Subscriber access provided by CORNELL UNIVERSITY LIBRARY
Article
Intrinsically disordered proteins as important players during desiccation stress of the soybean radicles Yun Liu, Jiahui Wu, Nan Sun, Chengjian Tu, Xiaoying Shi, Hua Cheng, Simu Liu, Shuiming Li, Yong Wang, Yizhi Zheng, and Vladimir N. Uversky J. Proteome Res., Just Accepted Manuscript • Publication Date (Web): 19 May 2017 Downloaded from http://pubs.acs.org on May 25, 2017
Just Accepted “Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.
Journal of Proteome Research is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.
Page 1 of 57
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Journal of Proteome Research
Intrinsically disordered proteins as important players during desiccation stress of the soybean radicles
Yun Liu†*, Jiahui Wu†, Nan Sun†, Chengjian Tu ‡, Xiaoying Shi†, Hua Cheng†, Simu Liu†, Shuiming Li †, Yong Wang†, Yizhi Zheng †,*, and Vladimir N. Uversky§,ǁ,*
†
Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of
Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Nanhai Ave 3688, Shenzhen, Guangdong, 518060, China; ‡
Department of Pharmaceutical Sciences, State University of New York at Buffalo, 285
Kapoor Hall, Buffalo, New York 14260 United States; §
Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute,
Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd. MDC07, Tampa, Florida, USA; ǁ
Laboratory of new Methods in Biology, Institute for Biological Instrumentation of the
Russian Academy of Sciences, Institutskaya str., 7, Pushchino, Moscow region, 142290 Russia;
*To whom correspondence should be addressed: Y. L. Tel: +86-755-26535286. Fax:+86-755-26534274. E-mail:
[email protected] Y. Z.: Tel: +86-755-26535286. Fax:+86-755-26534274. E-mail:
[email protected] V. N. U.: Tel:+ 01-813-974-5816. Fax:+01-813-974-7357. E-mail:
[email protected] 1
ACS Paragon Plus Environment
Journal of Proteome Research
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
ABSTRACT Intrinsically disordered proteins (IDPs) play a variety of important physiological roles in all living organisms. However, there is no comprehensive analysis of the abundance of IDPs associated with environmental stress in plants. Here, we show that a set of heat-stable proteins (i.e., proteins that do not denature after boiling at 100°C for 10 min) was present in R0mm and R15mm radicles (i.e., before the radicle emergence and the 15 mm long radicles) of soybean (Glycine max) seeds. This set of 795 iTRAQ-quantified heat-stable proteins contained a high proportion of wholly or highly disordered proteins (15%), which was significantly higher than that estimated for the whole soybean proteome containing 55,787 proteins (9%). The heat-stable proteome of soybean radicles that contain many IDPs could protect lactate dehydrogenase (LDH) during freeze-thaw cycles. Comparison of the 795 heat-stable proteins in the R0mm and R15mm soybean radicles revealed that many of these proteins changed abundance during seedling growth, with 170 and 89 proteins being more abundant in R0mm and R15mm, respectively. KEGG analysis identified 18 proteins from the cysteine and methionine metabolism pathways and 9 proteins from the phenylpropanoid biosynthesis pathway. As an important type of IDP related to stress, 30 late embryogenesis abundant (LEA) proteins were also found. Ten selected proteins with high levels of predicted intrinsic disorder were able to efficiently protect LDH from the freeze-thaw-induced inactivation, but the protective ability was not correlated with the disorder content of these proteins. These observations suggest that protection of the enzymes and other proteins in a stressed cell can be one of the biological functions of plant IDPs. Key words: intrinsically disordered protein; late embryogenesis abundant protein; iTRAQ; stress resistance 2
ACS Paragon Plus Environment
Page 2 of 57
Page 3 of 57
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Journal of Proteome Research
INTRODUCTION Many biologically important proteins are known to lack stable secondary and/or tertiary structure entirely (i.e., are fully disordered) or contain disordered regions under physiological conditions.1-4 These intrinsically disordered proteins (IDPs) and hybrid proteins composed of ordered domains and IDP regions (IDPRs)5 are typically characterized by noticeable biases of their amino acid sequences, possessing a high proportion of charged and polar residues, as well as many proline residues, which are known to promote disorder, while they typically contain a low proportion of hydrophobic residues.6-9 Furthermore, IDPs/IDPRs are often typified by a low sequence complexity.6-9 Structurally, IDPs are distinguished by high spatio-temporal heterogeneity, where instead of being folded into unique 3-D structures with relatively fixed atomic coordinates and low conformational dynamics, these proteins/regions exist as highly flexible structural ensembles of rapidly interconverting conformations.10-14 Importantly, despite the inability of such proteins/regions/domains to form stable tertiary structures, they do play important physiological roles,6, 13, 15-30 where they can be involved in various signaling processes,31, protein protection,42,
43
32
regulation of numerous pathways,33-40 cell protection,41
controlled cell death,44-48 and cellular homeostasis.49,
50
Several
computational studies unequivocally revealed that IDPs are common in nature, with their abundance increasing with an increase in the complexity of the organism.1-4 For example, almost 50% of proteins in eukaryotic proteomes are IDPs, and 75% of transcriptional factors contain long functional IDPRs.1, 4, 21, 51 Currently, IDP is used as a generic term to denote a protein that contains extensive disorder that is important for function. The amount of IDPs/IDPRs in various proteomes typically serves as a reflection of both 3
ACS Paragon Plus Environment
Journal of Proteome Research
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
evolution and adaptation to the environment.4,
51, 52
On the evolutionary side, the
aforementioned fact that the percentage of IDPs in proteomes is increasing from bacteria and archaebacteria, to fungi, and to eukaryotic organisms serves as a reflection of the evolutionary importance of intrinsic disorder.4, 51-53 On the other hand, the role of disorder in adaptation to the environment can be illustrated by the fact that the salt, pH, and/or temperature-tolerant bacteria and Achaea typically contain more IDPs than their mesophilic and salt/pH-sensitive counterparts.52,
54
All of these observations are consistent with the
conclusion that IDP might have a variety of important physiological functions in different organisms. Based on the analysis of the available literature data it has been concluded that IDPs can be divided into six functional groups, such as (i) entropic chains, (ii) scavengers, (iii) effectors, (iv) assemblers, (v) display sites, and (vi) chaperones.21, 54, 55 Because of their lack of fixed structure, IDPs/IDPRs are known to be promiscuous binders engaged in interactions with many often unrelated partners. By virtue of their ability to participate in low affinity-high specificity signaling interactions, IDPs/IDPRs are involved in various processes related to signal transduction and cellular cycle control. Intrinsic disorder is usually associated with sites of phosphorylation and many other enzymatically catalyzed posttranslational modifications (PTMs).12, 56-59 Obviously, this represents another reason for the broad involvement of IDPs/IDPRs in various regulatory processes, since phosphorylation and other PTMs are known to modulate the activity of numerous proteins involved in signal transduction, and regulate the binding affinity of transcription factors to their coactivators and DNA, thereby altering gene expression, cell growth and differentiation.57, 60-62 In comparison with animal IDPs, much less is known about IDPs in plants.63, 64 The 4
ACS Paragon Plus Environment
Page 4 of 57
Page 5 of 57
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Journal of Proteome Research
disorder-based functions in plant proteins can be classified into five groups: (i) stress tolerance, (ii) transcription regulation, (iii) cell cycle regulation, (iv) molecular chaperons, and (v) development regulation.54, 63 Although quantitatively there are generally fewer IDPs in plant than in many animals, plants contain more IDPs related to the environmental adaptation.54, 63-69 Among these adaptation- and/or stress tolerance-related disordered proteins in plants are late embryogenesis abundant (LEA) and GRAS [this name is derived from the three initially identified family members, GAI (gibberellic acid-insensitive mutant protein), RGA (GAI-related sequence), and SCR (S locus cysteine-rich protein A)] proteins, which are rather abundant in various plants.67, 70, 71 For example, more than 50 LEA proteins have been found in Arabidopsis thaliana.70 Although several proteomic techniques have been widely used to reveal proteins related to various physiological processes, only a few large-scale experimental analyses of the abundance of IDPs actually expressed in living cells have been performed so far.72-76 The disordered structure and the peculiar amino acid compositions might help some IDPs to remain stable under conditions of low pH and/or high temperature. A heat treatment was shown to effectively enrich cell extracts in IDPs,73 such as ribosomal proteins, GroES, and acyl carrier protein in E.coli, S. cerevisiae, plants, and mammals.74, 75 However, to the best of our knowledge, there is no comprehensive report on the abundance of IDPs associated with environmental stress in plant. Therefore, the goal of this study was to fill this gap by analyzing the unfoldome (or intrinsically disordered side of the proteome) of the soybean radicles. It is known that many stress-related proteins accumulate in the embryo during dehydration of the orthodox seeds.77-81 Furthermore, the stress tolerance of seeds is known to 5
ACS Paragon Plus Environment
Journal of Proteome Research
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
increase with the enhancement of physical desiccation. When germination happens, the seeds are known to lose their stress tolerance likely due to a decrease in the abundance of these stress-related proteins. In order to find out how the IDP might function in stress tolerance, soybean radicles of 0 and 15 mm were used for comparative desiccation resistance and proteomic analyses in this paper.
EXPERIMENTAL SECTION Plant Material and Treatments Glycine max L. Merr. cv (Bainong 6#) seeds were kindly provided by the Institute of Agriculture Science in Baicheng City (Jilin Province, P.R. China). The seeds were allowed to imbibe on gauze in distilled water at 25°C in the dark. When the radicle emerged from the seed coat, seeds with 0 mm, 5 mm, and 15 mm long radicles (R0mm, R5mm, and R15mm, respectively) were used for desiccation resistance experiments by embedding seeds into a silica gel for 24 h. The survival ratios after dehydration were calculated after the seeds had been rehydrated in water for 48 h.
Protein Preparation and iTRAQ labeling The R0mm and R15mm radicles from seeds (i.e., before the radicle emergence and the 15 mm long radicles) were collected to give 0.1 g fresh weight, frozen, and ground into powder in liquid nitrogen. Then, 1 ml of 100 mM HEPES buffer containing 0.01% (v/v) β-mercaptoethanol, 0.5 M PMSF (phenylmethane sulfonyl fluoride), and 0.1% (w/v) phosphatase inhibitor (Roche, Germany) was added to the powder, and the resulting mixture 6
ACS Paragon Plus Environment
Page 6 of 57
Page 7 of 57
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Journal of Proteome Research
was centrifuged at 13,000 rpm for 30 min at 4˚C. The soluble proteins in the supernatant were transferred to a fresh tube, boiled at 100°C for 10 min, and then cooled on ice for 15 min. After centrifuging of the resulting sample at 13,000 rpm for 30 min at 4°C, 600 µl of the supernatant (the heat-stable proteins) were mixed with 800 µl of precooled acetone. The mixture was incubated at -30˚C for overnight. After centrifuging at 13,000 rpm for 30 min at 4°C, the pellet was washed three times with acetone. Then, the pellet was dried to powder in the vacuum freeze-drier. The powder was dissolved in 100 µl of 40 mM Tris-Cl buffer containing 4% CHAPS, 2 M thiourea, 6 M urea, 65 mM DTT, and 0.1% (w/v) phosphatase inhibitor, pH 8.0. A total of 100 µg protein of each sample was typically digested with sequence-grade modified Trypsin (Dingguo, China) for 16 h at 37°C. The resulting peptide mixture was dried using vacuum centrifugation and the powder was re-dissolved in 0.5 M TEAB, pH 8.5. The iTRAQ reagent (Applied Biosystems, USA) was used for labeling the sample as described in the manufacturer’s protocol. iTRAQ tags 113-115 and 116-118 were added to peptides extracted in biological triplicates from the R0mm and R15mm radicles, respectively (here, biological triplicates correspond to samples obtained from three different and independent protein extracts for radicles of each diameter). Water was added to the stop reaction when the labeled peptides with the isobaric tags had been incubated at room temperature for 2 h.
Fractionation by High-pH Reverse Chromatography The solution from the previous step was put into one tube and dried in Speed-vacuum concentrator (savant DNA 120, Thermo Scientific, USA), subjected to the first dimensional 7
ACS Paragon Plus Environment
Journal of Proteome Research
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
fractionation procedure on high-pH reverse chromatography column (Agilent, ZORBAX Extended-C18 2.1) using a separation gradient with buffer B (10 mM ammonium formate dissolved in 90% acetonitrile, pH 10.0) which linearly increased from 5% up to 30% in 40 min at a flow rate of 0.3 ml/min. A total of 40 equal fractions were collected every one minute and every four of the fractions were combined into a new fraction, ten fractions were finally obtained and prepared for the following LC-MS analysis.
Reverse Phase Nano-Flow HPLC and Tandem Mass Spectrometry The reverse phase nano-LCMS/MS analysis was performed on the Eksigent nanoLC-Ultra™ 2D System (AB SCIEX, Canada). The lyophilized fractions were suspended in 2% (v/v) acetonitrile, 0.1% (v/v) formic acid, and loaded on ChromXP C18 (3 µm, 120 Å) nanoLC trap column. The online trapping, desalting procedure were carried out at 2 µL/min for 10 min with 100% solvent A. Solvents were composed of water/acetonitrile/formic acid (A, 98/2/0.1%; B, 2/98/0.1%). Then, an elution gradient of 5-35% acetonitrile (0.1% formic acid) in 70 min was employed on an analytical column (75 µm x 15 cm, C18, 3 µm, 120 Å, ChromXP Eksigent). LC MS/MS analysis was performed on a Triple TOF 5600 System (AB SCIEX, Canada) fitted with a NanosprayIII source (AB SCIEX, Canada). Data was acquired using an ion spray voltage of 2.4 kV, curtain gas of 30 PSI, nebulizer gas of 5 PSI, and an interface heater temperature of 150oC. The MS was operated with TOF-MS scan ranges of 350 to 1250 m/z. For information-dependent acquisition (IDA), survey scans start from 100 to 1500 m/z and were acquired in 250 ms and as many as 30 product ion scans (80 ms) were collected if exceeding a threshold of 200 counts per second (counts/s) and with a +2 to +5 8
ACS Paragon Plus Environment
Page 8 of 57
Page 9 of 57
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Journal of Proteome Research
charge state. A rolling collision energy setting was applied to all precursor ions for collision-induced dissociation. dynamic exclusion was set for ½ of peak width (~16 s).
Protein Identification and Quantification The MS/MS data were conducted using ProteinPilot Software v.4.5 (Sciex Inc., USA) utilizing the Paragon and Progroup algorithms.82 The global false discovery rate (FDR) was estimated with the PSPEP tool83 integrated in the ProteinPilot Software. Here the global FDR was set to be 1.0% after searching against a concatenated target-decoy database consisting of the Glycine max protein database (55,787 entries) and corresponding reverse decoy database. The database search parameters were set as follows: iTRAQ 8-plex peptides labelling quantification, cysteine modified with iodoacetamide, trypsin digestion, thorough searching mode and minimum protein threshold of 95% confidence (unused protein score > 1.3). At least 1 unique peptide was required for each confidently identified protein. All the proteins identified in this study are listed in Table S1, including proteins with the p-values exceeding 0.05 threshold, and 795 proteins were further selected according to the minimal p-value of 0.05. The means of the iTRAQ ratios from the R0mm and R15mm were compared as described in ref.84 The statistical analysis was performed using unpaired two-sample Student t-test. A 2-fold change and p-value less than 0.05 were used to determine differentially expressed proteins.
9
ACS Paragon Plus Environment
Journal of Proteome Research
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 10 of 57
Gene Ontology (GO) and KEGG analysis The
GO
annotation
of
differentially
expressed
proteins
were
analyzed
at
http://bioinfo.cau.edu.cn/agriGO/index.php. The functional annotations were presented by corresponding GO terms. The hypergeometric test was used for GO enrichment analysis and p-value less than 0.05 was used as indication of statistical significance. In addition, the KEGG pathway analysis was performed at http://www.kegg.jp for altered proteins.
Semi-quantitative RT-PCR and Western-blotting In order to examine the expression levels of the query proteins, 17 genes were selected for semi-quantitative RT-PCR and 3 proteins were detected by Western blotting. For semi-quantitative RT-PCR, the actin-11 and 18S genes were used for internal reference. For Western blotting, the quantity of protein was detected by AuraECL chemiluminescence kit (Auragene, China).
Circular dichroism analysis Ten proteins were selected to be expressed in E.coli and then purified by HPLC. The His-tags were cut off by thrombase, and the proteins were purified by molecular sieve chromatography according to their mass. The purified proteins were dissolved in deionized water and analyzed by circular dichroism from 250 nm to 190 nm. The interval wavelength was 1 nm. The data were analyzed by the Dichroweb to obtain the secondary structure content of the query proteins.
10
ACS Paragon Plus Environment
Page 11 of 57
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Journal of Proteome Research
LDH activity assay Lactate dehydrogenase (LDH) from rabbit muscle (Roche, Germany) is sensitive to freeze-thaw cycles. The LDH was diluted in 100 mM sodium phosphate buffer (pH 7.0) to a final concentration of 0.357 M. Test proteins were added to equal volumes of LDH at molar ratios of 1:1, 5:1 or 10:1 (test protein: LDH). The enzyme with and without proteins were frozen in liquid nitrogen for 2 min and then thawed at 25°C for 5 min. The freeze-thaw cycles were repeated 3 times. The activity of LDH was detected according to the literature.85 In brief, 5 µL of the LDH-containing mixture was diluted to 2 mL with the assay buffer (100 mM PBS buffer containing 7.5 mM pyruvate and 0.1 mM NADH). The LDH activity was monitored by the increase in the absorbance at 340 nm for 2 min due to the conversion of NADH into NAD+ at 37°C. All of the values presented in this study are expressed as the percentage of the rate of the reaction relative to the rate of reaction in the untreated samples.
Evaluation of intrinsic disorder Global disorder analysis in the 795 proteins quantified by iTRAQ and the total set of soybean proteins was analyzed by ESpritz.86 Amino acid sequences of 10 selected proteins analyzed in this study (in FASTA format) were retrieved from UniProt.87 The corresponding UniProt IDs are I1K7E6, I1KV72, I1MAW4, P26585, C6T3P2, I1JGV5, C6TFS4, I1KID4, C6SYE5, and Q9S7N8. Intrinsic disorder propensities of target proteins were evaluated using four algorithms from the PONDR family, PONDR-FIT, PONDR® VLXT, PONDR® VSL2, and PONDR® VL3,7, 88-92
as well as the IUPred web server that evaluates the presence of both short and long
11
ACS Paragon Plus Environment
Journal of Proteome Research
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
IDPRs in a query protein.93 For each protein, after obtaining an average disorder score by each predictor, all predictor-specific average scores were averaged again to generate an average per-protein intrinsic disorder score. Use of consensus for evaluation of intrinsic disorder is motivated by empirical observations that this approach usually increases the predictive performance compared to the use of a single predictor.94-96 In addition to the aforementioned per-residue disorder predictors, we used two binary disorder classifiers, charge-hydropathy plot (CH-plot)2, 17and cumulative distribution function (CDF) analysis that evaluate the predisposition of a given protein to be ordered or disordered as a whole. A CH-plot represents an input protein as a point within the 2D graph, where the mean Kyte-Doolittle hydrophobicity and the mean absolute net charge are used as the X- and Y-coordinates, respectively. In the corresponding CH-plot, fully structured proteins and fully disordered proteins can be separated by a boundary line. All proteins located above this boundary line are highly likely to be extended, while proteins located below this line are likely to be compact.2, 17 CDF analysis summarizes the per-residue disorder predictions by plotting PONDR scores against their cumulative frequency, which allows ordered and disordered proteins to be distinguished on the basis of the distribution of prediction scores.2 At any given point on the CDF curve, the ordinate gives the proportion of residues with a PONDR score less than or equal to the abscissa. The optimal boundary that provided the most accurate order-disorder classification was shown to represent seven points located in the 12th through 18th bins.2 Thus, in the CDF analysis, order-disorder classification is based on whether a CDF curve of a given protein is above (ordered) or below (disordered) a majority of boundary points.2 We also used a combined CH-plot – CDF analysis (CH-CDF analysis) 12
ACS Paragon Plus Environment
Page 12 of 57
Page 13 of 57
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Journal of Proteome Research
that is known to provide additional important information on the classification of protein disorder.97-99 Potential disorder-based protein binding sites of query proteins (molecular recognition features, MoRFs) were identified by the ANCHOR algorithm.100, 101 This algorithm utilizes the pair-wise energy estimation approach originally used by IUPred.93, 102 This approach acts on the hypothesis that long regions of disorder include localized potential binding sites, which are not capable of folding on their own because they are unable to form sufficiently favorable intrachain interactions, but can obtain the energy to stabilize via interaction with a globular protein partner.100, 101
RESULTS AND DISCUSSION The desiccation-tolerance and heat-stable protein content of soybean radicles during germination Nearly 85% of R0mm survived, while none of the R15mm soybean seeds survived desiccation (Table 1). Accordingly, the analysis of the relative contents of heat-stable proteins revealed that 22% of the proteins in R0mm soybeans are heat-stable, which is twice that of R15mm soybeans. This indicates that higher levels of heat-stable proteins might confer desiccation tolerance to the R0mm soybeans.
The protective effect of the heat-stable proteins on LDH To validate whether heat-stable proteome of soybean could protect cellular proteins under stress conditions, the protective effects of soluble or heat-stable proteins on LDH during 13
ACS Paragon Plus Environment
Journal of Proteome Research
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
freeze-thaw cycles were analyzed. Figure 1 shows that when the mass ratio of soluble or heat-stable proteome to LDH was 4:1, the heat-stable proteins gave a significantly better protection of LDH against freeze-thaw-induced inactivation (pI1K7E6 (70%) >Q9S7N8 (62%) >I1JGV5 (58%) >I1MAW4 (55%) >P26585 (45%) >I1KV72 (41%)>I1KID4 (34%). The exceptionally high disorder levels in the selected proteins, the presence of more than one AIBS in a protein, and the overall high content of residues that can be involved in disorder-based binding suggests that the analyzed proteins commonly utilize disorder for their interactions with binding partners, and that these proteins are involved either in the polyvalent interactions by using multiple binding sites to interact with one binding partner or in scaffolding-like interactions by using multiple binding sites to interact with multiple binding partners. The wide spread of lengths of identified AIBSs also suggests the presence of multiple disorder-based binding mechanisms (ranging from local folding-on-binding of short regions via wrapping around binding mode to global binding-induced folding of large regions).
20
ACS Paragon Plus Environment
Page 20 of 57
Page 21 of 57
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Journal of Proteome Research
The protective effect of proteins on LDH during freeze-thaw cycles Because the heat-stable proteome showed a better LDH protection from the freeze-thaw-induced inactivation (Figure 1), the protective function of these ten selected proteins were analyzed. As shown in Figure 8A, all these proteins possessed a significant protective effect against the LDH deactivation compared with the negative control, lysozyme. However, the protective effects were not significantly correlated with the percentages of disorder in query proteins (Figure 8B).
Conclusions Intrinsically disordered proteins (IDPs) are widespread in organismal proteomes, especially in eukaryotes. IDPs have many important cellular functions, such as recognition and regulation of transcription and various cellular signaling processes. The previous analysis of the heat-stable protein fraction of imbibed radicles of Medicago truncatula seeds revealed a higher content of IDPs in the desiccation-tolerant material.117 LEA proteins are among the most abundant IDPs in plants. Although it is known that LEA proteins contribute to the stress resistance of plants, animals, and microorganisms,42, 118 it is not known how other IDPs function under stress. The goal of our study was to fill this gap and to analyze what various IDPs can do in a plant. Our analysis revealed that there were more wholly or highly disordered proteins among the upregulated proteins in the desiccation tolerant R0mm. The 10 selected IDPs as well as the entire heat-stable proteomes of the soybean radicles were shown to more efficiently protect the LDH from the inactivation induced by the freeze-thaw cycles than the total set of soluble proteins isolated from soybean radicles. These observations 21
ACS Paragon Plus Environment
Journal of Proteome Research
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
suggest that under the stress conditions, IDPs serve as important cellular protectors. Intrinsically disordered proteins are known to be multifunctional. To see if this could be also the case for the heat-stable proteome of soybean radicles, ten IDPs were purified for the structural and functional analysis. All of these proteins were shown to be mostly disordered. In addition to their reported biological functions that ranges from cytochrome c oxidase, to transcription activation and to mRNA splicing, all these proteins were found to protect an enzyme against freeze-thaw cycles. The ANCHOR analysis revealed the presence of multiple disorder-based binding sites in these proteins. Their intrinsically disordered nature may help the proteins to interact with DNA, RNA, and/or other proteins. Furthermore, these proteins can potentially interact with multiple binding partners, serving as scaffolds, or can act as hub proteins in signaling networks. For all of these ten IDPs, the enzyme-protective function is reported for the first time. Curiously, the protective effects were not obviously correlated with the percentages of disorder in query proteins. These results provide experimental support for the idea that IDPs are multifunctional moonlighting proteins that have protective functions in the organism.
ASSOCIATED CONTENT Supporting information The Supporting information is available free of charge on the ACS Publications website at DOI: . Supplementary materials include Table S1 that represents the protein identifications and relative quantifications; Figure S1 that represents the annotated tandem mass spectra; and Figure S2 showing the far-UV CD spectra of ten proteins in the presence of SDS or TFE. 22
ACS Paragon Plus Environment
Page 22 of 57
Page 23 of 57
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Journal of Proteome Research
Table S1. Quantitative information on 4,032 proteins quantified by the iTRAQ technique. Protein identification, major properties, and relative quantifications are listed. The table shows accession number, protein name, molecular weight, pI, used score, total number of spectra, percent sequence coverage, number of unique peptides, group ratios and p-value. The software used for protein qualification and quantitation is ProteinPilot (version 4.5) provided by the MS instrument vendor. Figure S1. Annotated tandem mass spectra. 284 peptides were randomly selected to show the information related to the protein and peptide qualification and quantitation. The Figure includes the reporter ion region and MS/MS spectrum of the unique peptide, whereas the peptide and protein qualification and quantitation also included in corresponding tables. The information about other 283 peptides was simplified according to the example shown below. 113-115 represents labeled R0mm, 116-118 represents labeled R15mm. Figure S2. Far-UV CD spectra of 10 selected proteins in aqueous solutions, SDS and TFE. Transcription activator-related, LOC100812629, PM35, Arpp13, and cwf18 proteins are natively unfolded (behave as random coils) in water and more α-helical structure can be induced by SDS and TFE. The other five proteins showed some α-helical structure in water, and could form more helices in the presence of SDS and TFE.
Acknowledgments: This work was supported by National Natural Science Foundation of China (31300215, 31370289) and China Scholarship Council (201508440389). We thank Xingfeng Yin from Jinan University for his help with the mass spectrometer analyses.
23
ACS Paragon Plus Environment
Journal of Proteome Research
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
References 1. Dunker, A. K.; Obradovic, Z.; Romero, P.; Garner, E. C.; Brown, C. J., Intrinsic protein disorder in complete genomes. Genome Inform Ser Workshop Genome Inform 2000, 11, 161-71. 2. Oldfield, C. J.; Cheng, Y.; Cortese, M. S.; Brown, C. J.; Uversky, V. N.; Dunker, A. K., Comparing and combining predictors of mostly disordered proteins. Biochemistry 2005, 44, (6), 1989-2000. 3. Ward, J. J.; Sodhi, J. S.; McGuffin, L. J.; Buxton, B. F.; Jones, D. T., Prediction and functional analysis of native disorder in proteins from the three kingdoms of life. J Mol Biol 2004, 337, (3), 635-45. 4. Xue, B.; Dunker, A. K.; Uversky, V. N., Orderly order in protein intrinsic disorder distribution: disorder in 3500 proteomes from viruses and the three domains of life. J Biomol Struct Dyn 2012, 30, (2), 137-49. 5. Dunker, A. K.; Babu, M. M.; Barbar, E.; Blackledge, M.; Bondos, S. E.; Dosztányi, Z.; Dyson, H. J.; Forman-Kay, J.; Fuxreiter, M.; Gsponer, J.; Han, K.-H.; Jones, D. T.; Longhi, S.; Metallo, S. J.; Nishikawa, K.; Nussinov, R.; Obradovic, Z.; Pappu, R.; Rost, B.; Selenko, P.; Subramaniam, V.; Sussman, J. L.; Tompa, P.; Uversky, V. N., What’s in a name? Why these proteins are intrinsically disordered. Intrinsically Disordered Proteins 2013, 1, (1), e24157. 6. Dunker, A. K.; Lawson, J. D.; Brown, C. J.; Williams, R. M.; Romero, P.; Oh, J. S.; Oldfield, C. J.; Campen, A. M.; Ratliff, C. M.; Hipps, K. W.; Ausio, J.; Nissen, M. S.; Reeves, R.; Kang, C.; Kissinger, C. R.; Bailey, R. W.; Griswold, M. D.; Chiu, W.; Garner, E. C.; Obradovic, Z., Intrinsically disordered protein. J Mol Graph Model 2001, 19, (1), 26-59. 7. Romero, P.; Obradovic, Z.; Li, X.; Garner, E. C.; Brown, C. J.; Dunker, A. K., Sequence complexity of disordered protein. Proteins 2001, 42, (1), 38-48. 8. Williams, R. M.; Obradovic, Z.; Mathura, V.; Braun, W.; Garner, E. C.; Young, J.; Takayama, S.; Brown, C. J.; Dunker, A. K., The protein non-folding problem: amino acid determinants of intrinsic order and disorder. Pac Symp Biocomput 2001, 89-100. 9. Radivojac, P.; Iakoucheva, L. M.; Oldfield, C. J.; Obradovic, Z.; Uversky, V. N.; Dunker, A. K., Intrinsic disorder and functional proteomics. Biophys J 2007, 92, (5), 1439-56. 10. van der Lee, R.; Buljan, M.; Lang, B.; Weatheritt, R. J.; Daughdrill, G. W.; Dunker, A. K.; Fuxreiter, M.; Gough, J.; Gsponer, J.; Jones, D. T.; Kim, P. M.; Kriwacki, R. W.; Oldfield, C. J.; Pappu, R. V.; Tompa, P.; Uversky, V. N.; Wright, P. E.; Babu, M. M., Classification of intrinsically disordered regions and proteins. Chem Rev 2014, 114, (13), 6589-631. 11. Habchi, J.; Tompa, P.; Longhi, S.; Uversky, V. N., Introducing protein intrinsic disorder. Chem Rev 2014, 114, (13), 6561-88. 12. Uversky, V. N., Unusual biophysics of intrinsically disordered proteins. Biochim Biophys Acta 2013, 1834, (5), 932-51. 13. Uversky, V. N.; Dunker, A. K., Understanding protein non-folding. Biochim. Biophys. Acta 2010, 1804, (6), 1231-64. 14. Mittal, J.; Yoo, T. H.; Georgiou, G.; Truskett, T. M., Structural ensemble of an intrinsically disordered polypeptide. J Phys Chem B 2013, 117, (1), 118-24. 15. Iakoucheva, L. M.; Brown, C. J.; Lawson, J. D.; Obradovic, Z.; Dunker, A. K., Intrinsic disorder in cell-signaling and cancer-associated proteins. J. Mol. Biol. 2002, 323, 573-584. 16. Wright, P. E.; Dyson, H. J., Intrinsically unstructured proteins: re-assessing the protein structure-function paradigm. J Mol Biol 1999, 293, (2), 321-331. 24
ACS Paragon Plus Environment
Page 24 of 57
Page 25 of 57
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Journal of Proteome Research
17. Uversky, V. N.; Gillespie, J. R.; Fink, A. L., Why are "natively unfolded" proteins unstructured under physiologic conditions? Proteins 2000, 41, (3), 415-427. 18. Uversky, V. N., Natively unfolded proteins: a point where biology waits for physics. Protein Sci 2002, 11, (4), 739-756. 19.Uversky, V. N., What does it mean to be natively unfolded? Eur J Biochem 2002, 269, (1), 2-12. 20. Dunker, A. K.; Brown, C. J.; Lawson, J. D.; Iakoucheva, L. M.; Obradovic, Z., Intrinsic disorder and protein function. Biochemistry 2002, 41, (21), 6573-6582. 21. Tompa, P., Intrinsically unstructured proteins. Trends Biochem Sci 2002, 27, (10), 527-533. 22. Dyson, H. J.; Wright, P. E., Insights into the structure and dynamics of unfolded proteins from nuclear magnetic resonance. Adv Protein Chem 2002, 62, 311-40. 23. Dyson, H. J.; Wright, P. E., Intrinsically unstructured proteins and their functions. Nat Rev Mol Cell Biol 2005, 6, (3), 197-208. 24. Fink, A. L., Natively unfolded proteins. Curr Opin Struct Biol 2005, 15, (1), 35-41. 25. Uversky, V. N.; Oldfield, C. J.; Dunker, A. K., Showing your ID: intrinsic disorder as an ID for recognition, regulation and cell signaling. J Mol Recognit 2005, 18, (5), 343-84. 26. Dunker, A. K.; Cortese, M. S.; Romero, P.; Iakoucheva, L. M.; Uversky, V. N., Flexible nets. The roles of intrinsic disorder in protein interaction networks. Febs J 2005, 272, (20), 5129-48. 27. Toth-Petroczy, A.; Oldfield, C. J.; Simon, I.; Takagi, Y.; Dunker, A. K.; Uversky, V. N.; Fuxreiter, M., Malleable machines in transcription regulation: the mediator complex. PLoS Comput Biol 2008, 4, (12), e1000243. 28. Bhowmick, A.; Brookes, D. H.; Yost, S. R.; Dyson, H. J.; Forman-Kay, J. D.; Gunter, D.; Head-Gordon, M.; Hura, G. L.; Pande, V. S.; Wemmer, D. E.; Wright, P. E.; Head-Gordon, T., Finding Our Way in the Dark Proteome. J Am Chem Soc 2016, 138, (31), 9730-42. 29. Ferreon, A. C.; Ferreon, J. C.; Wright, P. E.; Deniz, A. A., Modulation of allostery by protein intrinsic disorder. Nature 2013, 498, (7454), 390-4. 30. Cozzetto, D.; Jones, D. T., The contribution of intrinsic disorder prediction to the elucidation of protein function. Curr Opin Struct Biol 2013, 23, (3), 467-72. 31. Mitrea, D. M.; Kriwacki, R. W., Regulated unfolding of proteins in signaling. FEBS Lett 2013, 587, (8), 1081-8. 32. Follis, A. V.; Llambi, F.; Ou, L.; Baran, K.; Green, D. R.; Kriwacki, R. W., The DNA-binding domain mediates both nuclear and cytosolic functions of p53. Nat Struct Mol Biol 2014, 21, (6), 535-43. 33. Galea, C. A.; Wang, Y.; Sivakolundu, S. G.; Kriwacki, R. W., Regulation of cell division by intrinsically unstructured proteins: intrinsic flexibility, modularity, and signaling conduits. Biochemistry 2008, 47, (29), 7598-609. 34. Wang, Y.; Fisher, J. C.; Mathew, R.; Ou, L.; Otieno, S.; Sublet, J.; Xiao, L.; Chen, J.; Roussel, M. F.; Kriwacki, R. W., Intrinsic disorder mediates the diverse regulatory functions of the Cdk inhibitor p21. Nat Chem Biol 2011, 7, (4), 214-21. 35. Ou, L.; Waddell, M. B.; Kriwacki, R. W., Mechanism of cell cycle entry mediated by the intrinsically disordered protein p27(Kip1). ACS Chem Biol 2012, 7, (4), 678-82. 36. Follis, A. V.; Galea, C. A.; Kriwacki, R. W., Intrinsic protein flexibility in regulation of cell proliferation: advantages for signaling and opportunities for novel therapeutics. Adv Exp Med Biol 2012, 725, 27-49. 37. Yoon, M. K.; Mitrea, D. M.; Ou, L.; Kriwacki, R. W., Cell cycle regulation by the intrinsically disordered proteins p21 and p27. Biochem Soc Trans 2012, 40, (5), 981-8. 25
ACS Paragon Plus Environment
Journal of Proteome Research
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
38. Mitrea, D. M.; Yoon, M. K.; Ou, L.; Kriwacki, R. W., Disorder-function relationships for the cell cycle regulatory proteins p21 and p27. Biol Chem 2012, 393, (4), 259-74. 39. Moldoveanu, T.; Grace, C. R.; Llambi, F.; Nourse, A.; Fitzgerald, P.; Gehring, K.; Kriwacki, R. W.; Green, D. R., BID-induced structural changes in BAK promote apoptosis. Nat Struct Mol Biol 2013, 20, (5), 589-97. 40. Frye, J. J.; Brown, N. G.; Petzold, G.; Watson, E. R.; Grace, C. R.; Nourse, A.; Jarvis, M. A.; Kriwacki, R. W.; Peters, J. M.; Stark, H.; Schulman, B. A., Electron microscopy structure of human APC/C(CDH1)-EMI1 reveals multimodal mechanism of E3 ligase shutdown. Nat Struct Mol Biol 2013, 20, (7), 827-35. 41. Mei, Y.; Su, M.; Soni, G.; Salem, S.; Colbert, C. L.; Sinha, S. C., Intrinsically disordered regions in autophagy proteins. Proteins 2014, 82, (4), 565-78. 42. Chakrabortee, S.; Tripathi, R.; Watson, M.; Schierle, G. S.; Kurniawan, D. P.; Kaminski, C. F.; Wise, M. J.; Tunnacliffe, A., Intrinsically disordered proteins as molecular shields. Mol Biosyst 2012, 8, (1), 210-9. 43. De Jonge, N.; Garcia-Pino, A.; Buts, L.; Haesaerts, S.; Charlier, D.; Zangger, K.; Wyns, L.; De Greve, H.; Loris, R., Rejuvenation of CcdB-poisoned gyrase by an intrinsically disordered protein domain. Mol Cell 2009, 35, (2), 154-63. 44. Peng, Z.; Xue, B.; Kurgan, L.; Uversky, V. N., Resilience of death: intrinsic disorder in proteins involved in the programmed cell death. Cell Death Differ 2013, 20, (9), 1257-67. 45. Uversky, A. V.; Xue, B.; Peng, Z.; Kurgan, L.; Uversky, V. N., On the intrinsic disorder status of the major players in programmed cell death pathways. F1000Res 2013, 2, 190. 46. Popelka, H.; Uversky, V. N.; Klionsky, D. J., Identification of Atg3 as an intrinsically disordered polypeptide yields insights into the molecular dynamics of autophagy-related proteins in yeast. Autophagy 2014, 10, (6), 1093-104. 47. Klionsky, D. J.; Abdelmohsen, K.; Abe, A.; Abedin, M. J.; Abeliovich, H.; Acevedo Arozena, A.; Adachi, H.; Adams, C. M.; Adams, P. D.; Adeli, K.; Adhihetty, P. J.; Adler, S. G.; Agam, G.; Agarwal, R.; Aghi, M. K.; Agnello, M.; Agostinis, P.; Aguilar, P. V.; Aguirre-Ghiso, J.; Airoldi, E. M.; Ait-Si-Ali, S.; Akematsu, T.; Akporiaye, E. T.; Al-Rubeai, M.; Albaiceta, G. M.; Albanese, C.; Albani, D.; Albert, M. L.; Aldudo, J.; Algul, H.; Alirezaei, M.; Alloza, I.; Almasan, A.; Almonte-Beceril, M.; Alnemri, E. S.; Alonso, C.; Altan-Bonnet, N.; Altieri, D. C.; Alvarez, S.; Alvarez-Erviti, L.; Alves, S.; Amadoro, G.; Amano, A.; Amantini, C.; Ambrosio, S.; Amelio, I.; Amer, A. O.; Amessou, M.; Amon, A.; An, Z.; Anania, F. A.; Andersen, S. U.; Andley, U. P.; Andreadi, C. K.; Andrieu-Abadie, N.; Anel, A.; Ann, D. K.; Anoopkumar-Dukie, S.; Antonioli, M.; Aoki, H.; Apostolova, N.; Aquila, S.; Aquilano, K.; Araki, K.; Arama, E.; Aranda, A.; Araya, J.; Arcaro, A.; Arias, E.; Arimoto, H.; Ariosa, A. R.; Armstrong, J. L.; Arnould, T.; Arsov, I.; Asanuma, K.; Askanas, V.; Asselin, E.; Atarashi, R.; Atherton, S. S.; Atkin, J. D.; Attardi, L. D.; Auberger, P.; Auburger, G.; Aurelian, L.; Autelli, R.; Avagliano, L.; Avantaggiati, M. L.; Avrahami, L.; Awale, S.; Azad, N.; Bachetti, T.; Backer, J. M.; Bae, D. H.; Bae, J. S.; Bae, O. N.; Bae, S. H.; Baehrecke, E. H.; Baek, S. H.; Baghdiguian, S.; Bagniewska-Zadworna, A.; Bai, H.; Bai, J.; Bai, X. Y.; Bailly, Y.; Balaji, K. N.; Balduini, W.; Ballabio, A.; Balzan, R.; Banerjee, R.; Banhegyi, G.; Bao, H.; Barbeau, B.; Barrachina, M. D.; Barreiro, E.; Bartel, B.; Bartolome, A.; Bassham, D. C.; Bassi, M. T.; Bast, R. C., Jr.; Basu, A.; Batista, M. T.; Batoko, H.; Battino, M.; Bauckman, K.; Baumgarner, B. L.; Bayer, K. U.; Beale, R.; Beaulieu, J. F.; Beck, G. R., Jr.; Becker, C.; Beckham, J. D.; Bedard, P. A.; Bednarski, P. J.; Begley, T. J.; Behl, C.; Behrends, C.; Behrens, G. M.; Behrns, K. E.; Bejarano, E.; Belaid, A.; Belleudi, F.; Benard, G.; Berchem, G.; Bergamaschi, D.; Bergami, M.; Berkhout, B.; Berliocchi, L.; Bernard, A.; Bernard, M.; Bernassola, F.; Bertolotti, A.; Bess, A. S.; Besteiro, S.; Bettuzzi, S.; Bhalla, S.; Bhattacharyya, S.; Bhutia, S. K.; Biagosch, C.; Bianchi, M. W.; Biard-Piechaczyk, M.; Billes, V.; Bincoletto, C.; Bingol, B.; Bird, S. W.; Bitoun, M.; Bjedov, I.; Blackstone, C.; Blanc, L.; Blanco, G. A.; Blomhoff, H. K.; Boada-Romero, E.; Bockler, S.; Boes, M.; Boesze-Battaglia, K.; Boise, L. H.; Bolino, A.; Boman, A.; Bonaldo, P.; Bordi, M.; Bosch, 26
ACS Paragon Plus Environment
Page 26 of 57
Page 27 of 57
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Journal of Proteome Research
J.; Botana, L. M.; Botti, J.; Bou, G.; Bouche, M.; Bouchecareilh, M.; Boucher, M. J.; Boulton, M. E.; Bouret, S. G.; Boya, P.; Boyer-Guittaut, M.; Bozhkov, P. V.; Brady, N.; Braga, V. M.; Brancolini, C.; Braus, G. H.; Bravo-San Pedro, J. M.; Brennan, L. A.; Bresnick, E. H.; Brest, P.; Bridges, D.; Bringer, M. A.; Brini, M.; Brito, G. C.; Brodin, B.; Brookes, P. S.; Brown, E. J.; Brown, K.; Broxmeyer, H. E.; Bruhat, A.; Brum, P. C.; Brumell, J. H.; Brunetti-Pierri, N.; Bryson-Richardson, R. J.; Buch, S.; Buchan, A. M.; Budak, H.; Bulavin, D. V.; Bultman, S. J.; Bultynck, G.; Bumbasirevic, V.; Burelle, Y.; Burke, R. E.; Burmeister, M.; Butikofer, P.; Caberlotto, L.; Cadwell, K.; Cahova, M.; Cai, D.; Cai, J.; Cai, Q.; Calatayud, S.; Camougrand, N.; Campanella, M.; Campbell, G. R.; Campbell, M.; Campello, S.; Candau, R.; Caniggia, I.; Cantoni, L.; Cao, L.; Caplan, A. B.; Caraglia, M.; Cardinali, C.; Cardoso, S. M.; Carew, J. S.; Carleton, L. A.; Carlin, C. R.; Carloni, S.; Carlsson, S. R.; Carmona-Gutierrez, D.; Carneiro, L. A.; Carnevali, O.; Carra, S.; Carrier, A.; Carroll, B.; Casas, C.; Casas, J.; Cassinelli, G.; Castets, P.; Castro-Obregon, S.; Cavallini, G.; Ceccherini, I.; Cecconi, F.; Cederbaum, A. I.; Cena, V.; Cenci, S.; Cerella, C.; Cervia, D.; Cetrullo, S.; Chaachouay, H.; Chae, H. J.; Chagin, A. S.; Chai, C. Y.; Chakrabarti, G.; Chamilos, G.; Chan, E. Y.; Chan, M. T.; Chandra, D.; Chandra, P.; Chang, C. P.; Chang, R. C.; Chang, T. Y.; Chatham, J. C.; Chatterjee, S.; Chauhan, S.; Che, Y.; Cheetham, M. E.; Cheluvappa, R.; Chen, C. J.; Chen, G.; Chen, G. C.; Chen, G.; Chen, H.; Chen, J. W.; Chen, J. K.; Chen, M.; Chen, M.; Chen, P.; Chen, Q.; Chen, Q.; Chen, S. D.; Chen, S.; Chen, S. S.; Chen, W.; Chen, W. J.; Chen, W. Q.; Chen, W.; Chen, X.; Chen, Y. H.; Chen, Y. G.; Chen, Y.; Chen, Y.; Chen, Y.; Chen, Y. J.; Chen, Y. Q.; Chen, Y.; Chen, Z.; Chen, Z.; Cheng, A.; Cheng, C. H.; Cheng, H.; Cheong, H.; Cherry, S.; Chesney, J.; Cheung, C. H.; Chevet, E.; Chi, H. C.; Chi, S. G.; Chiacchiera, F.; Chiang, H. L.; Chiarelli, R.; Chiariello, M.; Chieppa, M.; Chin, L. S.; Chiong, M.; Chiu, G. N.; Cho, D. H.; Cho, S. G.; Cho, W. C.; Cho, Y. Y.; Cho, Y. S.; Choi, A. M.; Choi, E. J.; Choi, E. K.; Choi, J.; Choi, M. E.; Choi, S. I.; Chou, T. F.; Chouaib, S.; Choubey, D.; Choubey, V.; Chow, K. C.; Chowdhury, K.; Chu, C. T.; Chuang, T. H.; Chun, T.; Chung, H.; Chung, T.; Chung, Y. L.; Chwae, Y. J.; Cianfanelli, V.; Ciarcia, R.; Ciechomska, I. A.; Ciriolo, M. R.; Cirone, M.; Claerhout, S.; Clague, M. J.; Claria, J.; Clarke, P. G.; Clarke, R.; Clementi, E.; Cleyrat, C.; Cnop, M.; Coccia, E. M.; Cocco, T.; Codogno, P.; Coers, J.; Cohen, E. E.; Colecchia, D.; Coletto, L.; Coll, N. S.; Colucci-Guyon, E.; Comincini, S.; Condello, M.; Cook, K. L.; Coombs, G. H.; Cooper, C. D.; Cooper, J. M.; Coppens, I.; Corasaniti, M. T.; Corazzari, M.; Corbalan, R.; Corcelle-Termeau, E.; Cordero, M. D.; Corral-Ramos, C.; Corti, O.; Cossarizza, A.; Costelli, P.; Costes, S.; Cotman, S. L.; Coto-Montes, A.; Cottet, S.; Couve, E.; Covey, L. R.; Cowart, L. A.; Cox, J. S.; Coxon, F. P.; Coyne, C. B.; Cragg, M. S.; Craven, R. J.; Crepaldi, T.; Crespo, J. L.; Criollo, A.; Crippa, V.; Cruz, M. T.; Cuervo, A. M.; Cuezva, J. M.; Cui, T.; Cutillas, P. R.; Czaja, M. J.; Czyzyk-Krzeska, M. F.; Dagda, R. K.; Dahmen, U.; Dai, C.; Dai, W.; Dai, Y.; Dalby, K. N.; Dalla Valle, L.; Dalmasso, G.; D'Amelio, M.; Damme, M.; Darfeuille-Michaud, A.; Dargemont, C.; Darley-Usmar, V. M.; Dasarathy, S.; Dasgupta, B.; Dash, S.; Dass, C. R.; Davey, H. M.; Davids, L. M.; Davila, D.; Davis, R. J.; Dawson, T. M.; Dawson, V. L.; Daza, P.; de Belleroche, J.; de Figueiredo, P.; de Figueiredo, R. C.; de la Fuente, J.; De Martino, L.; De Matteis, A.; De Meyer, G. R.; De Milito, A.; De Santi, M.; de Souza, W.; De Tata, V.; De Zio, D.; Debnath, J.; Dechant, R.; Decuypere, J. P.; Deegan, S.; Dehay, B.; Del Bello, B.; Del Re, D. P.; Delage-Mourroux, R.; Delbridge, L. M.; Deldicque, L.; Delorme-Axford, E.; Deng, Y.; Dengjel, J.; Denizot, M.; Dent, P.; Der, C. J.; Deretic, V.; Derrien, B.; Deutsch, E.; Devarenne, T. P.; Devenish, R. J.; Di Bartolomeo, S.; Di Daniele, N.; Di Domenico, F.; Di Nardo, A.; Di Paola, S.; Di Pietro, A.; Di Renzo, L.; DiAntonio, A.; Diaz-Araya, G.; Diaz-Laviada, I.; Diaz-Meco, M. T.; Diaz-Nido, J.; Dickey, C. A.; Dickson, R. C.; Diederich, M.; Digard, P.; Dikic, I.; Dinesh-Kumar, S. P.; Ding, C.; Ding, W. X.; Ding, Z.; Dini, L.; Distler, J. H.; Diwan, A.; Djavaheri-Mergny, M.; Dmytruk, K.; Dobson, R. C.; Doetsch, V.; Dokladny, K.; Dokudovskaya, S.; Donadelli, M.; Dong, X. C.; Dong, X.; Dong, Z.; Donohue, T. M., Jr.; Doran, K. S.; D'Orazi, G.; Dorn, G. W., 2nd; Dosenko, V.; Dridi, S.; Drucker, L.; Du, J.; Du, L. L.; Du, L.; du Toit, A.; Dua, P.; Duan, L.; Duann, P.; Dubey, V. K.; Duchen, M. R.; Duchosal, M. A.; Duez, H.; Dugail, I.; Dumit, V. I.; Duncan, M. C.; Dunlop, E. A.; Dunn, W. A., Jr.; Dupont, N.; Dupuis, L.; Duran, R. V.; Durcan, T. M.; Duvezin-Caubet, S.; Duvvuri, U.; Eapen, V.; Ebrahimi-Fakhari, D.; Echard, A.; Eckhart, L.; Edelstein, C. L.; Edinger, A. L.; Eichinger, L.; Eisenberg, T.; 27
ACS Paragon Plus Environment
Journal of Proteome Research
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Eisenberg-Lerner, A.; Eissa, N. T.; El-Deiry, W. S.; El-Khoury, V.; Elazar, Z.; Eldar-Finkelman, H.; Elliott, C. J.; Emanuele, E.; Emmenegger, U.; Engedal, N.; Engelbrecht, A. M.; Engelender, S.; Enserink, J. M.; Erdmann, R.; Erenpreisa, J.; Eri, R.; Eriksen, J. L.; Erman, A.; Escalante, R.; Eskelinen, E. L.; Espert, L.; Esteban-Martinez, L.; Evans, T. J.; Fabri, M.; Fabrias, G.; Fabrizi, C.; Facchiano, A.; Faergeman, N. J.; Faggioni, A.; Fairlie, W. D.; Fan, C.; Fan, D.; Fan, J.; Fang, S.; Fanto, M.; Fanzani, A.; Farkas, T.; Faure, M.; Favier, F. B.; Fearnhead, H.; Federici, M.; Fei, E.; Felizardo, T. C.; Feng, H.; Feng, Y.; Feng, Y.; Ferguson, T. A.; Fernandez, A. F.; Fernandez-Barrena, M. G.; Fernandez-Checa, J. C.; Fernandez-Lopez, A.; Fernandez-Zapico, M. E.; Feron, O.; Ferraro, E.; Ferreira-Halder, C. V.; Fesus, L.; Feuer, R.; Fiesel, F. C.; Filippi-Chiela, E. C.; Filomeni, G.; Fimia, G. M.; Fingert, J. H.; Finkbeiner, S.; Finkel, T.; Fiorito, F.; Fisher, P. B.; Flajolet, M.; Flamigni, F.; Florey, O.; Florio, S.; Floto, R. A.; Folini, M.; Follo, C.; Fon, E. A.; Fornai, F.; Fortunato, F.; Fraldi, A.; Franco, R.; Francois, A.; Francois, A.; Frankel, L. B.; Fraser, I. D.; Frey, N.; Freyssenet, D. G.; Frezza, C.; Friedman, S. L.; Frigo, D. E.; Fu, D.; Fuentes, J. M.; Fueyo, J.; Fujitani, Y.; Fujiwara, Y.; Fujiya, M.; Fukuda, M.; Fulda, S.; Fusco, C.; Gabryel, B.; Gaestel, M.; Gailly, P.; Gajewska, M.; Galadari, S.; Galili, G.; Galindo, I.; Galindo, M. F.; Galliciotti, G.; Galluzzi, L.; Galluzzi, L.; Galy, V.; Gammoh, N.; Gandy, S.; Ganesan, A. K.; Ganesan, S.; Ganley, I. G.; Gannage, M.; Gao, F. B.; Gao, F.; Gao, J. X.; Garcia Nannig, L.; Garcia Vescovi, E.; Garcia-Macia, M.; Garcia-Ruiz, C.; Garg, A. D.; Garg, P. K.; Gargini, R.; Gassen, N. C.; Gatica, D.; Gatti, E.; Gavard, J.; Gavathiotis, E.; Ge, L.; Ge, P.; Ge, S.; Gean, P. W.; Gelmetti, V.; Genazzani, A. A.; Geng, J.; Genschik, P.; Gerner, L.; Gestwicki, J. E.; Gewirtz, D. A.; Ghavami, S.; Ghigo, E.; Ghosh, D.; Giammarioli, A. M.; Giampieri, F.; Giampietri, C.; Giatromanolaki, A.; Gibbings, D. J.; Gibellini, L.; Gibson, S. B.; Ginet, V.; Giordano, A.; Giorgini, F.; Giovannetti, E.; Girardin, S. E.; Gispert, S.; Giuliano, S.; Gladson, C. L.; Glavic, A.; Gleave, M.; Godefroy, N.; Gogal, R. M., Jr.; Gokulan, K.; Goldman, G. H.; Goletti, D.; Goligorsky, M. S.; Gomes, A. V.; Gomes, L. C.; Gomez, H.; Gomez-Manzano, C.; Gomez-Sanchez, R.; Goncalves, D. A.; Goncu, E.; Gong, Q.; Gongora, C.; Gonzalez, C. B.; Gonzalez-Alegre, P.; Gonzalez-Cabo, P.; Gonzalez-Polo, R. A.; Goping, I. S.; Gorbea, C.; Gorbunov, N. V.; Goring, D. R.; Gorman, A. M.; Gorski, S. M.; Goruppi, S.; Goto-Yamada, S.; Gotor, C.; Gottlieb, R. A.; Gozes, I.; Gozuacik, D.; Graba, Y.; Graef, M.; Granato, G. E.; Grant, G. D.; Grant, S.; Gravina, G. L.; Green, D. R.; Greenhough, A.; Greenwood, M. T.; Grimaldi, B.; Gros, F.; Grose, C.; Groulx, J. F.; Gruber, F.; Grumati, P.; Grune, T.; Guan, J. L.; Guan, K. L.; Guerra, B.; Guillen, C.; Gulshan, K.; Gunst, J.; Guo, C.; Guo, L.; Guo, M.; Guo, W.; Guo, X. G.; Gust, A. A.; Gustafsson, A. B.; Gutierrez, E.; Gutierrez, M. G.; Gwak, H. S.; Haas, A.; Haber, J. E.; Hadano, S.; Hagedorn, M.; Hahn, D. R.; Halayko, A. J.; Hamacher-Brady, A.; Hamada, K.; Hamai, A.; Hamann, A.; Hamasaki, M.; Hamer, I.; Hamid, Q.; Hammond, E. M.; Han, F.; Han, W.; Handa, J. T.; Hanover, J. A.; Hansen, M.; Harada, M.; Harhaji-Trajkovic, L.; Harper, J. W.; Harrath, A. H.; Harris, A. L.; Harris, J.; Hasler, U.; Hasselblatt, P.; Hasui, K.; Hawley, R. G.; Hawley, T. S.; He, C.; He, C. Y.; He, F.; He, G.; He, R. R.; He, X. H.; He, Y. W.; He, Y. Y.; Heath, J. K.; Hebert, M. J.; Heinzen, R. A.; Helgason, G. V.; Hensel, M.; Henske, E. P.; Her, C.; Herman, P. K.; Hernandez, A.; Hernandez, C.; Hernandez-Tiedra, S.; Hetz, C.; Hiesinger, P. R.; Higaki, K.; Hilfiker, S.; Hill, B. G.; Hill, J. A.; Hill, W. D.; Hino, K.; Hofius, D.; Hofman, P.; Hoglinger, G. U.; Hohfeld, J.; Holz, M. K.; Hong, Y.; Hood, D. A.; Hoozemans, J. J.; Hoppe, T.; Hsu, C.; Hsu, C. Y.; Hsu, L. C.; Hu, D.; Hu, G.; Hu, H. M.; Hu, H.; Hu, M. C.; Hu, Y. C.; Hu, Z. W.; Hua, F.; Hua, Y.; Huang, C.; Huang, H. L.; Huang, K. H.; Huang, K. Y.; Huang, S.; Huang, S.; Huang, W. P.; Huang, Y. R.; Huang, Y.; Huang, Y.; Huber, T. B.; Huebbe, P.; Huh, W. K.; Hulmi, J. J.; Hur, G. M.; Hurley, J. H.; Husak, Z.; Hussain, S. N.; Hussain, S.; Hwang, J. J.; Hwang, S.; Hwang, T. I.; Ichihara, A.; Imai, Y.; Imbriano, C.; Inomata, M.; Into, T.; Iovane, V.; Iovanna, J. L.; Iozzo, R. V.; Ip, N. Y.; Irazoqui, J. E.; Iribarren, P.; Isaka, Y.; Isakovic, A. J.; Ischiropoulos, H.; Isenberg, J. S.; Ishaq, M.; Ishida, H.; Ishii, I.; Ishmael, J. E.; Isidoro, C.; Isobe, K.; Isono, E.; Issazadeh-Navikas, S.; Itahana, K.; Itakura, E.; Ivanov, A. I.; Iyer, A. K.; Izquierdo, J. M.; Izumi, Y.; Izzo, V.; Jaattela, M.; Jaber, N.; Jackson, D. J.; Jackson, W. T.; Jacob, T. G.; Jacques, T. S.; Jagannath, C.; Jain, A.; Jana, N. R.; Jang, B. K.; Jani, A.; Janji, B.; Jannig, P. R.; Jansson, P. J.; Jean, S.; Jendrach, M.; Jeon, J. H.; Jessen, N.; Jeung, E. B.; Jia, K.; Jia, L.; Jiang, H.; Jiang, H.; Jiang, L.; Jiang, T.; Jiang, X.; Jiang, X.; Jiang, X.; Jiang, Y.; 28
ACS Paragon Plus Environment
Page 28 of 57
Page 29 of 57
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Journal of Proteome Research
Jiang, Y.; Jimenez, A.; Jin, C.; Jin, H.; Jin, L.; Jin, M.; Jin, S.; Jinwal, U. K.; Jo, E. K.; Johansen, T.; Johnson, D. E.; Johnson, G. V.; Johnson, J. D.; Jonasch, E.; Jones, C.; Joosten, L. A.; Jordan, J.; Joseph, A. M.; Joseph, B.; Joubert, A. M.; Ju, D.; Ju, J.; Juan, H. F.; Juenemann, K.; Juhasz, G.; Jung, H. S.; Jung, J. U.; Jung, Y. K.; Jungbluth, H.; Justice, M. J.; Jutten, B.; Kaakoush, N. O.; Kaarniranta, K.; Kaasik, A.; Kabuta, T.; Kaeffer, B.; Kagedal, K.; Kahana, A.; Kajimura, S.; Kakhlon, O.; Kalia, M.; Kalvakolanu, D. V.; Kamada, Y.; Kambas, K.; Kaminskyy, V. O.; Kampinga, H. H.; Kandouz, M.; Kang, C.; Kang, R.; Kang, T. C.; Kanki, T.; Kanneganti, T. D.; Kanno, H.; Kanthasamy, A. G.; Kantorow, M.; Kaparakis-Liaskos, M.; Kapuy, O.; Karantza, V.; Karim, M. R.; Karmakar, P.; Kaser, A.; Kaushik, S.; Kawula, T.; Kaynar, A. M.; Ke, P. Y.; Ke, Z. J.; Kehrl, J. H.; Keller, K. E.; Kemper, J. K.; Kenworthy, A. K.; Kepp, O.; Kern, A.; Kesari, S.; Kessel, D.; Ketteler, R.; Kettelhut Ido, C.; Khambu, B.; Khan, M. M.; Khandelwal, V. K.; Khare, S.; Kiang, J. G.; Kiger, A. A.; Kihara, A.; Kim, A. L.; Kim, C. H.; Kim, D. R.; Kim, D. H.; Kim, E. K.; Kim, H. Y.; Kim, H. R.; Kim, J. S.; Kim, J. H.; Kim, J. C.; Kim, J. H.; Kim, K. W.; Kim, M. D.; Kim, M. M.; Kim, P. K.; Kim, S. W.; Kim, S. Y.; Kim, Y. S.; Kim, Y.; Kimchi, A.; Kimmelman, A. C.; Kimura, T.; King, J. S.; Kirkegaard, K.; Kirkin, V.; Kirshenbaum, L. A.; Kishi, S.; Kitajima, Y.; Kitamoto, K.; Kitaoka, Y.; Kitazato, K.; Kley, R. A.; Klimecki, W. T.; Klinkenberg, M.; Klucken, J.; Knaevelsrud, H.; Knecht, E.; Knuppertz, L.; Ko, J. L.; Kobayashi, S.; Koch, J. C.; Koechlin-Ramonatxo, C.; Koenig, U.; Koh, Y. H.; Kohler, K.; Kohlwein, S. D.; Koike, M.; Komatsu, M.; Kominami, E.; Kong, D.; Kong, H. J.; Konstantakou, E. G.; Kopp, B. T.; Korcsmaros, T.; Korhonen, L.; Korolchuk, V. I.; Koshkina, N. V.; Kou, Y.; Koukourakis, M. I.; Koumenis, C.; Kovacs, A. L.; Kovacs, T.; Kovacs, W. J.; Koya, D.; Kraft, C.; Krainc, D.; Kramer, H.; Kravic-Stevovic, T.; Krek, W.; Kretz-Remy, C.; Krick, R.; Krishnamurthy, M.; Kriston-Vizi, J.; Kroemer, G.; Kruer, M. C.; Kruger, R.; Ktistakis, N. T.; Kuchitsu, K.; Kuhn, C.; Kumar, A. P.; Kumar, A.; Kumar, A.; Kumar, D.; Kumar, D.; Kumar, R.; Kumar, S.; Kundu, M.; Kung, H. J.; Kuno, A.; Kuo, S. H.; Kuret, J.; Kurz, T.; Kwok, T.; Kwon, T. K.; Kwon, Y. T.; Kyrmizi, I.; La Spada, A. R.; Lafont, F.; Lahm, T.; Lakkaraju, A.; Lam, T.; Lamark, T.; Lancel, S.; Landowski, T. H.; Lane, D. J.; Lane, J. D.; Lanzi, C.; Lapaquette, P.; Lapierre, L. R.; Laporte, J.; Laukkarinen, J.; Laurie, G. W.; Lavandero, S.; Lavie, L.; LaVoie, M. J.; Law, B. Y.; Law, H. K.; Law, K. B.; Layfield, R.; Lazo, P. A.; Le Cam, L.; Le Roch, K. G.; Le Stunff, H.; Leardkamolkarn, V.; Lecuit, M.; Lee, B. H.; Lee, C. H.; Lee, E. F.; Lee, G. M.; Lee, H. J.; Lee, H.; Lee, J. K.; Lee, J.; Lee, J. H.; Lee, J. H.; Lee, M.; Lee, M. S.; Lee, P. J.; Lee, S. W.; Lee, S. J.; Lee, S. J.; Lee, S. Y.; Lee, S. H.; Lee, S. S.; Lee, S. J.; Lee, S.; Lee, Y. R.; Lee, Y. J.; Lee, Y. H.; Leeuwenburgh, C.; Lefort, S.; Legouis, R.; Lei, J.; Lei, Q. Y.; Leib, D. A.; Leibowitz, G.; Lekli, I.; Lemaire, S. D.; Lemasters, J. J.; Lemberg, M. K.; Lemoine, A.; Leng, S.; Lenz, G.; Lenzi, P.; Lerman, L. O.; Lettieri Barbato, D.; Leu, J. I.; Leung, H. Y.; Levine, B.; Lewis, P. A.; Lezoualc'h, F.; Li, C.; Li, F.; Li, F. J.; Li, J.; Li, K.; Li, L.; Li, M.; Li, M.; Li, Q.; Li, R.; Li, S.; Li, W.; Li, W.; Li, X.; Li, Y.; Lian, J.; Liang, C.; Liang, Q.; Liao, Y.; Liberal, J.; Liberski, P. P.; Lie, P.; Lieberman, A. P.; Lim, H. J.; Lim, K. L.; Lim, K.; Lima, R. T.; Lin, C. S.; Lin, C. F.; Lin, F.; Lin, F.; Lin, F. C.; Lin, K.; Lin, K. H.; Lin, P. H.; Lin, T.; Lin, W. W.; Lin, Y. S.; Lin, Y.; Linden, R.; Lindholm, D.; Lindqvist, L. M.; Lingor, P.; Linkermann, A.; Liotta, L. A.; Lipinski, M. M.; Lira, V. A.; Lisanti, M. P.; Liton, P. B.; Liu, B.; Liu, C.; Liu, C. F.; Liu, F.; Liu, H. J.; Liu, J.; Liu, J. J.; Liu, J. L.; Liu, K.; Liu, L.; Liu, L.; Liu, Q.; Liu, R. Y.; Liu, S.; Liu, S.; Liu, W.; Liu, X. D.; Liu, X.; Liu, X. H.; Liu, X.; Liu, X.; Liu, X.; Liu, Y.; Liu, Y.; Liu, Z.; Liu, Z.; Liuzzi, J. P.; Lizard, G.; Ljujic, M.; Lodhi, I. J.; Logue, S. E.; Lokeshwar, B. L.; Long, Y. C.; Lonial, S.; Loos, B.; Lopez-Otin, C.; Lopez-Vicario, C.; Lorente, M.; Lorenzi, P. L.; Lorincz, P.; Los, M.; Lotze, M. T.; Lovat, P. E.; Lu, B.; Lu, B.; Lu, J.; Lu, Q.; Lu, S. M.; Lu, S.; Lu, Y.; Luciano, F.; Luckhart, S.; Lucocq, J. M.; Ludovico, P.; Lugea, A.; Lukacs, N. W.; Lum, J. J.; Lund, A. H.; Luo, H.; Luo, J.; Luo, S.; Luparello, C.; Lyons, T.; Ma, J.; Ma, Y.; Ma, Y.; Ma, Z.; Machado, J.; Machado-Santelli, G. M.; Macian, F.; MacIntosh, G. C.; MacKeigan, J. P.; Macleod, K. F.; MacMicking, J. D.; MacMillan-Crow, L. A.; Madeo, F.; Madesh, M.; Madrigal-Matute, J.; Maeda, A.; Maeda, T.; Maegawa, G.; Maellaro, E.; Maes, H.; Magarinos, M.; Maiese, K.; Maiti, T. K.; Maiuri, L.; Maiuri, M. C.; Maki, C. G.; Malli, R.; Malorni, W.; Maloyan, A.; Mami-Chouaib, F.; Man, N.; Mancias, J. D.; Mandelkow, E. M.; Mandell, M. A.; Manfredi, A. A.; Manie, S. N.; Manzoni, C.; Mao, K.; Mao, Z.; Mao, Z. W.; Marambaud, 29
ACS Paragon Plus Environment
Journal of Proteome Research
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
P.; Marconi, A. M.; Marelja, Z.; Marfe, G.; Margeta, M.; Margittai, E.; Mari, M.; Mariani, F. V.; Marin, C.; Marinelli, S.; Marino, G.; Markovic, I.; Marquez, R.; Martelli, A. M.; Martens, S.; Martin, K. R.; Martin, S. J.; Martin, S.; Martin-Acebes, M. A.; Martin-Sanz, P.; Martinand-Mari, C.; Martinet, W.; Martinez, J.; Martinez-Lopez, N.; Martinez-Outschoorn, U.; Martinez-Velazquez, M.; Martinez-Vicente, M.; Martins, W. K.; Mashima, H.; Mastrianni, J. A.; Matarese, G.; Matarrese, P.; Mateo, R.; Matoba, S.; Matsumoto, N.; Matsushita, T.; Matsuura, A.; Matsuzawa, T.; Mattson, M. P.; Matus, S.; Maugeri, N.; Mauvezin, C.; Mayer, A.; Maysinger, D.; Mazzolini, G. D.; McBrayer, M. K.; McCall, K.; McCormick, C.; McInerney, G. M.; McIver, S. C.; McKenna, S.; McMahon, J. J.; McNeish, I. A.; Mechta-Grigoriou, F.; Medema, J. P.; Medina, D. L.; Megyeri, K.; Mehrpour, M.; Mehta, J. L.; Mei, Y.; Meier, U. C.; Meijer, A. J.; Melendez, A.; Melino, G.; Melino, S.; de Melo, E. J.; Mena, M. A.; Meneghini, M. D.; Menendez, J. A.; Menezes, R.; Meng, L.; Meng, L. H.; Meng, S.; Menghini, R.; Menko, A. S.; Menna-Barreto, R. F.; Menon, M. B.; Meraz-Rios, M. A.; Merla, G.; Merlini, L.; Merlot, A. M.; Meryk, A.; Meschini, S.; Meyer, J. N.; Mi, M. T.; Miao, C. Y.; Micale, L.; Michaeli, S.; Michiels, C.; Migliaccio, A. R.; Mihailidou, A. S.; Mijaljica, D.; Mikoshiba, K.; Milan, E.; Miller-Fleming, L.; Mills, G. B.; Mills, I. G.; Minakaki, G.; Minassian, B. A.; Ming, X. F.; Minibayeva, F.; Minina, E. A.; Mintern, J. D.; Minucci, S.; Miranda-Vizuete, A.; Mitchell, C. H.; Miyamoto, S.; Miyazawa, K.; Mizushima, N.; Mnich, K.; Mograbi, B.; Mohseni, S.; Moita, L. F.; Molinari, M.; Molinari, M.; Moller, A. B.; Mollereau, B.; Mollinedo, F.; Mongillo, M.; Monick, M. M.; Montagnaro, S.; Montell, C.; Moore, D. J.; Moore, M. N.; Mora-Rodriguez, R.; Moreira, P. I.; Morel, E.; Morelli, M. B.; Moreno, S.; Morgan, M. J.; Moris, A.; Moriyasu, Y.; Morrison, J. L.; Morrison, L. A.; Morselli, E.; Moscat, J.; Moseley, P. L.; Mostowy, S.; Motori, E.; Mottet, D.; Mottram, J. C.; Moussa, C. E.; Mpakou, V. E.; Mukhtar, H.; Mulcahy Levy, J. M.; Muller, S.; Munoz-Moreno, R.; Munoz-Pinedo, C.; Munz, C.; Murphy, M. E.; Murray, J. T.; Murthy, A.; Mysorekar, I. U.; Nabi, I. R.; Nabissi, M.; Nader, G. A.; Nagahara, Y.; Nagai, Y.; Nagata, K.; Nagelkerke, A.; Nagy, P.; Naidu, S. R.; Nair, S.; Nakano, H.; Nakatogawa, H.; Nanjundan, M.; Napolitano, G.; Naqvi, N. I.; Nardacci, R.; Narendra, D. P.; Narita, M.; Nascimbeni, A. C.; Natarajan, R.; Navegantes, L. C.; Nawrocki, S. T.; Nazarko, T. Y.; Nazarko, V. Y.; Neill, T.; Neri, L. M.; Netea, M. G.; Netea-Maier, R. T.; Neves, B. M.; Ney, P. A.; Nezis, I. P.; Nguyen, H. T.; Nguyen, H. P.; Nicot, A. S.; Nilsen, H.; Nilsson, P.; Nishimura, M.; Nishino, I.; Niso-Santano, M.; Niu, H.; Nixon, R. A.; Njar, V. C.; Noda, T.; Noegel, A. A.; Nolte, E. M.; Norberg, E.; Norga, K. K.; Noureini, S. K.; Notomi, S.; Notterpek, L.; Nowikovsky, K.; Nukina, N.; Nurnberger, T.; O'Donnell, V. B.; O'Donovan, T.; O'Dwyer, P. J.; Oehme, I.; Oeste, C. L.; Ogawa, M.; Ogretmen, B.; Ogura, Y.; Oh, Y. J.; Ohmuraya, M.; Ohshima, T.; Ojha, R.; Okamoto, K.; Okazaki, T.; Oliver, F. J.; Ollinger, K.; Olsson, S.; Orban, D. P.; Ordonez, P.; Orhon, I.; Orosz, L.; O'Rourke, E. J.; Orozco, H.; Ortega, A. L.; Ortona, E.; Osellame, L. D.; Oshima, J.; Oshima, S.; Osiewacz, H. D.; Otomo, T.; Otsu, K.; Ou, J. H.; Outeiro, T. F.; Ouyang, D. Y.; Ouyang, H.; Overholtzer, M.; Ozbun, M. A.; Ozdinler, P. H.; Ozpolat, B.; Pacelli, C.; Paganetti, P.; Page, G.; Pages, G.; Pagnini, U.; Pajak, B.; Pak, S. C.; Pakos-Zebrucka, K.; Pakpour, N.; Palkova, Z.; Palladino, F.; Pallauf, K.; Pallet, N.; Palmieri, M.; Paludan, S. R.; Palumbo, C.; Palumbo, S.; Pampliega, O.; Pan, H.; Pan, W.; Panaretakis, T.; Pandey, A.; Pantazopoulou, A.; Papackova, Z.; Papademetrio, D. L.; Papassideri, I.; Papini, A.; Parajuli, N.; Pardo, J.; Parekh, V. V.; Parenti, G.; Park, J. I.; Park, J.; Park, O. K.; Parker, R.; Parlato, R.; Parys, J. B.; Parzych, K. R.; Pasquet, J. M.; Pasquier, B.; Pasumarthi, K. B.; Patschan, D.; Patterson, C.; Pattingre, S.; Pattison, S.; Pause, A.; Pavenstadt, H.; Pavone, F.; Pedrozo, Z.; Pena, F. J.; Penalva, M. A.; Pende, M.; Peng, J.; Penna, F.; Penninger, J. M.; Pensalfini, A.; Pepe, S.; Pereira, G. J.; Pereira, P. C.; Perez-de la Cruz, V.; Perez-Perez, M. E.; Perez-Rodriguez, D.; Perez-Sala, D.; Perier, C.; Perl, A.; Perlmutter, D. H.; Perrotta, I.; Pervaiz, S.; Pesonen, M.; Pessin, J. E.; Peters, G. J.; Petersen, M.; Petrache, I.; Petrof, B. J.; Petrovski, G.; Phang, J. M.; Piacentini, M.; Pierdominici, M.; Pierre, P.; Pierrefite-Carle, V.; Pietrocola, F.; Pimentel-Muinos, F. X.; Pinar, M.; Pineda, B.; Pinkas-Kramarski, R.; Pinti, M.; Pinton, P.; Piperdi, B.; Piret, J. M.; Platanias, L. C.; Platta, H. W.; Plowey, E. D.; Poggeler, S.; Poirot, M.; Polcic, P.; Poletti, A.; Poon, A. H.; Popelka, H.; Popova, B.; Poprawa, I.; Poulose, S. M.; Poulton, J.; Powers, S. K.; Powers, T.; Pozuelo-Rubio, M.; Prak, K.; Prange, R.; Prescott, M.; Priault, M.; Prince, S.; Proia, R. 30
ACS Paragon Plus Environment
Page 30 of 57
Page 31 of 57
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Journal of Proteome Research
L.; Proikas-Cezanne, T.; Prokisch, H.; Promponas, V. J.; Przyklenk, K.; Puertollano, R.; Pugazhenthi, S.; Puglielli, L.; Pujol, A.; Puyal, J.; Pyeon, D.; Qi, X.; Qian, W. B.; Qin, Z. H.; Qiu, Y.; Qu, Z.; Quadrilatero, J.; Quinn, F.; Raben, N.; Rabinowich, H.; Radogna, F.; Ragusa, M. J.; Rahmani, M.; Raina, K.; Ramanadham, S.; Ramesh, R.; Rami, A.; Randall-Demllo, S.; Randow, F.; Rao, H.; Rao, V. A.; Rasmussen, B. B.; Rasse, T. M.; Ratovitski, E. A.; Rautou, P. E.; Ray, S. K.; Razani, B.; Reed, B. H.; Reggiori, F.; Rehm, M.; Reichert, A. S.; Rein, T.; Reiner, D. J.; Reits, E.; Ren, J.; Ren, X.; Renna, M.; Reusch, J. E.; Revuelta, J. L.; Reyes, L.; Rezaie, A. R.; Richards, R. I.; Richardson, D. R.; Richetta, C.; Riehle, M. A.; Rihn, B. H.; Rikihisa, Y.; Riley, B. E.; Rimbach, G.; Rippo, M. R.; Ritis, K.; Rizzi, F.; Rizzo, E.; Roach, P. J.; Robbins, J.; Roberge, M.; Roca, G.; Roccheri, M. C.; Rocha, S.; Rodrigues, C. M.; Rodriguez, C. I.; de Cordoba, S. R.; Rodriguez-Muela, N.; Roelofs, J.; Rogov, V. V.; Rohn, T. T.; Rohrer, B.; Romanelli, D.; Romani, L.; Romano, P. S.; Roncero, M. I.; Rosa, J. L.; Rosello, A.; Rosen, K. V.; Rosenstiel, P.; Rost-Roszkowska, M.; Roth, K. A.; Roue, G.; Rouis, M.; Rouschop, K. M.; Ruan, D. T.; Ruano, D.; Rubinsztein, D. C.; Rucker, E. B., 3rd; Rudich, A.; Rudolf, E.; Rudolf, R.; Ruegg, M. A.; Ruiz-Roldan, C.; Ruparelia, A. A.; Rusmini, P.; Russ, D. W.; Russo, G. L.; Russo, G.; Russo, R.; Rusten, T. E.; Ryabovol, V.; Ryan, K. M.; Ryter, S. W.; Sabatini, D. M.; Sacher, M.; Sachse, C.; Sack, M. N.; Sadoshima, J.; Saftig, P.; Sagi-Eisenberg, R.; Sahni, S.; Saikumar, P.; Saito, T.; Saitoh, T.; Sakakura, K.; Sakoh-Nakatogawa, M.; Sakuraba, Y.; Salazar-Roa, M.; Salomoni, P.; Saluja, A. K.; Salvaterra, P. M.; Salvioli, R.; Samali, A.; Sanchez, A. M.; Sanchez-Alcazar, J. A.; Sanchez-Prieto, R.; Sandri, M.; Sanjuan, M. A.; Santaguida, S.; Santambrogio, L.; Santoni, G.; Dos Santos, C. N.; Saran, S.; Sardiello, M.; Sargent, G.; Sarkar, P.; Sarkar, S.; Sarrias, M. R.; Sarwal, M. M.; Sasakawa, C.; Sasaki, M.; Sass, M.; Sato, K.; Sato, M.; Satriano, J.; Savaraj, N.; Saveljeva, S.; Schaefer, L.; Schaible, U. E.; Scharl, M.; Schatzl, H. M.; Schekman, R.; Scheper, W.; Schiavi, A.; Schipper, H. M.; Schmeisser, H.; Schmidt, J.; Schmitz, I.; Schneider, B. E.; Schneider, E. M.; Schneider, J. L.; Schon, E. A.; Schonenberger, M. J.; Schonthal, A. H.; Schorderet, D. F.; Schroder, B.; Schuck, S.; Schulze, R. J.; Schwarten, M.; Schwarz, T. L.; Sciarretta, S.; Scotto, K.; Scovassi, A. I.; Screaton, R. A.; Screen, M.; Seca, H.; Sedej, S.; Segatori, L.; Segev, N.; Seglen, P. O.; Segui-Simarro, J. M.; Segura-Aguilar, J.; Seki, E.; Sell, C.; Seiliez, I.; Semenkovich, C. F.; Semenza, G. L.; Sen, U.; Serra, A. L.; Serrano-Puebla, A.; Sesaki, H.; Setoguchi, T.; Settembre, C.; Shacka, J. J.; Shajahan-Haq, A. N.; Shapiro, I. M.; Sharma, S.; She, H.; Shen, C. K.; Shen, C. C.; Shen, H. M.; Shen, S.; Shen, W.; Sheng, R.; Sheng, X.; Sheng, Z. H.; Shepherd, T. G.; Shi, J.; Shi, Q.; Shi, Q.; Shi, Y.; Shibutani, S.; Shibuya, K.; Shidoji, Y.; Shieh, J. J.; Shih, C. M.; Shimada, Y.; Shimizu, S.; Shin, D. W.; Shinohara, M. L.; Shintani, M.; Shintani, T.; Shioi, T.; Shirabe, K.; Shiri-Sverdlov, R.; Shirihai, O.; Shore, G. C.; Shu, C. W.; Shukla, D.; Sibirny, A. A.; Sica, V.; Sigurdson, C. J.; Sigurdsson, E. M.; Sijwali, P. S.; Sikorska, B.; Silveira, W. A.; Silvente-Poirot, S.; Silverman, G. A.; Simak, J.; Simmet, T.; Simon, A. K.; Simon, H. U.; Simone, C.; Simons, M.; Simonsen, A.; Singh, R.; Singh, S. V.; Singh, S. K.; Sinha, D.; Sinha, S.; Sinicrope, F. A.; Sirko, A.; Sirohi, K.; Sishi, B. J.; Sittler, A.; Siu, P. M.; Sivridis, E.; Skwarska, A.; Slack, R.; Slaninova, I.; Slavov, N.; Smaili, S. S.; Smalley, K. S.; Smith, D. R.; Soenen, S. J.; Soleimanpour, S. A.; Solhaug, A.; Somasundaram, K.; Son, J. H.; Sonawane, A.; Song, C.; Song, F.; Song, H. K.; Song, J. X.; Song, W.; Soo, K. Y.; Sood, A. K.; Soong, T. W.; Soontornniyomkij, V.; Sorice, M.; Sotgia, F.; Soto-Pantoja, D. R.; Sotthibundhu, A.; Sousa, M. J.; Spaink, H. P.; Span, P. N.; Spang, A.; Sparks, J. D.; Speck, P. G.; Spector, S. A.; Spies, C. D.; Springer, W.; Clair, D. S.; Stacchiotti, A.; Staels, B.; Stang, M. T.; Starczynowski, D. T.; Starokadomskyy, P.; Steegborn, C.; Steele, J. W.; Stefanis, L.; Steffan, J.; Stellrecht, C. M.; Stenmark, H.; Stepkowski, T. M.; Stern, S. T.; Stevens, C.; Stockwell, B. R.; Stoka, V.; Storchova, Z.; Stork, B.; Stratoulias, V.; Stravopodis, D. J.; Strnad, P.; Strohecker, A. M.; Strom, A. L.; Stromhaug, P.; Stulik, J.; Su, Y. X.; Su, Z.; Subauste, C. S.; Subramaniam, S.; Sue, C. M.; Suh, S. W.; Sui, X.; Sukseree, S.; Sulzer, D.; Sun, F. L.; Sun, J.; Sun, J.; Sun, S. Y.; Sun, Y.; Sun, Y.; Sun, Y.; Sundaramoorthy, V.; Sung, J.; Suzuki, H.; Suzuki, K.; Suzuki, N.; Suzuki, T.; Suzuki, Y. J.; Swanson, M. S.; Swanton, C.; Sward, K.; Swarup, G.; Sweeney, S. T.; Sylvester, P. W.; Szatmari, Z.; Szegezdi, E.; Szlosarek, P. W.; Taegtmeyer, H.; Tafani, M.; Taillebourg, E.; Tait, S. W.; Takacs-Vellai, K.; Takahashi, Y.; Takats, S.; Takemura, G.; Takigawa, N.; Talbot, N. J.; Tamagno, E.; Tamburini, J.; Tan, C. P.; Tan, L.; 31
ACS Paragon Plus Environment
Journal of Proteome Research
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Tan, M. L.; Tan, M.; Tan, Y. J.; Tanaka, K.; Tanaka, M.; Tang, D.; Tang, D.; Tang, G.; Tanida, I.; Tanji, K.; Tannous, B. A.; Tapia, J. A.; Tasset-Cuevas, I.; Tatar, M.; Tavassoly, I.; Tavernarakis, N.; Taylor, A.; Taylor, G. S.; Taylor, G. A.; Taylor, J. P.; Taylor, M. J.; Tchetina, E. V.; Tee, A. R.; Teixeira-Clerc, F.; Telang, S.; Tencomnao, T.; Teng, B. B.; Teng, R. J.; Terro, F.; Tettamanti, G.; Theiss, A. L.; Theron, A. E.; Thomas, K. J.; Thome, M. P.; Thomes, P. G.; Thorburn, A.; Thorner, J.; Thum, T.; Thumm, M.; Thurston, T. L.; Tian, L.; Till, A.; Ting, J. P.; Titorenko, V. I.; Toker, L.; Toldo, S.; Tooze, S. A.; Topisirovic, I.; Torgersen, M. L.; Torosantucci, L.; Torriglia, A.; Torrisi, M. R.; Tournier, C.; Towns, R.; Trajkovic, V.; Travassos, L. H.; Triola, G.; Tripathi, D. N.; Trisciuoglio, D.; Troncoso, R.; Trougakos, I. P.; Truttmann, A. C.; Tsai, K. J.; Tschan, M. P.; Tseng, Y. H.; Tsukuba, T.; Tsung, A.; Tsvetkov, A. S.; Tu, S.; Tuan, H. Y.; Tucci, M.; Tumbarello, D. A.; Turk, B.; Turk, V.; Turner, R. F.; Tveita, A. A.; Tyagi, S. C.; Ubukata, M.; Uchiyama, Y.; Udelnow, A.; Ueno, T.; Umekawa, M.; Umemiya-Shirafuji, R.; Underwood, B. R.; Ungermann, C.; Ureshino, R. P.; Ushioda, R.; Uversky, V. N.; Uzcategui, N. L.; Vaccari, T.; Vaccaro, M. I.; Vachova, L.; Vakifahmetoglu-Norberg, H.; Valdor, R.; Valente, E. M.; Vallette, F.; Valverde, A. M.; Van den Berghe, G.; Van Den Bosch, L.; van den Brink, G. R.; van der Goot, F. G.; van der Klei, I. J.; van der Laan, L. J.; van Doorn, W. G.; van Egmond, M.; van Golen, K. L.; Van Kaer, L.; van Lookeren Campagne, M.; Vandenabeele, P.; Vandenberghe, W.; Vanhorebeek, I.; Varela-Nieto, I.; Vasconcelos, M. H.; Vasko, R.; Vavvas, D. G.; Vega-Naredo, I.; Velasco, G.; Velentzas, A. D.; Velentzas, P. D.; Vellai, T.; Vellenga, E.; Vendelbo, M. H.; Venkatachalam, K.; Ventura, N.; Ventura, S.; Veras, P. S.; Verdier, M.; Vertessy, B. G.; Viale, A.; Vidal, M.; Vieira, H. L.; Vierstra, R. D.; Vigneswaran, N.; Vij, N.; Vila, M.; Villar, M.; Villar, V. H.; Villarroya, J.; Vindis, C.; Viola, G.; Viscomi, M. T.; Vitale, G.; Vogl, D. T.; Voitsekhovskaja, O. V.; von Haefen, C.; von Schwarzenberg, K.; Voth, D. E.; Vouret-Craviari, V.; Vuori, K.; Vyas, J. M.; Waeber, C.; Walker, C. L.; Walker, M. J.; Walter, J.; Wan, L.; Wan, X.; Wang, B.; Wang, C.; Wang, C. Y.; Wang, C.; Wang, C.; Wang, C.; Wang, D.; Wang, F.; Wang, F.; Wang, G.; Wang, H. J.; Wang, H.; Wang, H. G.; Wang, H.; Wang, H. D.; Wang, J.; Wang, J.; Wang, M.; Wang, M. Q.; Wang, P. Y.; Wang, P.; Wang, R. C.; Wang, S.; Wang, T. F.; Wang, X.; Wang, X. J.; Wang, X. W.; Wang, X.; Wang, X.; Wang, Y.; Wang, Y.; Wang, Y.; Wang, Y. J.; Wang, Y.; Wang, Y.; Wang, Y. T.; Wang, Y.; Wang, Z. N.; Wappner, P.; Ward, C.; Ward, D. M.; Warnes, G.; Watada, H.; Watanabe, Y.; Watase, K.; Weaver, T. E.; Weekes, C. D.; Wei, J.; Weide, T.; Weihl, C. C.; Weindl, G.; Weis, S. N.; Wen, L.; Wen, X.; Wen, Y.; Westermann, B.; Weyand, C. M.; White, A. R.; White, E.; Whitton, J. L.; Whitworth, A. J.; Wiels, J.; Wild, F.; Wildenberg, M. E.; Wileman, T.; Wilkinson, D. S.; Wilkinson, S.; Willbold, D.; Williams, C.; Williams, K.; Williamson, P. R.; Winklhofer, K. F.; Witkin, S. S.; Wohlgemuth, S. E.; Wollert, T.; Wolvetang, E. J.; Wong, E.; Wong, G. W.; Wong, R. W.; Wong, V. K.; Woodcock, E. A.; Wright, K. L.; Wu, C.; Wu, D.; Wu, G. S.; Wu, J.; Wu, J.; Wu, M.; Wu, M.; Wu, S.; Wu, W. K.; Wu, Y.; Wu, Z.; Xavier, C. P.; Xavier, R. J.; Xia, G. X.; Xia, T.; Xia, W.; Xia, Y.; Xiao, H.; Xiao, J.; Xiao, S.; Xiao, W.; Xie, C. M.; Xie, Z.; Xie, Z.; Xilouri, M.; Xiong, Y.; Xu, C.; Xu, C.; Xu, F.; Xu, H.; Xu, H.; Xu, J.; Xu, J.; Xu, J.; Xu, L.; Xu, X.; Xu, Y.; Xu, Y.; Xu, Z. X.; Xu, Z.; Xue, Y.; Yamada, T.; Yamamoto, A.; Yamanaka, K.; Yamashina, S.; Yamashiro, S.; Yan, B.; Yan, B.; Yan, X.; Yan, Z.; Yanagi, Y.; Yang, D. S.; Yang, J. M.; Yang, L.; Yang, M.; Yang, P. M.; Yang, P.; Yang, Q.; Yang, W.; Yang, W. Y.; Yang, X.; Yang, Y.; Yang, Y.; Yang, Z.; Yang, Z.; Yao, M. C.; Yao, P. J.; Yao, X.; Yao, Z.; Yao, Z.; Yasui, L. S.; Ye, M.; Yedvobnick, B.; Yeganeh, B.; Yeh, E. S.; Yeyati, P. L.; Yi, F.; Yi, L.; Yin, X. M.; Yip, C. K.; Yoo, Y. M.; Yoo, Y. H.; Yoon, S. Y.; Yoshida, K.; Yoshimori, T.; Young, K. H.; Yu, H.; Yu, J. J.; Yu, J. T.; Yu, J.; Yu, L.; Yu, W. H.; Yu, X. F.; Yu, Z.; Yuan, J.; Yuan, Z. M.; Yue, B. Y.; Yue, J.; Yue, Z.; Zacks, D. N.; Zacksenhaus, E.; Zaffaroni, N.; Zaglia, T.; Zakeri, Z.; Zecchini, V.; Zeng, J.; Zeng, M.; Zeng, Q.; Zervos, A. S.; Zhang, D. D.; Zhang, F.; Zhang, G.; Zhang, G. C.; Zhang, H.; Zhang, H.; Zhang, H.; Zhang, H.; Zhang, J.; Zhang, J.; Zhang, J.; Zhang, J.; Zhang, J. P.; Zhang, L.; Zhang, L.; Zhang, L.; Zhang, L.; Zhang, M. Y.; Zhang, X.; Zhang, X. D.; Zhang, Y.; Zhang, Y.; Zhang, Y.; Zhang, Y.; Zhang, Y.; Zhao, M.; Zhao, W. L.; Zhao, X.; Zhao, Y. G.; Zhao, Y.; Zhao, Y.; Zhao, Y. X.; Zhao, Z.; Zhao, Z. J.; Zheng, D.; Zheng, X. L.; Zheng, X.; Zhivotovsky, B.; Zhong, Q.; Zhou, G. Z.; Zhou, G.; Zhou, H.; Zhou, S. F.; Zhou, X. J.; Zhu, H.; Zhu, H.; Zhu, W. G.; Zhu, W.; Zhu, X. F.; Zhu, Y.; Zhuang, S. M.; Zhuang, X.; Ziparo, E.; Zois, C. E.; Zoladek, T.; Zong, W. X.; Zorzano, A.; Zughaier, S. 32
ACS Paragon Plus Environment
Page 32 of 57
Page 33 of 57
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Journal of Proteome Research
M., Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy 2016, 12, (1), 1-222. 48. Na, I.; Meng, F.; Kurgan, L.; Uversky, V. N., Autophagy-related intrinsically disordered proteins in intra-nuclear compartments. Mol Biosyst 2016, 12, (9), 2798-817. 49. Norholm, A. B.; Hendus-Altenburger, R.; Bjerre, G.; Kjaergaard, M.; Pedersen, S. F.; Kragelund, B. B., The intracellular distal tail of the Na+/H+ exchanger NHE1 is intrinsically disordered: implications for NHE1 trafficking. Biochemistry 2011, 50, (17), 3469-80. 50. Follis, A. V.; Chipuk, J. E.; Fisher, J. C.; Yun, M. K.; Grace, C. R.; Nourse, A.; Baran, K.; Ou, L.; Min, L.; White, S. W.; Green, D. R.; Kriwacki, R. W., PUMA binding induces partial unfolding within BCL-xL to disrupt p53 binding and promote apoptosis. Nat Chem Biol 2013, 9, (3), 163-8. 51. Peng, Z.; Yan, J.; Fan, X.; Mizianty, M. J.; Xue, B.; Wang, K.; Hu, G.; Uversky, V. N.; Kurgan, L., Exceptionally abundant exceptions: comprehensive characterization of intrinsic disorder in all domains of life. Cell Mol Life Sci 2015, 72, (1), 137-51. 52. Xue, B.; Williams, R. W.; Oldfield, C. J.; Dunker, A. K.; Uversky, V. N., Archaic chaos: intrinsically disordered proteins in Archaea. BMC Syst Biol 2010, 4 Suppl 1, S1. 53. de Cassia Ruy, P.; Torrieri, R.; Toledo, J. S.; de Souza Alves, V.; Cruz, A. K.; Ruiz, J. C., Intrinsically disordered proteins (IDPs) in trypanosomatids. BMC Genomics 2014, 15, 1100. 54. Tompa, P.; Kovacs, D., Intrinsically disordered chaperones in plants and animals. Biochem Cell Biol 2010, 88, (2), 167-74. 55. Varadi, M.; Guharoy, M.; Zsolyomi, F.; Tompa, P., DisCons: a novel tool to quantify and classify evolutionary conservation of intrinsic protein disorder. BMC Bioinformatics 2015, 16, 153. 56. Oldfield, C. J.; Dunker, A. K., Intrinsically disordered proteins and intrinsically disordered protein regions. Annu Rev Biochem 2014, 83, 553-84. 57. Bah, A.; Forman-Kay, J. D., Modulation of Intrinsically Disordered Protein Function by Post-translational Modifications. J Biol Chem 2016, 291, (13), 6696-705. 58. Iakoucheva, L. M.; Radivojac, P.; Brown, C. J.; O'Connor, T. R.; Sikes, J. G.; Obradovic, Z.; Dunker, A. K., The importance of intrinsic disorder for protein phosphorylation. Nucleic Acids Research 2004, 32, (3), 1037-1049. 59. Pejaver, V.; Hsu, W. L.; Xin, F.; Dunker, A. K.; Uversky, V. N.; Radivojac, P., The structural and functional signatures of proteins that undergo multiple events of post-translational modification. Protein Sci 2014. 60. Bah, A.; Vernon, R. M.; Siddiqui, Z.; Krzeminski, M.; Muhandiram, R.; Zhao, C.; Sonenberg, N.; Kay, L. E.; Forman-Kay, J. D., Folding of an intrinsically disordered protein by phosphorylation as a regulatory switch. Nature 2015, 519, (7541), 106-U240. 61. Rogers, J. M.; Wong, C. T.; Clarke, J., Coupled folding and binding of the disordered protein PUMA does not require particular residual structure. J Am Chem Soc 2014, 136, (14), 5197-200. 62. Niklas, K. J.; Bondos, S. E.; Dunker, A. K.; Newman, S. A., Rethinking gene regulatory networks in light of alternative splicing, intrinsically disordered protein domains, and post-translational modifications. Front Cell Dev Biol 2015, 3, 8. 63. Sun, X.; Xue, B.; Jones, W. T.; Rikkerink, E.; Dunker, A. K.; Uversky, V. N., A functionally required unfoldome from the plant kingdom: intrinsically disordered N-terminal domains of GRAS proteins are involved in molecular recognition during plant development. Plant Mol Biol 2011, 77, (3), 205-23. 64. Marin, M.; Ott, T., Intrinsic disorder in plant proteins and phytopathogenic bacterial 33
ACS Paragon Plus Environment
Journal of Proteome Research
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
effectors. Chem Rev 2014, 114, (13), 6912-32. 65. Rae, G. M.; Uversky, V. N.; David, K.; Wood, M., DRM1 and DRM2 expression regulation: potential role of splice variants in response to stress and environmental factors in Arabidopsis. Mol Genet Genomics 2014, 289, (3), 317-32. 66. Wood, M.; Rae, G. M.; Wu, R. M.; Walton, E. F.; Xue, B.; Hellens, R. P.; Uversky, V. N., Actinidia DRM1--an intrinsically disordered protein whose mRNA expression is inversely correlated with spring budbreak in kiwifruit. PLoS One 2013, 8, (3), e57354. 67. Hincha, D. K.; Thalhammer, A., LEA proteins: IDPs with versatile functions in cellular dehydration tolerance. Biochem Soc Trans 2012, 40, (5), 1000-3. 68. Graether, S. P.; Boddington, K. F., Disorder and function: a review of the dehydrin protein family. Front Plant Sci 2014, 5, 576. 69. Sun, X.; Rikkerink, E. H.; Jones, W. T.; Uversky, V. N., Multifarious roles of intrinsic disorder in proteins illustrate its broad impact on plant biology. Plant Cell 2013, 25, (1), 38-55. 70. Hundertmark, M.; Hincha, D. K., LEA (late embryogenesis abundant) proteins and their encoding genes in Arabidopsis thaliana. BMC Genomics 2008, 9, 118. 71. Sun, X.; Jones, W. T.; Rikkerink, E. H., GRAS proteins: the versatile roles of intrinsically disordered proteins in plant signalling. Biochem J 2012, 442, (1), 1-12. 72. Skupien-Rabian, B.; Jankowska, U.; Swiderska, B.; Lukasiewicz, S.; Ryszawy, D.; Dziedzicka-Wasylewska, M.; Kedracka-Krok, S., Proteomic and bioinformatic analysis of a nuclear intrinsically disordered proteome. J Proteomics 2016, 130, 76-84. 73. Cortese, M. S.; Baird, J. P.; Uversky, V. N.; Dunker, A. K., Uncovering the unfoldome: enriching cell extracts for unstructured proteins by acid treatment. J Proteome Res 2005, 4, (5), 1610-8. 74. Galea, C. A.; High, A. A.; Obenauer, J. C.; Mishra, A.; Park, C. G.; Punta, M.; Schlessinger, A.; Ma, J.; Rost, B.; Slaughter, C. A.; Kriwacki, R. W., Large-scale analysis of thermostable, mammalian proteins provides insights into the intrinsically disordered proteome. J Proteome Res 2009, 8, (1), 211-26. 75.Kwon, S.; Jung, Y.; Lim, D., Proteomic analysis of heat-stable proteins in Escherichia coli. BMB Rep 2008, 41, (2), 108-11. 76. Paliy, O.; Gargac, S. M.; Cheng, Y.; Uversky, V. N.; Dunker, A. K., Protein disorder is positively correlated with gene expression in Escherichia coli. J Proteome Res 2008, 7, (6), 2234-45. 77. Candat, A.; Paszkiewicz, G.; Neveu, M.; Gautier, R.; Logan, D. C.; Avelange-Macherel, M. H.; Macherel, D., The ubiquitous distribution of late embryogenesis abundant proteins across cell compartments in Arabidopsis offers tailored protection against abiotic stress. Plant Cell 2014, 26, (7), 3148-66. 78. Gallardo, K.; Job, C.; Groot, S. P.; Puype, M.; Demol, H.; Vandekerckhove, J.; Job, D., Proteomic analysis of arabidopsis seed germination and priming. Plant Physiol 2001, 126, (2), 835-48. 79. Gallardo, K.; Job, C.; Groot, S. P.; Puype, M.; Demol, H.; Vandekerckhove, J.; Job, D., Proteomics of Arabidopsis seed germination. A comparative study of wild-type and gibberellin-deficient seeds. Plant Physiol 2002, 129, (2), 823-37. 80. Huang, H.; Moller, I. M.; Song, S. Q., Proteomics of desiccation tolerance during development and germination of maize embryos. Journal of Proteomics 2012, 75, (4), 1247-1262. 81. Wang, W. Q.; Moller, I. M.; Song, S. Q., Proteomic analysis of embryonic axis of Pisum sativum seeds during germination and identification of proteins associated with loss of desiccation tolerance. J Proteomics 2012, 77, 68-86. 34
ACS Paragon Plus Environment
Page 34 of 57
Page 35 of 57
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Journal of Proteome Research
82. Shilov, I. V.; Seymour, S. L.; Patel, A. A.; Loboda, A.; Tang, W. H.; Keating, S. P.; Hunter, C. L.; Nuwaysir, L. M.; Schaeffer, D. A., The Paragon Algorithm, a next generation search engine that uses sequence temperature values and feature probabilities to identify peptides from tandem mass spectra. Mol Cell Proteomics 2007, 6, (9), 1638-55. 83. Tang, W. H.; Shilov, I. V.; Seymour, S. L., Nonlinear fitting method for determining local false discovery rates from decoy database searches. J Proteome Res 2008, 7, (9), 3661-7. 84.DeSouza, L.; Diehl, G.; Rodrigues, M. J.; Guo, J.; Romaschin, A. D.; Colgan, T. J.; Siu, K. W., Search for cancer markers from endometrial tissues using differentially labeled tags iTRAQ and cICAT with multidimensional liquid chromatography and tandem mass spectrometry. J Proteome Res 2005, 4, (2), 377-86. 85. Liu, Y.; Zheng, Y.; Zhang, Y.; Wang, W.; Li, R., Soybean PM2 protein (LEA3) confers the tolerance of Escherichia coli and stabilization of enzyme activity under diverse stresses. Curr Microbiol 2010, 60, (5), 373-8. 86. Walsh, I.; Martin, A. J.; Di Domenico, T.; Tosatto, S. C., ESpritz: accurate and fast prediction of protein disorder. Bioinformatics 2012, 28, (4), 503-9. 87. Apweiler, R.; Bairoch, A.; Wu, C. H.; Barker, W. C.; Boeckmann, B.; Ferro, S.; Gasteiger, E.; Huang, H.; Lopez, R.; Magrane, M.; Martin, M. J.; Natale, D. A.; O'Donovan, C.; Redaschi, N.; Yeh, L. S., UniProt: the Universal Protein knowledgebase. Nucleic Acids Res 2004, 32, (Database issue), D115-9. 88. Li, X.; Romero, P.; Rani, M.; Dunker, A. K.; Obradovic, Z., Predicting Protein Disorder for N-, C-, and Internal Regions. Genome Inform Ser Workshop Genome Inform 1999, 10, 30-40. 89. Xue, B.; Dunbrack, R. L.; Williams, R. W.; Dunker, A. K.; Uversky, V. N., PONDR-FIT: a meta-predictor of intrinsically disordered amino acids. Biochim Biophys Acta 2010, 1804, (4), 996-1010. 90. Peng, K.; Vucetic, S.; Radivojac, P.; Brown, C. J.; Dunker, A. K.; Obradovic, Z., Optimizing long intrinsic disorder predictors with protein evolutionary information. J Bioinform Comput Biol 2005, 3, (1), 35-60. 91. Obradovic, Z.; Peng, K.; Vucetic, S.; Radivojac, P.; Dunker, A. K., Exploiting heterogeneous sequence properties improves prediction of protein disorder. Proteins 2005, 61 Suppl 7, 176-82. 92. Peng, K.; Radivojac, P.; Vucetic, S.; Dunker, A. K.; Obradovic, Z., Length-dependent prediction of protein intrinsic disorder. BMC Bioinformatics 2006, 7, 208. 93. Dosztanyi, Z.; Csizmok, V.; Tompa, P.; Simon, I., IUPred: web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content. Bioinformatics 2005, 21, (16), 3433-4. 94. Walsh, I.; Giollo, M.; Di Domenico, T.; Ferrari, C.; Zimmermann, O.; Tosatto, S. C., Comprehensive large-scale assessment of intrinsic protein disorder. Bioinformatics 2015, 31, (2), 201-8. 95. Fan, X.; Kurgan, L., Accurate prediction of disorder in protein chains with a comprehensive and empirically designed consensus. J Biomol Struct Dyn 2014, 32, (3), 448-64. 96. Peng, Z.; Kurgan, L., On the complementarity of the consensus-based disorder prediction. Pac Symp Biocomput 2012, 176-87. 97. Mohan, A.; Sullivan, W. J., Jr.; Radivojac, P.; Dunker, A. K.; Uversky, V. N., Intrinsic disorder in pathogenic and non-pathogenic microbes: discovering and analyzing the unfoldomes of early-branching eukaryotes. Mol Biosyst 2008, 4, (4), 328-40. 98. Xue, B.; Oldfield, C. J.; Dunker, A. K.; Uversky, V. N., CDF it all: consensus prediction of intrinsically disordered proteins based on various cumulative distribution functions. FEBS Lett 2009, 583, (9), 1469-74. 35
ACS Paragon Plus Environment
Journal of Proteome Research
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
99. Huang, F.; Oldfield, C.; Meng, J.; Hsu, W. L.; Xue, B.; Uversky, V. N.; Romero, P.; Dunker, A. K., Subclassifying disordered proteins by the CH-CDF plot method. Pac Symp Biocomput 2012, 128-39. 100. Meszaros, B.; Simon, I.; Dosztanyi, Z., Prediction of protein binding regions in disordered proteins. PLoS Comput Biol 2009, 5, (5), e1000376. 101. Dosztanyi, Z.; Meszaros, B.; Simon, I., ANCHOR: web server for predicting protein binding regions in disordered proteins. Bioinformatics 2009, 25, (20), 2745-6. 102. Dosztanyi, Z.; Csizmok, V.; Tompa, P.; Simon, I., The pairwise energy content estimated from amino acid composition discriminates between folded and intrinsically unstructured proteins. J Mol Biol 2005, 347, (4), 827-39. 103. Fini, A.; Guidi, L.; Ferrini, F.; Brunetti, C.; Di Ferdinando, M.; Biricolti, S.; Pollastri, S.; Calamai, L.; Tattini, M., Drought stress has contrasting effects on antioxidant enzymes activity and phenylpropanoid biosynthesis in Fraxinus ornus leaves: an excess light stress affair? J Plant Physiol 2012, 169, (10), 929-39. 104. Thai, V. C.; Lim, T. K.; Le, K. P.; Lin, Q.; Nguyen, T. T., iTRAQ-based proteome analysis of fluoroquinolone-resistant Staphylococcus aureus. J Glob Antimicrob Resist 2016, 8, 82-89. 105. Rajagopalan, K.; Mooney, S. M.; Parekh, N.; Getzenberg, R. H.; Kulkarni, P., A majority of the cancer/testis antigens are intrinsically disordered proteins. J Cell Biochem 2011, 112, (11), 3256-67. 106. Bienkiewicz, E. A.; Adkins, J. N.; Lumb, K. J., Functional consequences of preorganized helical structure in the intrinsically disordered cell-cycle inhibitor p27(Kip1). Biochemistry 2002, 41, (3), 752-9. 107. Chi, S. W.; Kim, D. H.; Lee, S. H.; Chang, I.; Han, K. H., Pre-structured motifs in the natively unstructured preS1 surface antigen of hepatitis B virus. Protein Sci 2007, 16, (10), 2108-17. 108. Lee, H.; Mok, K. H.; Muhandiram, R.; Park, K. H.; Suk, J. E.; Kim, D. H.; Chang, J.; Sung, Y. C.; Choi, K. Y.; Han, K. H., Local structural elements in the mostly unstructured transcriptional activation domain of human p53. J Biol Chem 2000, 275, (38), 29426-32. 109. Ramelot, T. A.; Gentile, L. N.; Nicholson, L. K., Transient structure of the amyloid precursor protein cytoplasmic tail indicates preordering of structure for binding to cytosolic factors. Biochemistry 2000, 39, (10), 2714-25. 110. Sayers, E. W.; Gerstner, R. B.; Draper, D. E.; Torchia, D. A., Structural preordering in the N-terminal region of ribosomal protein S4 revealed by heteronuclear NMR spectroscopy. Biochemistry 2000, 39, (44), 13602-13. 111. Zitzewitz, J. A.; Ibarra-Molero, B.; Fishel, D. R.; Terry, K. L.; Matthews, C. R., Preformed secondary structure drives the association reaction of GCN4-p1, a model coiled-coil system. J Mol Biol 2000, 296, (4), 1105-16. 112. Garner, E.; Romero, P.; Dunker, A. K.; Brown, C.; Obradovic, Z., Predicting Binding Regions within Disordered Proteins. Genome Inform Ser Workshop Genome Inform 1999, 10, 41-50. 113. Oldfield, C. J.; Cheng, Y.; Cortese, M. S.; Romero, P.; Uversky, V. N.; Dunker, A. K., Coupled folding and binding with alpha-helix-forming molecular recognition elements. Biochemistry 2005, In press. 114. Cheng, Y.; Oldfield, C. J.; Meng, J.; Romero, P.; Uversky, V. N.; Dunker, A. K., Mining alpha-helix-forming molecular recognition features with cross species sequence alignments. Biochemistry 2007, 46, (47), 13468-77. 115. Disfani, F. M.; Hsu, W. L.; Mizianty, M. J.; Oldfield, C. J.; Xue, B.; Dunker, A. K.; Uversky, V. N.; Kurgan, L., MoRFpred, a computational tool for sequence-based prediction and characterization of short disorder-to-order transitioning binding regions in 36
ACS Paragon Plus Environment
Page 36 of 57
Page 37 of 57
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Journal of Proteome Research
proteins. Bioinformatics 2012, 28, (12), i75-83. 116. Malhis, N.; Gsponer, J., Computational identification of MoRFs in protein sequences. Bioinformatics 2015, 31, (11), 1738-44. 117. Boudet, J.; Buitink, J.; Hoekstra, F. A.; Rogniaux, H.; Larre, C.; Satour, P.; Leprince, O., Comparative analysis of the heat stable proteome of radicles of Medicago truncatula seeds during germination identifies late embryogenesis abundant proteins associated with desiccation tolerance. Plant Physiol 2006, 140, (4), 1418-36. 118. Tripathi, R.; Boschetti, C.; McGee, B.; Tunnacliffe, A., Trafficking of bdelloid rotifer late embryogenesis abundant proteins. J Exp Biol 2012, 215, (Pt 16), 2786-94. 119. Shih, M. D.; Hsieh, T. Y.; Jian, W. T.; Wu, M. T.; Yang, S. J.; Hoekstra, F. A.; Hsing, Y. I., Functional studies of soybean (Glycine max L.) seed LEA proteins GmPM6, GmPM11, and GmPM30 by CD and FTIR spectroscopy. Plant Sci 2012, 196, 152-9.
37
ACS Paragon Plus Environment
Journal of Proteome Research
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Figure legends Figure 1. Comparison of protective effects of soluble proteins and heat-stable proteins on LDH. The heat-stable proteins showed significantly better protective effect on LDH against freeze-thaw cycles than soluble proteins. (***p