Insight into One-Electron Oxidation of the {Fe(NO)2}9 Dinitrosyl Iron

Jan 14, 2013 - The electronic structure of the oxidized-form DNIC 5 (Stotal = 0) may be best described as the delocalized aminyl radical [(N(Mes)(TMS)...
0 downloads 0 Views 2MB Size
Supporting Information

Insight into One-Electron Oxidation of the {Fe(NO)2}9 Dinitrosyl Iron Complex (DNIC): Aminyl Radical Stabilized by [Fe(NO)2] Motif

Chih-Chin Tsou,† Fu-Te Tsai,† Huang-Yeh Chen,‡ I-Jui Hsu,*, ‡ and Wen-Feng Liaw*,† †

Department of Chemistry, National Tsing-Hua University, Hsinchu, 30013, Taiwan.



Department of Molecular Science and Engineering, National Taipei University of Technology, Taipei 10608 Taiwan.

E-mail: [email protected]; E-mail: [email protected]

Table S1. The IR νNO of the reversible redox {Fe(NO)2}9 and {Fe(NO)2}10 DNICs. {Fe(NO)2}10 {Fe(NO)2}9 {Fe(NO)2}9 {Fe(NO)2}10 ∆νNO –1 –1 νNO cm νNO cm cm–1 1808, 1687, 121 + + e NO 1739 (THF) 1633 (THF) 106 NO N N Fe Fe N N 1814, 1679, 135 -e NO NO 1746 (MeCN) 1622 (MeCN) 124 1815, 1686, 129 + N N N + e NO 1741 (THF) 1632 (THF) 109 NO N Fe Fe N 1673 N NO NO -e N N 1616 (CH2Cl2) N

+

N

NO

N

NO Fe

e-

-

NO

NO

N

+

N iPr N

+ e-

NO Fe

iPr

-e

NO

N N

-

NO Fe

iPr

NO

N N

+

NO Fe

+ e-

NO Fe NO

Ph3 P

_ iPr

iPr N

NO

+ e-

NO

- e-

Fe N iPr

iPr

iPr

iPr

N Fe

NO

N iPr

NO

+ e-

EtS

NO

- e-

EtS

2

NO

_

Fe

Fe EtS

NO

iPr

_

NO

_ N S S

NO

+ e-

NO

-

Fe

-e

S

2

N S N

NO

S S

Fe NO

S

_ N

O

N S

a

2

S

S O

1667, 1624 (THF)

122 109

4f

1791, 1723 (THF)

1664, 1619 (THF)

127 104

4f

1814, 1766 (CH2Cl2)

1714, 1668 (CH2Cl2)

100 98

4a

1761, 1709 (C6D6) 1755, 1705 (KBr) 1715, 1674 (THF) 1721, 1676 (KBr) 1773, 1721 (MeCN) 1768, 1729 (KBr) 1791, 1723 (MeCN) 1786, 1696 (KBr)

1627, 1567 (C6D6) 1632, 1559 (KBr) 1614, 1571 (THF) 1604, 1560 (KBr) 1684, 1633 (MeCN) 1654, 1609 (KBr) 1665, 1609 (MeCN) 1664, 1606 (KBr)

134 142 123 146 101 103 117 116 89 88 114 120 126 114 122 90

iPr

Ph 3P

e-

-

NO

Ph3 P

S N

1789, 1733 (THF)

N iPr N

iPr

iPr

Ph 3P

EtS

this work, 4b

N

N

iPr

4c

N

+ e-

Fe N

Ref. a

NO Fe NO

+e

-

-e

-

O

N

O

N

NO Fe

S

References are shown in the text.

NO

_

_

4d

5f, 8

4e

4e

Table S2. Comparisons of different exchange functionals results on complex 5.

Table S3. IR vibrational frequencies of experimental and B3LYP* results. νNO (cm–1) Complex 4 5

Expt. Symmetry 1707 1786

Asymmetry 1652 1733

B3LYP* Symmetry Asymmetry 1724.43 1673.73 1828.96 1770.88

Table S4 Summary of crystal data, intensity collection and structure refinement parameters for [(NO)2Fe(NPh2)2]– (2), [(NO)2Fe(N(TMS)2)2]– (3), [(NO)2Fe(N(mesityl)-(TMS))2]– (4) and [(NO)2Fe(N(mesityl)(TMS))2] (5). Complex number

2

Chemical formula

C32H36 FeKN4O9•2(C4H8O)

C24H60FeKN4O8Si4

C44H80FeKN4O10Si2•2(C4H8O)

C24H40FeN4O2Si2

Formula Mass

899.92

740.07

976.25

528.63

3

4

5

Crystal system

Monoclinic

Monoclinic

Orthorhombic

Orthorhombic

a/Å

14.256(3)

23.2705(8)

15.8975(9)

13.1256(10)

b/Å

13.064(3)

15.7542(6)

22.4576(12)

11.3614(9)

c/Å

24.449(5)

24.0988(9)

30.9214(17)

19.5259(14)

α/°

90.00

90.00

90.00

90.00

β/°

95.777(4)

111.731(2)

90.00

90.00

γ/°

90.00

90.00

90.00

90.00

Unit cell volume/Å3

4530.4(16)

8206.9(5)

11039.5(11)

2911.8(4)

Temperature/K

200(2)

200(2)

200(2)

200(2)

Space group

P 2/c

P 21/n

Pbca

Pnna

No. of formula units per unit cell, Z

4

8

8

4

Radiation type Synchrotron

MoKα

MoKα

MoKα

MoKα 0.626

Absorption coefficient, µ/mm

-1

0.477

0.627

0.443

No. of reflections measured

26327

54135

62208

14571

No. of independent reflections

7925

14412

9717

2570

Rint

0.0704

0.0738

0.0656

0.0430

Final R1 values (I > 2σ(I))

0.0619

0.0770

0.0505

0.0435

Final wR(F2) values (I > 2σ(I))

0.1540

0.2042

0.1194

0.1146

Final R1 values (all data)

0.1161

0.1374

0.0860

0.0603

Final wR(F2) values (all data)

0.1722

0.2275

0.1386

0.1268

Goodness of fit on F2

0.966

1.099

1.014

1.023

CCDC number

CCDC-876478

CCDC-876479

CCDC-876480

CCDC-876481

Scheme S1. One-electron oxidation of thiolate-coordinate {Fe(NO)2}9 DNICs, presumably, occurs from thiolate ligands to yield [{Fe(NO)2}9-(SR)2–•] intermediate, followed by dimerizing to yield [(NO)2Fe(µ-SR)]2 and disulfide.

Figure S1. ORTEP drawing and labeling scheme of [(NO)2Fe(NPh2)2]– (2) in [(THF)2-K18-crown-6-ether)]+ salt with thermal ellipsoids drawn at 50 % probability. Selected bond distances (Ǻ) and angles (deg): Fe(1)-N(1) 1.689(3), Fe(1)-N(2) 1.693(4), Fe(1)-N(3) 1.983(3), Fe(1)-N(4) 1.973(3), N(1)-O(1) 1.178(4), N(2)-O(2) 1.163(4), N(1)-Fe(1)-N(2) 110.73(17), N(3)-Fe(1)-N(4) 109.75(12), Fe(1)-N(1)-O(1) 161.7(3), Fe(1)-N(2)-O(2) 163.9(4).

Figure S2. ORTEP drawing and labeling scheme of [(NO)2Fe(N(TMS)2)2]– (3) in [K-18crown-6-ether)]+ salt with thermal ellipsoids drawn at 30 % probability. Selected bond distances (Ǻ) and angles (deg): Fe(1)-N(1) 1.700(6), Fe(1)-N(2) 1.686(6), Fe(1)-N(3) 2.010(5), Fe(1)-N(4) 1.971(5), N(1)-O(1) 1.190(7), N(2)-O(2) 1.152(8), N(3)-Si(1) 1.683(6), N(3)-Si(2) 1.709(6), N(4)-Si(3) 1.708(5), N(4)-Si(4) 1.713(6), K(1)-O(1) 2.778(6), Fe(2)N(5) 1.706(7), Fe(2)-N(6) 1.695(7), Fe(2)-N(7) 2.009(6), Fe(2)-N(8) 1.976(5), N(5)-O(16) 1.184(8), N(6)-O(16) 1.175 (8), N(7)-Si(5) 1.701(6), N(7)-Si(6) 1.712(6), N(8)-Si(7) 1.704(5), N(8)-Si(8) 1.712(5), N(1)-Fe(1)-N(2) 110.5(3), N(3)-Fe(1)-N(4) 117.5(2), Fe(1)N(1)-O(1) 152.1(7), Fe(1)-N(2)-O(2) 170.0(6), N(5)-Fe(2)-N(6) 104.2(3), N(7)-Fe(2)-N(8) 116.1(2), Fe(2)-N(5)-O(15) 150.9(7), Fe(2)-N(6)-O(16) 163.0(7).

(a)

3390

(b)

3400

3410

3420

3430

3440

3450

3360

3380

3400

Field [G]

3420

3440

3460

3480

3500

Field [G]

Figure S3. X-band EPR spectra of complex 2 in THF (a) at 298 K (solid line) and the simulation curve (dash line) with gav = 2.019 and AN(NO) = 2.40 G, AN(amide) = 4.64 G; (b) at 77K with g1 = 2.023, g2 = 2.016, g3 = 2.010.

(a)

3390

(b)

3400

3410

3420

Field [G]

3430

3440

3360

3380

3400

3420

3440

3460

3480

Field [G]

Figure S4. X-band EPR spectra of complex 3 in THF (a) at 298 K (solid line) and the simulation curve (dash line) with gav = 2.020 and AN(NO) = 2.45 G, AN(amide) = 3.75 G; (b) at 77K with g1 = 2.024, g2 = 2.017, g3 = 2.011.

(a)

(b) 2.0

0.20

1.8 1.6 0.15 1.4 1.2

χM

µeff

0.10

1.0 0.8 0.6

0.05 0.4 0.2 0.0

0.00 0

50

100

150

200

250

300

0

50

100

150

200

250

T(K)

T (K) (c) 0.5 data fit 0.4

0.3

χMT

0.2

Data: Data1_B Model: user29 Chi^2/DoF = 2.3855E-6 R^2 = 0.99274

0.1

P1 P2 P3

2.049 ±--0.14625 2.25765

±0.00543 ±0.01329

0.0 0

50

100

150

200

250

300

T (K) Figure S5. (a) The magnetic susceptibility (χM) of complex 4 under 0.5 Tesla applied field. (b) Effective magnetic moment (µeff) vs temperature (T) plot. (c) Curie Law fitting of χMT vs T plot gives g = 2.049, θ = –0.146 ± 0.005 K and TIP = (226 ± 1.3) × 10-6 cm3 mol-1 (R2 = 0.993).

300

(a) 10

Current (µA)

5

0

-5

-10

-15 -0.2

-0.4

-0.6

-0.8

-1.0

-1.2

+

Potential vs Fc /Fc (V)

(b)

30 20 10

Current (µA)

0 -10 -20 -30 -40 -50 -60 0.5

0.0

-0.5

-1.0

-1.5

-2.0

+

Potential vs Fc /Fc (V)

Figure S6. (a) Cyclic voltammogram of DNIC 2 in a 20 mM THF with 0.2 M [nBu4N][PF6] as the supporting electrolyte at room temperature and scan rate of 100 mV/s showing a psuedo-reversible redox wave with E1/2 = –0.581 V and ipa/ipc = 0.80. (b) Cyclic voltammogram of DNIC 3 in the same condition showing an oxidation wave at –0.270 V.

(a)

(b)

1.4

2

270 nm

1

265 nm

315 nm

1

Abs

Abs

318 nm 340 nm

0.5

465 516 nm nm 380 nm

0 -0.1 240

400

760 nm

600

800

495 nm

1000

-0.1 250

1200

400

Wavelength [nm]

630 nm

600

800

1000

1200

Wavelength [nm]

(c)

(d) 0.75

1.5

269 nm

0.6 624 nm 664 nm

1285 nm

0.4

374 nm

Abs

Abs 0.5

380 nm

0.2

942 nm

442 nm

0 250

634 nm

400

600

800

Wavelength [nm]

1000

1200

0 265

400

600

800

1000

Wavelength [nm]

Figure S7. UV-vis spectra of (a) [(NO)2Fe(NPh2)2]– (2), (b) [(NO)2Fe(N(TMS)2)2]– (3), (c) [(NO)2Fe(N(mesityl)(TMS))2]– (4) and (d) [(NO)2Fe(N(mesityl)(TMS))2] (5) in THF.

Figure S8. Fe K-edge spectra of complexes 2, 3 and 4 (complex 2, 7113.8 eV; complex 3, 7113.9 eV; complex 4, 7113.9 eV) (the pre-edge absorption spectra are enlarged in the inset).

1200

(a)

(b)

(c)

(d)

(f)

(e)

(g)

(i)

(h)

(j)

(k)

(l)

Figure S9. 15N NMR spectra of [Fe(µ-SEt)(15NO)2]2 (a) in D8-THF and (b) in CD3CN; 15N NMR spectra of [(15NO)2Fe(sparteine)] (c) in D8-toluene, (d) in D8-THF and (e) in CD3CN; (f) [(TMEDA)Fe(15NO)2] in D8-THF; (g) [(EtS)2Fe(15NO)2]2– in D8-THF; (h) [(EtS)2Fe(15NO)2]2– in CD3CN; (i) [Fe(µ-SEt)(15NO)2]22– in CD3CN; (j) [Fe(µStBu)(15NO)2]22– in CD3CN; 15N NMR spectra of complex 5 (k) in D8-toluene and (l) in D8THF. Peak at -132 ppm is assigned to solvent CD3C15N.

Figure S10. 1H NMR spectrum of [(NO)2Fe(N(mesityl)(TMS))2] (5) in D8-toluene.

(a)

(b) 0.65

0.0030

0.60

0.0025

0.55

0.0020

χM

µeff

0.0015

0.50

0.45

0.0010 0.40

0.0005 0.35

0.0000 0

50

100

150

200

250

0.30

300

0

50

100

T (K)

(c)

150

200

250

T(K)

0.055 0.050 0.045 0.040 0.035

χMT

0.030

Data: Data1_B Model: user5

0.025

Chi^2/DoF = 1.9664E-8 R^2 = 0.99969

0.020

P1 P2 P3 P4 P5 P6

0.015 0.010 0.005

2.015 ±-2 ±-2647.34096 0.03192 -4.44991 0.81792

±97.52167 ±0.00007 ±0.0551 ±0.00367

0.000 0

50

100

150

200

250

300

T (K) Figure S11. (a) The magnetic susceptibility of complex 5 under 0.5 T applied field, (b) effective magnetic moment (µeff) vs temperature (T) plot, and (c) the best fit gives g({Fe(NO)2}9) = 2.015, g(L•) = 2.000, ∆S/T = 1840 ± 68 cm–1, θ = –4.45 ± 0.06 K, p = 3.19 % and TIP = (81.8 ± 0.4) × 10–6 cm3 mol–1 (R2 = 0.999).

300

Figure S12. Frontier MO diagram of complex 4. Numbers shown are the compositions of Fe 3d, NO 2p and N ([N(mesityl)(TMS)]-coordinated ligands) 2p orbitals in each MO.

Figure S13. Frontier MO diagram of complex 5. Numbers shown are the compositions of Fe 3d, NO 2p and N ([N(mesityl)(TMS)]-coordinated ligands) 2p orbitals in each MO.