk-1989-0387.ch007

HASSANALI & LWANDE

Antipest Secondary Metabolites from Africa

F i g u r e 2. Gas chromatogram of o i l of c l o v e s . Column: 15m c r o s s l i n k e d m e t h y l s i l i c o n e c a p i l l a r y column; temperature programme: 50°C (5 min) t o 270°C a t 50/min.

In Insecticides of Plant Origin; Arnason, J., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

In Insecticides of Plant Origin; Arnason, J., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

Downloaded by KTH ROYAL INST OF TECHNOLOGY on September 16, 2015 | http://pubs.acs.org Publication Date: February 23, 1989 | doi: 10.1021/bk-1989-0387.ch007

3

ο

H Ο

s:

Q 3 w ο

M

S

00

In Insecticides of Plant Origin; Arnason, J., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

Downloaded by KTH ROYAL INST OF TECHNOLOGY on September 16, 2015 | http://pubs.acs.org Publication Date: February 23, 1989 | doi: 10.1021/bk-1989-0387.ch007

8S

s

I

Ι

î

Μ

Ο

1 ι

Ώ

ss

INSECTICIDES OF PLANT ORIGIN

84

p l e a s a n t ) odour than c l o v e s and the f a c t t h a t i t i s found t h r i v i n g under v a r y i n g growth c o n d i t i o n s , 0. suave (and o t h e r Ocimum s p e c i e s ) i s now our major focus f o r e v a l u a t i o n as a s m a l l - s c a l e p r o t e c t a n t of s t o r e d p r o d u c t s i n r u r a l homes.

Downloaded by KTH ROYAL INST OF TECHNOLOGY on September 16, 2015 | http://pubs.acs.org Publication Date: February 23, 1989 | doi: 10.1021/bk-1989-0387.ch007

I n s e c t i c i d a l P l a n t s w i t h P o t e n t i a l f o r Mosquito C o n t r o l The b r e e d i n g h a b i t s of some of the more important mosquito s p e c i e s i n t r o p i c a l A f r i c a may p r o v i d e a means f o r s m a l l - s c a l e c o n t r o l s t r a t e g i e s based on i n s e c t i c i d a l p l a n t s grown by r u r a l communities t h e m s e l v e s . Anopheles gambia, the most important v e c t o r of m a l a r i a , Culex quinquefasciatus, the v e c t o r of B a n c r o f t i a n f i l a r i a s i s and Aedes aegypti, the v e c t o r of y e l l o w f e v e r , a l l breed i n s m a l l c o l l e c t i o n s of water such as temporary r a i n p u d d l e s , man-made c o n t a i n e r s , d r a i n s , and so on (7) where the p o s s i b i l i t y e x i s t s of c o n s i d e r a b l y r e d u c i n g the m u l t i p l i c a t i o n of the mosquitoes by p e r i o d i c treatment w i t h m a t e r i a l s d e r i v e d from such p l a n t s . Two p l a n t s i n v e s t i g a t e d r e c e n t l y at the ICIPE, and s p e c i e s r e l a t e d t o these p l a n t s , may p r o v i d e c a n d i d a t e s f o r such an approach t o mosquito c o n t r o l . The f i r s t i s Spilanthes mauritiana (Compositae), a m e d i c i n a l p l a n t used t r a d i t i o n a l l y f o r mouth i n f e c t i o n s , stomach-ache, d i a r r h o e a and t o o t h - a c h e ( 8 ) . A m e t h a n o l i c e x t r a c t of the wet v e g e t a t i v e a e r i a l p a r t s of the p l a n t gave, a f t e r r e p e a t e d chromatographic s e p a r a t i o n s , a l a r v i c i d e which was i d e n t i f i e d as dodeca-(E,E,E,Z)-2,4,8,10-tetraene N - i s o b u t y l a m i d e ( I I I ) ( 9 ) . The amide caused 100% m o r t a l i t y of t h i r d i n s t a r l a r v a e of Aedes aegypti a t 10- mg/ml ( 9 ) . The c h l o r o f o r m e x t r a c t of the f l o w e r heads of the p l a n t gave e i g h t a d d i t i o n a l amides (IV-XI) which are shown i n F i g . 5 ( 1 0 ) . The i n s e c t i c i d a l p r o p e r t i e s of s u b s t i t u t e d amides of u n s a t u r a t e d f a t t y a c i d s have been r e c o g n i z e d f o r many y e a r s (11), and r e c e n t l y they have been a s u b j e c t f o r more systematic s t r u c t u r e - a c t i v i t y s t u d i e s (12). Although t h e i r i n s t a b i l i t y has been a major o b s t a c l e a g a i n s t c o m m e r c i a l i z a t i o n , t h i s a t t r i b u t e may be of s p e c i a l advantage f o r s m a l l - s c a l e use w i t h i n r u r a l human h a b i t a t s . The second m e d i c i n a l p l a n t we have examined f o r mosquito l a r v i c i d a l components i s Plumbago zeylanica (Plumbiginaceae) used e x t e r n a l l y f o r s k i n d i s o r d e r s and i n t e r n a l l y f o r hookworm (13). The major a c t i v e l a r v i c i d a l compound was found t o be plumbagin ( X I I ) which was o b t a i n e d pure from the r o o t s of the p l a n t i n 0.15% y i e l d . Plumbagin has p r e v i o u s l y been shown t o be an a n t i f e e d a n t f o r the A f r i c a n armyworm Spodoptera exempta (14), and an e c d y s i s i n h i b i t o r f o r a number of l e p i d o p t e r a n l a r v a e (15). Naphthoquinones as a group have been the s u b j e c t of i n t e n s i v e m e c h a n i s t i c s t u d i e s as f e e d i n g d e t e r r e n t s of i n s e c t s (16-19). However, t h e r e has been no p r e v i o u s r e p o r t s of t h e i r t o x i c e f f e c t s a g a i n s t mosquito l a r v a e . We have measured the l a r v i c i d a l e f f e c t s of a number of a v a i l a b l e s t r u c t u r a l v a r i a n t s of plumbagin i n c l u d i n g j u g l o n e ( X I I I ) , 2-methyl1,4-naphthoquinone ( X I V ) , 1,4-naphthoquinone (XV),.2,3-epoxy-l,4naphthoquinone ( X V I ) , 2-hydroxy-l,4-naphthoquinone ( X V I I ) , 1,4benzoquinone (XVIII) and 1,2-naphthoquinone ( X I X ) . T a b l e I g i v e s LC30 v a l u e s of the q u i n o n e s . The h i g h a c t i v i t y of the parent 1,4naphthoquinone (XV) r e l a t i v e t o the 1,2-analogue (XIX) and 1,4benzoquinone ( X V I I I ) , shows t h a t the a c t i v i t y i s l a r g e l y a s s o c i a t e d w i t h the 1,4-naphthoquinone n u c l e u s . 5

In Insecticides of Plant Origin; Arnason, J., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

Antipest Secondary MetabolitesfromAfrica

Downloaded by KTH ROYAL INST OF TECHNOLOGY on September 16, 2015 | http://pubs.acs.org Publication Date: February 23, 1989 | doi: 10.1021/bk-1989-0387.ch007

HASSANALI & LWANDE

In Insecticides of Plant Origin; Arnason, J., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

INSECTICIDES OF PLANT ORIGIN

86

Downloaded by KTH ROYAL INST OF TECHNOLOGY on September 16, 2015 | http://pubs.acs.org Publication Date: February 23, 1989 | doi: 10.1021/bk-1989-0387.ch007

Table I .

LCso f o r v a r i o u s quinones a g a i n s t i n s t a r Aedes aegypti l a r v a e *

3rd

L C s o ( H M/20ml) Compound 0.60 + 0. 05 Plumbagin 0.70 + 0. ,05 Juglone 1.15 + 0. .04 2-Methyl-l,4-naphthoquinone 1.82 + 0. ,05 1,4-*Naphthoquinone 2.20 + 0..05 2,3-Epoxy-l,4-naphthoquinone 13.1 + 0..2 2-Hydroxy-l,4-naphthoquinone 16 1,4-Benzoquinone + 1 17 1,2-Naphthocruinone + 1 * R e s u l t s o b t a i n e d from 9 r e p l i c a t e s of 20 l a r v a e at each of 5-6 c o n c e n t r a t i o n s i n the range 0-4 pM/20ml f o r the top f o u r compounds, and 0-16 μΜ/20πι1 f o r the bottom f o u r compounds.

S u b s t i t u t i o n of the 2 - p o s i t i o n of t h i s n u c l e u s , however, appears t o l e a d t o reduced a c t i v i t y w i t h the OH s u b s t i t u e n t c a u s i n g a s i g n i f i c a n t l y l a r g e drop. Whether t h i s drop i s a s s o c i a t e d w i t h a l l the s u b s t i t u e n t s i n t h i s p o s i t i o n i r r e s p e c t i v e of t h e i r e l e c t r o n i c e f f e c t s , or s p e c i f i c a l l y , w i t h e l e c t r o n - d o n a t i n g +M groups w i l l become c l e a r when o t h e r s u b s t i t u t e d naphthoquinones are assayed. Naphthoquinones o c c u r w i d e l y i n t r o p i c a l p l a n t s (20) and assays of a broader range of n a t u r a l l y - o c c u r r i n g s t r u c t u r a l v a r i a n t s may l e a d t o the i d e n t i f i c a t i o n of r e a d i l y grown p l a n t s s u i t a b l e f o r s m a l l - s c a l e mosquito c o n t r o l programmes. S t u d i e s on Some Tephrosia

Species

Tephrosia P e r s . i s a l a r g e genus of p e r e n n i a l and woody herbs (over 300) t h a t are d i s t r i b u t e d i n the t r o p i c a l and s u b - t r o p i c a l r e g i o n s of the w o r l d (21-22). E x t r a c t s of a number of Tephrosia species have been used m e d i c i n a l l y t o t r e a t a range of a i l m e n t s , i n p e s t c o n t r o l as i n s e c t i c i d e s and r a t p o i s o n s , and as f i s h p o i s o n s (22,23,24). The i n s e c t i c i d a l and t o x i c e f f e c t s of e x t r a c t s of some Tephrosia s p e c i e s have been shown t o be due t o the presence of r o t e n o i d s (24,25,26). However, the m a j o r i t y of Tephrosia species t h a t have been i n v e s t i g a t e d c o n t a i n n o n - i n s e c t i c i d a l p r e n y l a t e d f l a v o n o i d s (27) which have not been screened f o r o t h e r b i o l o g i c a l activities. I n E a s t e r n and Southern A f r i c a , Γ. vogelii Hook f . , T. densiflora Hook f . and T. Candida (Roxb.) DC have been c u l t i v a t e d , i n a l i m i t e d way, by peasant farmers f o r use i n c r o p p r o t e c t i o n (21,24) but, s u r p r i s i n g l y , these p r a c t i c e s have not developed i n t o a s i g n i f i c a n t commercial a c t i v i t y . Our i n t e r e s t i n Tephrosia spp. i s twofold: (a) t o s c r e e n f o r r o t e n o i d - b e a r i n g s p e c i e s w i t h the purpose of g e n e r a t i n g a sound i n f o r m a t i o n base f o r t h e i r more w i d e s p r e a d use and f o r the growth of an a g r o c h e m i c a l i n d u s t r y ; and (b) t o i s o l a t e and c h a r a c t e r i z e n o v e l compounds t h a t may be p r e s e n t and t o assay t h e s e f o r a n t i - i n s e c t e f f e c t s . S p e c i e s i n v e s t i g a t e d t o d a t e i n c l u d e T. hildebrandtii Vatke and

In Insecticides of Plant Origin; Arnason, J., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

Downloaded by KTH ROYAL INST OF TECHNOLOGY on September 16, 2015 | http://pubs.acs.org Publication Date: February 23, 1989 | doi: 10.1021/bk-1989-0387.ch007

7.

HASSANALI & LWANDE

Antipest Secondary MetabolitesfromAfrica

T. elata D e f l e r s (28,31). A number of f l a v o n o i d s i n c l u d i n g some s t r u c t u r a l l y n o v e l compounds have been i s o l a t e d and c h a r a c t e r i z e d . The a n t i - i n s e c t a c t i v i t i e s of two s e t s of compounds a r e of s p e c i a l i n t e r e s t . F i r s t , the p t e r o c a r p a n h i l d e c a r p i n (XX) showed r e l a t i v e l y h i g h a n t i f e e d a n t a c t i v i t y t o the l a r v a e of the legume pod-borer Maruca testulalis (Table I I ) , an i m p o r t a n t pest which l i m i t s p r o d u c t i o n of the cowpea c r o p i n the t r o p i c s ( 3 2 ) . I t b e a r s c l o s e s t r u c t u r a l resemblance t o t h e p t e r o c a r p a n p h y t o a l e x i n s , m e d i c a r p i n ( X X I ) , p h a s e o l l i n (XXII) and p h e s e o l l i d i n ( X X I I I ) , i s o l a t e d from cowpea p l a n t s when i n f e c t e d w i t h m i c r o ­ organisms (33,35). I f t h e s e p h y t o a l e x i n s a l s o demostrate h i g h a n t i f e e d a n t a c t i v i t i e s a g a i n s t M. testulalis, then they might c o n s t i t u t e an i n t e r e s t i n g b a s i s f o r r e s i s t a n c e i n d u c t i o n i n t h e p l a n t a g a i n s t t h i s i n s e c t (28,36). Secondly, r o t e n o i d s l i k e t e p h r o s i n (XXIV) and rotenone (XXV) a r e v e r y p o t e n t a n t i f e e d a n t s a g a i n s t l e p i d o p t e r a n A f r i c a n p e s t s such as Spodoptera exempta, Eldana saccharina and M. testulalis (Table I I I ) , when assayed i n c h o i c e b i o a s s a y s u s i n g d i s c s d e r i v e d from h o s t l e a v e s ( 3 1 ) . Indeed, i n our assays the a c t i v i t i e s of t e p h r o s i n a g a i n s t 5. exempta and E. saccharina, and t h a t of rotenone a g a i n s t t h e l a t t e r a r e unmatched even by a z a d i r a c h t i n and o t h e r l i m o n o i d s . R o t e n o i d s have p r e v i o u s l y been e v a l u a t e d l a r g e l y as i n s e c t t o x i c a n t s and doses used have been those r e q u i r e d t o cause h i g h l e v e l s of m o r t a l i t y on t a r g e t p e s t s . However, i n view of the p r e s e n t f i n d i n g s , a r e - e v a l u a t i o n of d i f f e r e n t members of t h i s group of a n t i - i n s e c t n a t u r a l p r o d u c t s and the manner of t h e i r use i s c l e a r l y w a r r a n t e d .

Table I I .

Dose ( μα/disc) '100

The Feeding I n h i b i t o r y a c t i v i t y of H i l d e c a r p i n a g a i n s t M. testulalis Larvae

Batch Number* 1 2 3

Control (C) 11.86 29.19 61.58

Treated (T) 1.97 2.07 11.69

Deterrence** (D) % 83.4) 92.9) 85.8 + 6 81.0)

51.8) ) 51.9 + 0 52.0) 25.41 52.91 5 * For each b a t c h , 20 l a r v a e of the t e s t i n s e c t were used. Two l a r v a e were a l l o w e d t o f e e d on a p a i r of t r e a t e d d i s c (T) and c o n t r o l d i s c ( C ) . The r e s u l t of each b a t c h i s based on a summation of 10 such f e e d i n g a s s a y s . * * D e f i n e d as (1 - T/C) χ 100. (Reproduced w i t h p e r m i s s i o n from R e f . 28. C o p y r i g h t 1985 Pergamon P r e s s ) . 10

4

28.27

13.62

In Insecticides of Plant Origin; Arnason, J., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

87

Downloaded by KTH ROYAL INST OF TECHNOLOGY on September 16, 2015 | http://pubs.acs.org Publication Date: February 23, 1989 | doi: 10.1021/bk-1989-0387.ch007

88 INSECTICIDES OF PLANT ORIGIN

In Insecticides of Plant Origin; Arnason, J., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

7.

HASSANALI & LWANDE

Downloaded by KTH ROYAL INST OF TECHNOLOGY on September 16, 2015 | http://pubs.acs.org Publication Date: February 23, 1989 | doi: 10.1021/bk-1989-0387.ch007

Table I I I .

Compound μσ/disc Tephrosin 100 10 1

Antipest Secondary MetabolitesfromAfrica

A n t i f e e d a n t a c t i v i t i e s of some r o t e n o i d s a g a i n s t some A f r i c a n i n s e c t p e s t s Spodoptera exempt a

Eldana saccharina

* 89 + 8(5) 89 + 5(5)

94 + 86 + 72 +

Maruca testulalis

6(3) 5(3) 7(3)

Rotenone 97 + 2 ( 4 ) 89 + 2(4) 58 + 1 8 ( 3 ) * 100 86 + 8 ( 4 ) 92 + 5(3) 82 + 7 ( 3 ) 10 45 + 11(3) 81 + 11(3) 52 + 4 ( 3 ) 1 * Evidence of t o x i c a t i o n , l i t h a r g y , r e g u r g i t a t i o n and much reduced d i s c r i m i n a t i o n between t r e a t e d and u n t r e a t e d d i s c s . (Reproduced w i t h p e r m i s s i o n from Ref. 31. C o p y r i g h t 1987 ICIPE S c i e n c e Press).

Limonoids

and t h e i r Analogues

Recent i s o l a t i o n of n o v e l a n t i - i n s e c t t e t r a n o r t r i t e r p e n e s b e l o n g i n g t o t h e genera o t h e r than Melia, such as Trichilia (37.) *d Turreae (Rajab, M. e t a l . , P h y t o c h e m i s t r y , i n p r e s s ) and t o f a m i l i e s o t h e r than M e l i a c e a e such as Simaroubaceae (38,39,40), a t t e s t t o t h e e x i s t e n c e of r i c h , y e t u n d i s c o v e r e d sources of t h i s c l a s s o f compounds i n A f r i c a n p l a n t s b e l o n g i n g t o s e v e r a l f a m i l i e s and genera. The major o b j e c t i v e s of our r e s e a r c h on l i m o n o i d s a r e t o i d e n t i f y limonoid-bearing plants that t h r i v e i n d i f f e r e n t A f r i c a n environments and t o e l u c i d a t e the s t r u c t u r a l requirements f o r t h e a n t i f e e d a n t and g r o w t h - d i s r u p t i v e e f f e c t s by s t r u c t u r e - a c t i v i t y s t u d i e s o f the n a t u r a l l i m o n o i d s and t h e i r s y n t h e t i c m o d i f i c a t i o n s against the A f r i c a n crop p e s t s . The p r e s e n t work, which has i n v o l v e d t h e study of a n t i f e e d a n t a c t i v i t i e s of c i t r u s l i m o n o i d s and t h e i r s y n t h e t i c m o d i f i c a t i o n s , has been c a r r i e d o u t i n c o l l a b o r a t i o n w i t h P r o f e s s o r M i c h a e l B e n t l e y and h i s co-workers a t t h e U n i v e r i s t y o f Maine, U.S.A. Two d i f f e r e n t i n s e c t s were chosen f o r t h e s t u d y , Colorado p o t a t o b e e t l e , Leptinotarsa decemlineata and t h e stem-borer, Chilo partellus* R e s u l t s on L. decemlineata have been r e p o r t e d elsewhere ( B e n t l e y , M.D. et. a l . , Entomol. Exp. A p p l . , i n p r e s s ) and here we s h a l l h i g h l i g h t our f i n d i n g s on C. partellus. The l i m o n o i d s t e s t e d i n c l u d e l i m o n i n (XXVI) d e o x y e p i l i m o n o l ( X X V I I ) , e p i l i m o n y l a c e t a t e ( X X V I I I ) , obacunone (XXIX), n o m i l i n (XXX), l i m o n i n d i o s p h e n o l (XXXI), d e o x y l i m o n i n ( X X X I I ) , e p i l i m o n o l ( X X X I I I ) , d e o x y t e t r a h y d r o l i m o n i n (XXXIV) and h e x a h y d r o l i m o n i n i c a c i d (XXXV). Each o f these compounds was assayed a t t h r e e doses a g a i n s t f i f t h i n s t a r C. p a r t e l l u s l a r v a e i n a c h o i c e arena of t r e a t e d and u n t r e a t e d d i s c s of maize l e a f , s i m i l a r t o t h a t r e p o r t e d e a r l i e r (41.). The r e s u l t s a r e summarised i n F i g . 6. The most noteworthy f e a t u r e of these r e s u l t s i s t h a t none of t h e s t r u c t u r a l a l t e r a t i o n s r e p r e s e n t e d by t h e d i f f e r e n t l i m o n o i d s l e a d t o a t o t a l l o s s o f antifeedant a c t i v i t y . This i s i n contrast t o r e s u l t s obtained f o r al

In Insecticides of Plant Origin; Arnason, J., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

Downloaded by KTH ROYAL INST OF TECHNOLOGY on September 16, 2015 | http://pubs.acs.org Publication Date: February 23, 1989 | doi: 10.1021/bk-1989-0387.ch007

INSECTICIDES OF PLANT ORIGIN

In Insecticides of Plant Origin; Arnason, J., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

Downloaded by KTH ROYAL INST OF TECHNOLOGY on September 16, 2015 | http://pubs.acs.org Publication Date: February 23, 1989 | doi: 10.1021/bk-1989-0387.ch007

7.

HASSANALI & LWANDE

Antipest Secondary Metabolites from Africa

F i g u r e 6. A n t i f e e d a n t a c t i v i t y of m o d i f i e d l i m o n o i d s a g a i n s t Chilo partellus larvae.

In Insecticides of Plant Origin; Arnason, J., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

INSECTICIDES OF PLANT ORIGIN

92

the C o l o r a d o p o t a t o b e e t l e where t h e presence o f t h e u n s a t u r a t e d f u r a n moiety appears t o be c r u c i a l f o r s i g n i f i c a n t a n t i f e e d a n t a c t i v i t y of the limonoid. Nevertheless, a point of s i m i l a r i t y between t h e two i n s e c t s i s t h a t t h e f u r a n group i s a l s o an i m p o r t a n t requirement f o r h i g h a n t i f e e d a n t a c t i v i t y a g a i n s t C. partellus. Thus d e o x y t e t r a h y d r o l i m o n i n (XXXIV) i s s i g n i f i c a n t l y l e s s a c t i v e a t 20 χ 1 0 - m o l e / d i s c than d e o x y l i m o n i n ( X X X I I ) , and h e x a h y d r o l i m o n i n i c a c i d (XXXV) i s t h e l e a s t a c t i v e i n t h e s e r i e s a t a l l t h e t h r e e doses t e s t e d . S e v e r a l o t h e r d i f f e r e n c e s between t h e f e e d i n g responses o f the two i n s e c t s emerge from t h e two s e t s of d a t a . Significantly h i g h e r a c t i v i t i e s o f obacunone (XXIX) r e l a t i v e t o those o f l i m o n i n (XXVI) a t t h e two lower doses, and n o m i l i n (XXX) a t a l l t h e t h r e e doses, c l e a r l y demonstrate t h e r o l e of r i n g A i n i n t e r a c t i o n w i t h the r e c e p t o r m o l e c u l e i n C. partellus. I n assays w i t h t h e C o l o r a d o p o t a t o b e e t l e , however, m o d i f i c a t i o n o f r i n g A o f l i m o n i n produced no s i g n i f i c a n t change i n t h e a n t i f e e d a n t a c t i v i t y o f t h e r e s u l t i n g compound s u g g e s t i n g no s i g n i f i c a n t r o l e f o r t h i s end o f t h e molecule. The epoxy group of r i n g D i s i m p o r t a n t f o r h i g h a c t i v i t y a g a i n s t t h e C o l o r a d o p o t a t o b e e t l e . On t h e o t h e r hand, i t s removal produces no s i g n i f i c a n t change i n a c t i v i t y a g a i n s t C. partellus. A summation of t h e d a t a on t h e C o l o r a d o p o t a t o b e e t l e suggests t h a t the s t r u c t u r a l u n i t s a s s o c i a t e d w i t h a n t i f e e d a n t a c t i v i t y a r e l a r g e l y l o c a l i s e d i n r i n g D and t h e f u r a n group. I n C. p a r t e l l u s these appear t o be spread o u t i n t h e l i m o n o i d s k e l e t o n , an i n f e r e n c e which was a l s o a r r i v e d a t i n an e a r l i e r s t u d y w i t h two o t h e r l e p i d o p t e r a n A f r i c a n p e s t s E. saccharina and M. testulalis (42).

Downloaded by KTH ROYAL INST OF TECHNOLOGY on September 16, 2015 | http://pubs.acs.org Publication Date: February 23, 1989 | doi: 10.1021/bk-1989-0387.ch007

8

Literature Cited 1.

Golab, P., Webley, D.J. The use of Plants and Minerals as Traditional Protectants of Stored Products, Tropical Products Institute: London, Report G 138, 1980. 2. Kokwaro, J.O. Medicinal Plants of East Africa; East African Literature Bureau: Nairobi, 1976; p111. 3. Williams R.O. The Useful and Ornamental Plants in Zanzibar and Pemba; St. Ann's Press: Timperley, Altrincham, 1949; p383. 4. The Merck Index, Merck & Co., Inc., 1983, 10th ed. 5. Ladd, T.L. J. Econ. Entomol. 1980, 73, 718-720. 6. Sharma, R.N., Saxena, K.N. J . Med. Entomol. 1974, 11, 617621. 7. G i l l e t , J.D. Common African Mosquitoes; Heinemann: London, 1972; p26,68 and 102. 8. Kokwaro, J.O. Medicinal Plants of East Africa; East African Literature Bureau: Nairobi, 1976; p71. 9. Jondiko, I.J.O. Phytochem. 1986, 25, 2289-2290. 10. Jondiko, I.J.O.; Achieng' G., Pattenden, G. Fourteenth Annual Report, ICIPE, Nairobi, 1986, p84. 11. Jacobson, M. In Naturally Occurring Insecticides; Jacobson, M.; Crosby D.G., Eds., Dekker, New York, 1971; pl39-176. 12. E l l i o t , M. In Recent Advances in the Chemistry of Insect Control; Janes, N.F. Ed.; Royal Society of Chemistry, London, 1985; p73-102. 13. Kokwaro, J.O. Medicinal Plants of East Africa; East African Literature Bureau: Nairobi, 1976; pl77.

In Insecticides of Plant Origin; Arnason, J., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

Downloaded by KTH ROYAL INST OF TECHNOLOGY on September 16, 2015 | http://pubs.acs.org Publication Date: February 23, 1989 | doi: 10.1021/bk-1989-0387.ch007

7. HASSANALI & LWANDE Antipest Secondary Metabolites from Africa 93

14. Kubo, I.; Taniguchi, M.; Chapya, I.; Tsujimoto, K. Planta Med. 1980, 185-187. 15. Kubo, I.; Uchida, M.; Klocke, J.A. Agr. Biol. Chem. 1983, 47, 911-913. 16. Norris, Dale M., Bioelectrochem. Bioenerg. 1985, 14, 449-456. 17. Singer, G., Rozenthal, J.M., Norris, Dale M. Nature (London). 1975, 256, 222-3. 18. Norris, Dale M., Chu, Hsien-Ming. J . Insect Physiol. 1974, 20, 1687-1696. 19. Gilbert, B.L.; Baker, J.E.; Norris, Dale M. J . Insect Physiol. 1967, 13, 1453-1459. 20. Marini Bettolo, G.B. In Natural Products for Innovative Pest Management; Whitehead, D.L.; Bowers, W.S., Eds.; Pergamon: Oxford, 1983; p201. 21. Dale, I.R.; Greenway, P.J. Kenya Trees and Shrubs; Buchanan's Kenya Estates Ltd.: Nairobi, 1961; p654. 22. Gillett, J.B.; Polhill, R.M.; Verdcourt, B. In Flora of Tropical East Africa; Milne-Redhead, E.; Polhill, R.M., Eds; The Government Printer: Nairobi, 1971 p501. 23. Kokwaro, J.O. Medicinal Plants of East Africa; East African Literature Bureau: Nairobi, 1976; p384. 24. Mitchell Watt, J., Brandwijk, M.G. The Medicinal and Poisonous Plants of Southern and Eastern Africa; Livingstone: London, 1962; pl457. 25. Dalziel, J.M. The Useful Plants of West Tropical Africa; Crown Agents: London, 1955; p612. 26. Marini Bettolo, G.B. In Natural Products for Innovative Pest Management; Whitehead, D.L.; Bowers, W.S., Eds.; Pergamon: Oxford 1983; pl90. 27. Gomes, C.M.R.; Gottlieb, O.R.; Marini Bettolo, G.B.; Delle Monache, F.; Polhill, R.M. Biochem. System. Ecol. 1981, 129147. 28. Lwande, W.; Hassanali, Α.; Njoroge, P.W.; Bentley, M.D.; Delle Monache F.; Jondiko, J.I. Insect Sci. Applic. 1985, 6, 537541. 29. Delle Monache, F.; Labbiento, L . ; Marta, M.; Lwande, W. Phytochemistry 1986, 25, 1711-1713. 30. Lwande, W.; Bentley, M.D.; Macfoy, C.; Lugemwa, F.N.; Hassanali, A; Nyandat, E. Phytochemistry 1987, 26, 2425-2426. 31. Bentley, M.D.; Hassanali, Α.; Lwande, W.; Njoroge, P.E.W.; Ole Sitayo, E.N.; Yatagai, M. Insect Sci. Applic. 1987, 8, 85-88. 32. Singh, S.R.; Emden, H.F. Annu. Rev. Ent. 1979, 24, 255-278. 33. Lampard, J.F. Phytochemistry 1974, 13, 291-292. 34. Bailey, J.A. J. Gen. Microbiol. 1973, 75, 119-123. 35. Preston, N.W. Phytochemistry 1975, 14, 1131-1132. 36. Kogan, M.; Paxton, J. In Plant Resistance to Insects; Hedin, P.Α., Ed.; ACS Symposium Series No. 208; American Chemical Society: Washington, DC, 1983; pl53-171. 37. Nakatani, M.; James, J.C.; Nakanishi, K. J . Am. Chem. Sec. 1981, 101, 1228-1230. 38. Kubo I.; Tanis S.P.; Lee Y.W.; Miura I.; Nakanishi K.; Chapya A. Heterocycles 1976, 5, 485-497. 39. Liu, H-W; Kubo, I.; Nakanishi, K. Heterocvcles 1982, 17, 67-71.

In Insecticides of Plant Origin; Arnason, J., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

INSECTICIDES OF PLANT ORIGIN

94

Downloaded by KTH ROYAL INST OF TECHNOLOGY on September 16, 2015 | http://pubs.acs.org Publication Date: February 23, 1989 | doi: 10.1021/bk-1989-0387.ch007

40. Hassanali, Α.; Bentley, M.D.; Slawin, A.M.Z.; Williams, D.J.; Shepherd, R.N.; Chapya, A. Phytochemistry 1987, 26, 573-575. 41. Hassanali, A; Bentley, M.D.; Ole Sitayo, E.N.; Njoroge, P.E.W.; Yatagai, M. Insect Sci. Applic. 1986, 7, 495-499. 42. Hassanali, Α.; Bentley, M.D. In Natural Pesticides from the Neem Tree and other Plants: Schmutterer, H., Ascher, K.R.S.; Eds.; Proc. 3rd Int. Neem Conf.; Gesellschaft fur Technische Zusammenarbeit (GTZ): Eschborn, 1987; p683. RECEIVED

November 2,1988

In Insecticides of Plant Origin; Arnason, J., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.