Ion-selective electrodes - ACS Publications - American Chemical Society

in conjunction with this paper is a bibliography on recent titles in ISE work that was ... include a paper by Pungor et al. concerning the application...
0 downloads 0 Views 4MB Size
Anal. Chem. 1986, 58,84 R- 10 I R (69) Hagen, W. R.; Dunham, W. R.; et ai. Biochim. Biophys. Acta 1985, 828. 369-74. (70) Weir, M. P.; Peters, T. J.; Gibson, J. F. Biochim. Biophys. Acta 1985, 828, 296-305. (71) Hederstedt, L.; et al J. Biol. Chem. 1985, 260, 5554-62. Thomson, A. J.; et al. J. Inorg. Biochem. 1985, 23, 187-97. (72) Kremer, S. Inorg. Chem. 1985, 24, 887-90. (73) Cappareiii, M. V.; et ai. Inorg. Chim. Acta 1982, 97, L37-L39. (74) Hikichi, K.; Hlraoki, T.; Ohta, N. Polym. J. (Tokyo) 1984, 76,437-9. (75) Lasic, D. D. J. Am. Ceram. SOC. 1983, 66, C106. (76) Depew, M. C.; Chan, M.;Wan, J. K. S. J. Magn. Reson. 1984, 5 7 , 297-302. (77) Wassmer, K. H.; et ai. J. Am. Chem. SOC. 1985, 707, 1511-19. (78) Uibricht, K.; Herriing, T.; Ewert, U.; Ebert, B. Coiioids Surf., 1984, 7 7 , 19-29. (79) Stoesser, R.; Jugeit, W.; Dassier, T.; Pritze, B. 2.Chem. 1984, 66-7. (80) Berliner, L. J.; Fujii, H. Science 1985, 227, 517-519.

(34) Nechtschein, M.; et ai. Bull Magn. Reson. 1983, 5 , 146-9. (35) Vedrine, J. C. "Characterization of Heterogeneous Catalysts"; Marcel Dekker: New York, 1984. (36) Che, M.; Giameiio, E.; Tench, A. J. Colloids Surf. 1985, 73, 231-48. (37) Griscom, D. L. J. Non-Cryst. Solids 1984, 64, 229-47. (38) Estrade-Szwarckopf, H. Heiv. Phys. Acta 1985, 5 8 , 139-61. (39) Roiiwitz, W. L.; King, J. D. Proc. I n t . Symp. Anal. Detect. Expl. 1983, 371-83. Fed. Bur. Invest.: Washington, DC. (40) Dodd, N. J. F. Electron Spin Reson. 1984, 8, 445-77. (41) Rousseau, D. L., Ed. "Structural and Resonance Techniques in Bioiogicai Research"; Academic Press: Orlando, FL, 1984. (42) Craw, M. T.; Depew, M. C. Rev. Chem. Intermed. 1985, 6, 1-31. (43) Thomann, H.; Dalton, L. R.; Dalton, L. A. Bull. Magn. Reson. 1984, 6 , 143-86. (44) Hili, D. J. J.; O'Donneii, J. H.f; Pomary, P. J. Eiectron Spin Reson. 1984, 8, 310-45. (45) Nakamura, Y.; Ogiwara, Y.; Phillips, G. 0. Polym. Photochem. 1985, 6 , 135-59. (46) Williams, N. R. Carbohydr. Chem. 1985, 16, 240-8. (47) Leterrier, F.; Berieur, F.; et at. Biorheology 1984, 309-14. (48) Mehihorn, R. J.; Packer, L. Methods Enzymoi. 1984, 705, 215-20. (49) Holmberg, P. Med. Bioi. 1984, 62, 68-70. (50) Rosen, G. M.; Rauckman, E. J. Methods Enzymoi. 1984, 705, 198-209. (51) Buckiey, C. D.; McLauchian, K. A. Mol. Phys. 1985, 54, 1-22. (52) Lin, T. S. Chem. Revs. 1984, 84, 1. (53) Hudson, A. Eiectron Spin Reson. 1984, 8, 46-60. (54) Russell, D. K. Electron Spin Reson. 1984, 8 , 1-30. (55) Hills, G. W. Magn. Reson. Rev. 1984, 9, 15-64. (56) Morigaki, K. Semicond. Semimetals 1984, 21 @t. C), 155-91. (57) Maki, A. H. Bioi. Magn. Reson. 1984, 6 , 187-294. (58) McLauchian, K. A. Chem. Brit. 1985, 825-32. (59) Panfilov, V. N.; Krasnoperov, L. N., Khim Fir 1983, 468-77; Chem. Abstr. 1984, 707, 179201b. (60) Singer, L. S.Proc.-Electrochem. SOC. 1984, 84-5, 26-39. (61) Nechtschein, M.; et ai. Congr. AMPEREMagn. Reson. Relat. Phenom. Proc. 22nd 1984, 157-8. (62) Waiton, J. C. Rev. Chem. Intermed. 1984, 5 , 249-91. (63) Kastening, B. Compr. Treatise Electrochem. 1984, 8, 433-43. (64) Kapian, L. React. Intermed. 1985, 3 , 227-303. (65) Tabner, B. J. Electron Spin Reson. 1984, 8, 243-309. (66) Mason, R. P. Methods Enzymoi. 1984, 705, 416-22. (67) Kemp, T. J. Nectron Spin Reson. 1984, 8 , 214-42. (88) Symons, M. C. R. Chem. SOC. Rev. 1984, 13, 393-439. (69) Genga, G. "Biochemical Research Techniques"; Wriggiesworth, J. M., Ed.; Wiiey: New York, 1983. (70) Lai, C. S. Electron Spin Reson. 1984, 8, 378-412. (71) Janzen, E. G. Methods Enzymol. 1984, 105, 188-98. (72) Mason, R. P. "Spin Labeling Pharmacoi."; Edited Hoitzman, J. L., Ed.; Academic: Orlando, FL, 1984; pp 87-129. (73) Robinson, B. H.; Beth, A. H. Electron Spin Reson. 1984, 8, 346-77. (74) Micera, G.; et ai. Chim. Ind. (Milan) 1984, 66, 718-21. (75) Robins, G. V.; Sales, K. D.; McNeil, D. A. C. Chem. Brit. 1984, 20, 894-5, 898-9. (76) Ikeya, M. JEOL News/. (Ser.), Anal. Instrum. 1983, 79A, 26-30. (77) Vargus, H. "Photoacoust. Eff.: Princ. Appi., Proc. Int. Conf., Ist, 1981"; Leuscher, E., Ed.; Vieweg: Braunschweig. Fed. Rep. Ger., 1984; pp 347-374. (78) Robins, G. V.; et al. Chem. Brit. 1984, 894-99. (79) Conard, J. NATO A S I Ser., Ser. C 1984, 724, 441-59. (80) Retcofsky, H. L.; Rose, K. D.; Miknis, F. P. Prepr.-Am. Chem. Soc., Div. Pet. Chem. 1985, 30, 232-5. (81) Eaton, S. S.; Eaton, G. R. Spectroscopy 1986, 1 , 32-35.

LITERATURE FOR TABLE I

.

(1) Bieaney, B. Phys. Bull. 1984, 35, 466-70; Contemp. Phys 1984, 25, 419-40. (2) Pratt, D. W. NATO A S I Ser., Ser. C 1984, 124, 1-69. (3) Chang, T. T. Magn. Reson. Rev. 1984, 9, 85-124. (4) Hudson, A. Electron Spin Reson. 1984, 8, 31-45. (5) Miura, N. Infrared Millimeter Waves 1984, 12, 73-143. (6) Evans, J. C.; Rowiands, C. C. Eiectron Spin Reson. 1984, 8 , 61-85. (7) Eachus, R. S.;Oiin, M. T. Science 1985, 230, 268-274. (8) Edwards, P. P. J. Phys. Chem. 1984, 8 8 , 3772-80. (9) Biackburn, N. J. Nectron Spin Reson. 1984, 413-44. (IO) Boas, J. F. "Copper Proteins Copper Enzymes"; Lontie, R., Ed.; CRC Press: Boca Ration, FL, 1984; pp 5-62. (11) Dickinson, L. C.; Symons, M. C . R . Chem. SOC. Rev. 1983, 72, 387-414. (12) Symons, M. C. R. Electron Spin Reson. 1984, 8 , 166-213. [13) Gatteschi, D. Electron Spin Reson. 1984, 8 , 86-165. (14) Stach, J.; Boettcher, R.; Kirmse, R. Z . Chem. 1985, 2 5 , 1-13. (15) Schoonheydt, R. A. J. Mol. Catal. 1984, 27, 111-22. (16) Ursu, I.; Lupei, V. Congr. AMPERE Magn. Reson. Reiat. Phenom., Proc. 22nd, 1984, 184-7. (17) Ursu, I.; Lupei, V. Bull. Magn. Reson. 1984, 6 , 162-224. (18) Reed, G. H.; Markham, G. D. Bull. Magn. Reson. 1984, 6 , 73-142. (19) Tsukerbiat, B. S.; et ai. Koord. Khim. 1984, 70, 701-10; Chem. Abstr. 1984, 10 1 , 159934. (20) Aibracht, S. P. J. Curr. Top. Bioenerg. 1984, 13, 79-108. (21) Hathaway, B. J. Struct. Bonding (Berlin) 1984, 57, 55-1 18. (22) Edwards, P. P. J . Solution Chem. 1985, 1 4 , 187-208. (23) Barkhuijsen, H.; DeBeer, R.; Van Ormondt, D. NATO AS1 Ser., Ser. C . 1984, 724, 147-63. (24) Kubo, R.; Kawabata, A.; Kobayashi, S. Annu. Rev. Mater. Sci. 1984, 1 4 , 49-66. (25) Howe, R. F. Springer Ser. Chem. Phys. 1984, 35, 39-64. (26) Taylor, P. C. Semicond. Semimetals 1984, 27 (h.C) 99-154. (27) Shimizu, T. Jpn. Annu. Rev. Electron., Comput. Telecommun. 1984, 76,21-32. (28) Morigaki, K. Jpn. Annu. Rev. Electron., Comput. Telecommun. 1984, 76,42-50. (29) Kumar, D. Curr. Sci. 1984, 53, 867-96. (30) Coufai, H.; et ai. "Rare Gas Solids"; Springer-Veriag: New York, 1984. (31) Rao, C. N. R. Proc. Indian Acad. Sci., Chem. Sci. 1985, 94, 181-99. (32) Davies, J. E. D. "Inclusion Compounds"; Atwood, J. L., Davies J. E. D., MacNicoi, D. D., Eds.; Academic: London, 1984; pp 37-68. (33) Fayet, J. C. Helv. Phys. Acta 1985, 58, 76-101.

Ion-Selective Electrodes Mark A. Arnold* Department of Chemistry, University of Iowa, Iowa City, Iowa 52242

Robert L. Solsky

E. I. d u Pont de Nemours & Company, New James Street, Box 505, Towanda, Pennsylvania 18848 This review presents the significant developments in the field of ion-selective electrodes (ISE). Exciting advances in all areas of ISE methodology have been reported and are covered. Specifically, we review work that has been published between the Fall of 1983 and the Fall of 1985. A manual search of major analytical journals and a computer search of Chemical Abstracts have been employed to collect the presented information. We apologize in advance for any papers 84 R

0003-2700/86/0358-84R$06.50/0

that are not included because they were inadvertently missed in our search.

BOOKS AND REVIEWS There have been many excellent reviews published during the period covered by this review paper. Of particular use in conjunction with this paper is a bibliography on recent titles in ISE work that was published in 1984 (19a). This bibliog0

1986 American Chemical Society

IOKSELECTIVE ELECTRODES

Mmh A. lmold is Assistant ROIOMOT st mS Univaslly ot Iowa. He received hk B.S. degee han Indiana Univershy-Pudue Univetshy at lndhnapolk in 1978 and hi5 Ph.0. horn the University of Delaware in 1982 under me guidance 01 ProteSSm GWV A. ~ e chnn2. He has been awarded the 1983 Scciety ot Analytical Chemists 01 Pittsburgh Starter &ant Award. Major research interests include me development of potenticmemc and fiber optlc bioSenSwS.

@

Robeti L. SOkLy is a process chamkt wlth the phOtosv51erns and Electronic Produck cmpartmeni. E. I. du ~ o n N tU-S 8 co. Ww to lhii posHion. he was a research chemkt in mS New Technolog, Research grO"p 01 me Biomedical Rodduck Department. He received his Ph.0. in 1980 trorn me state univershy ot NBW YO* at BUMO with R O t e S X X G. A. ReChnHz and his B.A. in 1975 horn Ithaca College. Imaca. NY. under me guidance of Protesm H. F. Koch.

raphy covers the development of IS&, selectivity aspects, and numerous applications in many different fields. The theory and applications of ISEs have again been updated with another fine review by KOin Analytica Chimica Acta using the m e general format that has been followed in the previous four versions (lla). Two reviews have been published by Buck that deal with the electrochemistry of ISEs and discuss definitions, principles, and error sources associated with the measurement process (Za, 3a). A discussion on ion exchange and ISEs was included in a text by Covington (5a) while Koryta and Stulik came out with their second edition of 'Ion-Selective Electrodes" (12a). Specialized reviews also appeared during this time and include a paper by Pungor et al. concerning the application of ISEs in nonaqueous and mixed solvent systems (23a). The various types of reference electrodes were reviewed and covered liquid junction effects in potentiometry (6a). Two text books were also noted that focus on bioelectrochemical membrane electrodes (24a) and analysis using glass electrodes (13a). Electrochemical sensing and general ISE use have been discussed in detail (&?a, 14a). T h e use of neutral carriers in ISEs has been extensively reviewed (la) as has the application of ISEs for drug-type substances analysis (4a). Liquid membrane, anion-selective electrodes have been reviewed by a Russian author (16a). The improvements gained by substituting solid contacts for the liquid internal contacts of ISEs have been discussed (2Oa). In a similar fashion, carbon-substrate ISEs are discussed in terms of their construction and application in analysis (J8a).Two reviews have appeared that discuss ISE measurements in water analysis (150, 21a), while a third covers the industrial applications of ISEs in process analyzers for continuous stream monitoring (22a). An introductory description of electrochemical methods for concentration measurements has been given for a variety of settings (26a). The principles of operation and the determination of selectivity coefficients in the presence of interfering ions have been discussed (74. IS& can be constructed using other than conventional components as was described in a paper on modern chemical sensors (25a). Biological applications of ISEs were discussed with emphasis placed on the liquid junction potential and activity coefficients (9a, 27a). The limit of detection of ISEs in potentiometric analysis was discussed (17a) while a new theory of ion electrode reaction was described with a detailed discussion on the liquid-liquid interfaces and ion mobilities associated with ISE operation (loa). Two reviews were published concerning the progress of electroanalytical chemistry and trace element analysis using ISEs in the People's Republic of China (29a,ZRa). The ap-

plications tQ biological and environmental methods of analysis were highlighted. There are several additional review articles and published proceedings of workshops and meetinga that are not included in this section. These more specialized papers have been included in the sections that follow and allow a more complete discussion to occur where it is needed.

GENERAL DEVELOPMENTS I N ION-SELECTIVE ELECTRODE METHODOLOGY In this section we review work related to potentiometric

membrane electrodes of all twes. Paners dealine with areas of general interest. such as reference electrod;. electrode calibration procedures. microprocess(,r-nintn,Ued systems. ete., are presented here. Artirles dealing with subjects related to specific types of membrane electrodes are rovered under the appropriate heading. ISE limits of detection have been the subject of many papers in recent yenn (for renews of this particular subject see ref 32b and 3 3 b ~ .It is well-accepted that ISEs can be used for quantitative analysis below their linear or Nernstian range of response, hut methods for the use of this response region with suiiicient accuracy and precision are badly needed. A paper h y Jnin and Schultz (196) presents a computational method for analyzing data in the nonlinear response range. Their method is shown M rapidly converge to an accurate answer because it takes advantage of the favorable characteristics of three commonly used romputational techniques. Experimental verification of their computational proredure gives excellent results and demonstrates its utility for measurements uing the nonlinear region of ISE calibration CUTYPII. Ihscussions rontinue concerning a practical definition of response time for ISI.:s. Iinder, Toth, and Pungur (276) provide a theoretical treatment which indirates that response times measured as the time required to arhieve a specified rate of potential change are practical. Their treatment suggests that response rates ( d E , d l ~taken at the asymptotic region of response are independent of the analyte concentration and the direction of analyce concentration change. These authors also point out the practical aspects of this definition. Also concerning the dynamic behavior of ISEs, Shatkay and Hayano 1466) offer a unified expression to describe the dynamic response properties of electrudes of all types under all circumbtances. Their proposed equation is a double exponential expression that can simulate a variety of electrde tranqient signals surh as over-shoot and oscillating potential responses. With respect to electrode selectivity characterization, Cadzekpo and Christian (146) and Macca and Mirnslav (29h) propose two new procedures for determination of Selectivity ccetfirients which are based on the extended Nernst equation (Nikolskii-Eienman equation). The procedure offered by the first group involves measuring the rhange in potential between two standard solution$of the primary iun. Serondlg, standard additions of the interferent are added to a second aliquot of the primary ion solution with the lower concentration. The interferent is added until the electrude potential change matches the originally measured potential change with the primary inn. The ratio of primary to interfering ion concentrations that gives this potential change is taken as the selectivity coefficient. Mathematically, the basis for this prucedure is easily derived from the extended Nernst equation only n hen the ionic charge un the primary and interfering inn is the same. Marcca and Mirosluv (29b) propose six methods hased on multiple additions of either a primary ion standard. an interfering ion standard, or a standard composed of a mixture of primary and interfering ions. The elertrode slope over the primary ion cuncentration range uf interest must ne known before the determination. In additiun, an automated procedure t226J and a gravimetric method 146) have been reported for the determination of electrode selectivity cwf. ficientc. Finally. an extensive listing uf measured selectivity coefficients for numerous univalent aninns with liquid ionexchange memhrane electrodes 14.56) and the selectivity of various lSEs 15961have been reported. The use of computers and micrupruces8ors to control and evaluate the response of ISEs is growing rapidly. A report by Bond et al. I.ihJ describes a complete microprocessor-based on-line monitoring system for copper. Related work has been ~

ANALYTICAL CHEMISTRY, VOL. 58. NO. 5. APRIL 1986

~~~~

* 85R

ION-SELECTIVE ELECTRODES

reported for the continuous monitoring of chloride (2b). The use of computers to calculate electrode detection limits and selectivity coefficient is reported by Efstathiou ( I l b ) and numerous efforts have been published using computers to handle electrode calibration and sample analysis (3b,42b, 58b, 43b). Also, computers are a major component of various instruments involving ISEs for specific purposed such as the analysis of seawater and serum for fluoride in the presence of calcium and magnesium (38b),the measure of pH and other parameters in respirating cells (16b), the simultaneous determinations of sodium and potassium in aqueous solutions (57b),and the analysis of catalytic kinetic parameters (17b). Also, a simple data acquisition system for ISEs (53b) and programs for analyzing ISE data (7b, 56b) are presented. Part IV in a four part series on bipolar pulse conductometric monitoring of ISEs has been published by Powley and Nieman (39b). In this paper the influence of the reference element is examined particularly in solutions containing electroactive interferences. Their results show that considerable errors can arise when polarizable electrodes composed of stainless steel and platinum are employed as opposed to conventional nonpolarizable reference electrodes such as a single junction Ag/AgCl electrode. Also, these researchers show that long voltage pulses (100-10000 ms) adversely affect the polymer membrane, most likely due to faradaic processes. A novel electrode arrangement is presented by Adams and co-workers (34b) for the simultaneous monitoring of potentiometric and voltametric microelectrodes. Their arrangement is applied to follow simultaneously ionic and monoamine neurotransmitter fluxes in extracellular fluid space of the brain. Other novel ISE arrangements to note include a patented electrode design in which multiple ion-selective membranes are housed in the same electrode body (47b) and the use of ISE detectors in ion pair chromatography (206). ISEs with low output impedances are described in which various new circuits are added to the electrode body (25b) and methods for the construction of inexpensive ISEs (36b) and a high-impedance digital voltmeter (6b) are detailed. Methods of ISE calibration are the subject of numerous papers. Otto and Thomas (35.56) propose a new method for calibration of ISEs for multicomponent analysis. In their procedure, a number of predesigned standards are used to calibrate a specific number of ISEs. The combinations of potentials are analyzed by either ordinary least squares or partial least squares analysis techniques. For binary mixtures of sodium and potassium (set so that the potassium concentration is greater than the sodium concentration), a mean prediction error of 7.6% is obtained. For four-component mixtures of sodium, potassium, calcium, and magnesium ions, the mean prediction error ranges from 1.4% to 17% depending on the actual experimental design. The attractive feature of this approach is that electrode systems with moderate selectivities can be used effectively for multicomponent analysis in mixtures. In other work involving electrode operation procedures, Meier (31b) extends the treatment of error analysis of singleand double-known addition techniques. Other work has been published concerning various types of standard addition analysis such as studies involving Monte Carlo simulations of errors in multiple known addition analysis (26b), computer-controlled addition procedures (lob,28b, 37b, 48b, 55b), and gravimetric standard addition for fluoride analyses (41b). Specific standard addition methods are developed for water analysis (21b),metal ion determination in solutions with excess complexing agent (18b),and halide determination in geothermal brines (54b). Finally, a general procedure for ISE calibration ( 1b) and procedures for dealing with inadequate calibration characteristics (23b, 51b) are presented. The importance of the reference element in potentiometric systems has been stressed in a review by Covington (8b). Covington and co-workers (9b) present a novel type of dip reference electrode which provides a rapidly renewable liquid junction for use in solutions of low ionic strength. Reproducibility of pH measurements is shown to be better with the proposed design over many conventional, commercially available reference electrodes. These researchers propose that their reference electrode design is well-suited for studies requiring high degree of reproducibility in interlaboratory pH studies such as in research on acid rain. Another reference electrode design is reported by Fassett et al. (12b) in which 86R

ANALYTICAL CHEMISTRY, VOL. 58, NO. 5, APRIL 1986

micropore junctions are offered to eliminate the common problems associated with permanently filled reference electrodes. Electrodes with micropore junctions are shown to have many advantages over other gel-filled designs, particularly faster response and longer lifetime. Various other reports and patents have appeared concerning reference electrode designs (13b. 24b. 49b. 50b). ' F(nally, numerous miscellaneous papers dealing with membrane electrodes in general have been reported. A survey of various sensors for the potentiometric titration of orthophosphate has been reported by Selig (44b). The use of electrodes in studies of micelle formation (40b, 30b), the development of a novel system for the simultaneous determination of fluoride and calcium in acid solutions (52b), the stability of sulfite antioxidant buffer (15b),and the use of ISEs in automatic determination of stability constants (35b)have been addressed.

GLASS AND SOLID-STATE MEMBRANE ELECTRODES Recent progress in the development of glass and solid-state membrane electrodes is reviewed in this section. Special attention is given to fundamental studies concerning the use and response of common glass and solid-state electrodes and to new membrane compositions. Table I lists many of the applications that have been reported for glass and solid-state membrane electrodes. Glass Electrodes. Several papers have appeared which discuss the proper procedure for operation and use of glass . specifically, pH electrodes (31c,49c, 118c, 151c, 1 6 5 ~ )More general discussions of simple pH measurements and pH . and Wurfel ( 1 6 5 ~ ) meters are presented (49c, 1 5 1 ~ )Sisterson provide an excellent discussion of general pH measurements with an emphasis on pH measurements in low ionic strength solutions. Davison and Woof (31c) have also considered pH measurements in low ionic strength solutions. These latter researchers recommend various procedures for testing electrodes before use in order to minimize absolute errors under such conditions. Other work concerning pH measurements in low ionic strength solutions mainly deals with development of suitable reference electrodes and is covered in the previous ) section on general aspects of ISEs. Licht ( 1 1 8 ~introduces the concept of making pH measurements in extreme basic solutions (i.e., pH 17.6) with low alkaline error glass membrane electrodes. Proper correction for interferences from sodium, potassium, and lithium ions is required for such extreme measurements. An interesting paper by Niedrach (134c) compares the steady-state and dynamic response characteristics of glass and zirconia membrane pH sensors at 95 "C. The zirconia electrode is found to respond better in situations where glass electrodes (high alkalinity type from Ingold Electrodes, Inc.) display effects of alkaline error. Under all other conditions, the two electrodes display quite similar response properties. Finally concerning pH sensors, a method for pH determinations at sub-zero temperatures using an iridium/iridium oxide electrode has been developed for cryobiochemistry work ( 1 5 ~ ) and the pH response of a tetracyanoquinodimethane modified electrode has been reported (25c). The effects of exposure of glass membrane electrodes to high levels of y radiation are the subject of a paper by Ross and co-workers (65c). Such studies are important considering the application of glass electrodes as on-line monitors in the nuclear power industry. These researchers have found that the potentials of glass electrodes for both sodium and pH measurements are significantly affected by exposure to y radiation in field strengths of 3 X lo4 rad min. Potential offsets can be minimized by reducing the fie d strength or decreasing the membrane resistance of the electrode. A paper by Stefanova et al. (170c) discusses the long term response of glass membrane electrodes with polymeric coatings. Of major consideration is the response of a system involving a sodium-selectiveglass electrode with a PVC coating which contains valinomycin and dibutyl phthalate. Such electrodes are found to display a stable, selective response to potassium ions as is normally observed with conventional valinomycin-based polymer membrane electrodes. Fundamental studies using this electrode configuration are reported. With respect to new glass compositions, new chalcogenide glasses have been reported for the construction of ion-selective

i

ION-SELECTIVE ELECTRODES

electrodes for silver (186c, 188c), lead (189c),ferric (187c, 192c), and cupric ( I 9Oc) ions. Calcium-doped quartz membranes have been developed for calcium ion responsive glass membrane electrodes (107c). Also, ceramic (42c) and lithium phosphate glasses (137c) have been studied as membrane components for new pH sensors. A nitrate responsive glass membrane electrode is reported using alkali-free magnesium phosphate glasses containing CuO, A120z, and SiOz (138~).A procedure for the preparation of solid contacts with glass pH and sodium ion selective electrodes has been patented ( 5 0 ~ ) . Solid-state Membrane Electrodes. Pungor and coworkers have reported two studies that deal with the behavior of solid-state membrane electrodes a t extremely low concentrations of the principal ion. In their first study, the response of the silver/sulfide electrode a t low silver and sulfide concentrations is investigated (71c). They explain that potential deviations a t low concentrations of these ions are cause by excess silver at the membrane. In some cases, this excess silver appears to be a contamination from previous measurements that is difficult to remove. In their second study (72c), the response of silver chloride electrodes is measured a t low chloride and silver ion concentrations. In this case, deviation from Nernstian response is attributed to various processes occurring at the membrane surface such as adsorption-desorption and photoreduction. In related work, the use of the solid-state fluoride electrode under conditions close to its limit of detection (105c, 162c) has been evaluated. Results indicate that experimental parameters and the method of operation can dramatically influence the overall electrode accuracy, precision, and response rate. Finally, the linear response of cadmium ( 2 1 3 ~ )and cupric ( 1 1 2 ~ )solid-state membrane electrodes has been extended by use of metal ion buffers. A number of papers have appeared that deal with the selectivity of solid-state copper membrane electrode (85c, 116c, . et al. (116c) consider the effects of 171c, 1 8 0 ~ ) Lewenstam chloride and bromide ions on the response of the copper electrode. They have found that these halides form complexes that block the membrane and result in irreproducible potentials, variable slopes, short ranges of linearity, and long response times. The addition of thiosulfate is shown to eliminate these effects. The effects of chelating agents on the potential response of chalcocite copper electrodes are reported (85c). Electrode response in the presence of these reagents at various pH values is explained by the presence of copper(1) ions from the membrane. A study of the hydroxide ion interference of fluoride electrodes suggests that the formation of LaOH2+ and La(OH)2f is principally responsible for the measured interference (47c). The effect of various metal ions on the response of cyanide membrane electrodes (68c), the effect of pH on the response of halide electrodes (52c, 53c), and the selectivity of an amalgamated silver electrode toward anions (142c) have been reported. Studies concerning the time-dependent approach to a steady-state potential have been reported for solid-state membrane electrodes (34c, 62c, 63c). Of particular interest is the paper by Pungor and co-workers that presents a quantitative treatment of the transitory response of solid-state membranes to interfering species. These transient responses had been reported in an earlier publication (119.5~)and the more recent work is an attempt to provide a mathematical interpretation of their earlier results. A convincing argument is presented which indicates that the transient response is caused by various processes occurring at the membrane surface including diffusion of the interfering ion to the membrane, adsorption of the transient causing ion on the membrane, desorption of primary ions from the membrane, and diffusion of the primary ion into the bulk solution. A mathematical model is derived that accurately describes the experimentally measured transient signals. Studies involving characterization of solid-state membranes have been reported. Young and co-workers (210c, 2 1 1 ~ de) scribe work to establish the surface chemistry of lead sulfide/silver sulfide membranes using angular distribution X-ray photoelectron spectroscopy. Their results indicate that these membranes experience reductive ion-exchange (21IC)and surface erosion ( 2 1 0 ~ )depending on treatment. Likewise, surface studies by others document erosion of silver sulfide membranes in strong alkaline media (67c) and adsorption of cupric (70c) and cyanide (145~)ions onto silver sulfide membranes. In other studies to characterize solid-state membranes,

the ionic and electronic conductivity of silver sulfide membranes are reported for various temperatures ranging from 20 to 150 OC (19412). Also, the internal resistance of silver iodide membranes has been lowered by adding silver, which has aided in the development of miniature solid-state electrodes (117~).Finally, a report offers a chemical pretreatment procedure for handling copper containing silver wire for the fabrication of microelectrodes (149~). Deshmukh and Coetzee (29c, 36c) detail their work concerning the use of various membrane electrodes to detect contaminants in nonaqueous solvents. Their technique involves a potentiometric titration of the solvent using membrane electrodes as detectors. In their second report on this subject (36c), hydrogen (glass membrane), cupric, mercury, and fluoride selective electrodes are investigated as suitable detectors for this type of titration. When applied to relatively inert solvents, the proposed titrations are shown to possess lower detection limits than currently employed gas chromatographic techniques. In addition, other researchers have reported on the response of copper(I1) and cadmium membrane electrodes in various nonaqueous solvents (IC). Several papers have been reported that deal with improving the response characteristics of solid-state fluoride membrane electrodes. Reports to restore the function of unresponsive fluoride electrodes have appeared (9c, 55c). Also, improvements in the sensitivity a t low fluoride concentrations and in response times of fluoride electrodes based on polishing the electrode surface before used are described ( 1 8 4 ~ ) . As a possible tool in this regard, an automatic polisher is described with specific applications to solid-state membranes ( 8 0 ~ ) . Development of procedures for the direct potentiometric determination of proteins using a silver electrode is described in two papers by Hitchman et al. (77c, 78c). A theoretical treatment of thiol and protein interactions with silver membrane electrodes is presented in the first paper ( 7 7 ~ ) .Their theoretical treatment deals with both the steady-state and the dynamic response for such a system. Of particular interest is their derived double exponential equation to describe the dynamic response. A double exponential expression is obtained owing to two different types of binding sites on the silver electrode surface. In their second paper, the validity of the theoretical treatment is tested by monitoring electrode responses to L-cysteine and to various proteins (78c). Overall, their experimental results support their derived expressions and the importance of proper electrode cleaning to minimize response times is effectively demonstrated. These researchers have found that the best method for cleaning the electrode surface involves electrochemical treatment in dilute ammonia and then in dilute nitric acid solutions. Many new reports present solid-state membrane compositions which display selective response to particular ionic species. Membrane compositions have been reported which respond to copper(I1) (11Oc, 119c, 135c, 158c, 161c,168c, 179c, 196c), copper(1) (136c), cadmium (24c, 179c, 193c), nickel (179c, 198~1,cobalt (179c), lead (109c, 127c, 129c), manganese(I1) (128c), tin (159c), molybdate (87c), mercury ( ~ O C ) , silver (160c), cesium (108c), rubidium (167c), arsenic and phosphorus (164c), ammonium ions (191c, 195c), rare-earth ions (204c), chloride (86c), and thiocyanate (206~).A variety of membrane electrodes based on graphite supports have been detailed for the determination of copper (143c),iodide (48c), and thiocyanate (203~)and for the titration of various metals . concerning the fabrication of ISEs (41c, 155c, 1 5 6 ~ ) Reports using common laboratory supplies (64c) and other low cost materials (157~)and of carbon-filled polymer paste electrodes for various ionic species (81c) have appeared. Flow-through electrode systems for lead (13c) and barium (14c) based on moderately soluble lead laurate and lauric acid are reported. Finally, electrodes based on single crystals of @-vanadiumoxide bronze have been characterized (197~).

LIQUID AND POLYMER MEMBRANE ION-SELECTIVE ELECTRODES The continuing study of and application of liquid and polymer membrane ion-selective electrodes remain a strong and viable area of interest as evidenced by the number of articles found in the literature. The theory behind the operation of liquid ion-exchange membranes has been investigated and developed on the basis of the concept of zero-current potential (684. The conduction ANALYTICAL CHEMISTRY, VOL. 58, NO. 5, APRIL 1986

87 R

ION-SELECTIVE ELECTRODES

Table I. Analytical Applications of Glass and Solid-state Membrane Electrodes

electrode sodium

fluoride

sulfide

application sodium determination in: meats foods cheese sodium citrate beryllium oxides bacteriological media water determination of chemical durability of glass containers measure sodium mole fraction in cation exchange resin estimation of free and combined soda of high-purity reactive alumina study of uranyl ion complexation to crown ethers study of hexacyanoferrate complexes with alkali metals and ammonium ions measure of NH4+and Na+ at -40 O C in liquid nitrogen determination of fluoride in: natural waters seawater atmosphere fertilizers soils aqueous-organic solvents low-melting fused salt vegetation fluoride tablets topazad tourmaline foods materials of senut industry determination of fluorine in: selected drugs coal fluoroorganics surface waters rock samples pharmacuticals human tooth enamal determination of: neptunium(V) fluoride stability constant rare-earth fluoride solubility constants sodium monofluoroacetate in meat bails phosphorus content in nutrient broths analysis of polishing baths determination of sulfide in: various types of water samples

coke oven gas atmosphere of hot springs determination of sulfur in: organic compounds sulfur-alkali solutions white sulfite liquors determination of ovalbumin silver(1) phthalate stability constant hydrogen sulfide ionizations constants chloride plant leaves chloride in natural waters studies of sulfate-reducing bacteria copper(I1) determination of copper in: peat soil technical zinc electrolyte determination of: citrate thorium zinc in fertilizers secondary aliphatic amines various stability & formation constants cupric, zinc, and ferric ions

88 R

ref

electrode

application

copper(I1) general analytical applications lead determination of lead in: cystine samples wastewater from a battery plant white spirits determination of sulfate in: seawater chemithermomechanical lllc Pulp natural waters llc sandstone samples rare-earth sulfoxides 54c determination of sulfate, sulfite, and 32c dithionate in mixture sulfite 27c polyphosphate ions sulfate radical in glauberite 139c, 6c chloride determination of chloride 23c in: 35c water 44c milk 43c soils lO0c salt brines 82c oxidizing media 185c geological materials 126c plant tissue 106c environmental samples 93c pharmaceutical samples 17c aromatic polyamide fiber determination of: 209c chlorine in biochemical 57c, 166c preparations 45c, 84c, 148c cyclophosphamide iodide determination of: 39c iodide in drinkable water 169c 30c molybdenum(V1) tungsten(V1) 181c thallium 154c thallium 92c thiosulfate, thiourea, and 120c ascorbic acid 104c mercury(I1) 125c thiosemicarbazonates formation 88c, 124c, 133c, constant 146c, 153c, 178c chloral hydrate cadmium determination of cadmium 7c 132c in water titrations of metal ion mixtures 212c indirect determination of 60c sulfide 114c cyanide determination of cyanide in: l0lc water 215c water and sewage 66c plating waste water 150c seawater 69c determination of: 2c mercury in wastewater trace gold 102c bromide determination of: 56c bromide in geochemical standard reference 140c materials 141c bromisoval and 9oc carbromal 73c study of zinc formation 89c, 95c constants 174c 51c 4c 103c 94c 121c 8c 16c 12c, 1oc

ANALYTICAL CHEMISTRY, VOL. 58, NO. 5, APRIL 1986

ref 59c 208c 219c 28c 218c 99c 22c, 152c, 202c 182c 123c 163c 61c, 183c 177c 207c

33c 5c 74c 172c 175c 3c 91c a3c 147c lac, i9c 37c 216c 131c 97c, 98c, 176c 96c 26c 26c 20c

113c 214c 173c, 199c 130c 21c

79c 115c 201c 75c 217c 122c 76c 144c 3ac

ION-SELECTIVE ELECTRODES

Table I (Continued)

electrode halide

application determination of surfactants halides in geothermal brines

ref

58c 200c

mechanism and routes of membrane failure, especially PVCbased electrodes, were explained through measurement of membrane impedance over extended periods of time ( I d ) . Surface and bulk clustering effects, the formation of multicharge resistive layers and loss of ion carriers and plasticizer from the membrane contribute to aging effects. Impedance measurements are also used to determine exchange currents of neutral carriers dissolved in organic solvents supported on filter media (5d). The concepts of ion exchange and salt partitioning between immiscible electrolyte solutions are still useful to explain the potential-activity characteristics of liquid-membrane electrodes (63d, 92d, 131d). Current scan polarograms of aqueous-organic solution interfaces are also used to probe the potential generating processes a t membrane electrodes (734. Ac impedance measurements were used to calculate the relative mobilities of ionic species in PVC-matrix neutral carrier ion-selective electrode membranes (6d). Once again, the presence of native anionic sites in the membrane was deduced to achieve a Nernstian response. Of a related observation, the effects of impurities in ion-exchanger liquid membrane electrode performance were studies (107d). Many foreign studies have concentrated on the effect of structure of ion exchangers on the performance of liquid membrane electrodes ( l l d ,41d, 42d, 94d, 103d, 162d). Substituent constants and relationships between the ratio of charge to thermochemical radius of anions have been applied to the determination of potentiometric selectivity constants (56d, 57d). Ion-Exchanger-Based ISEs. Of the liquid membranebased electrodes incorporating ion exchange materials, the study of and application of calcium-selective electrodes continue to draw interest from a diverse group of researchers. New forms of organic phosphate exchangers are being tested by grafting these groups to vinyl acetate-vinyl chloride (58d) or poly(styrene-butadiene) (20d) polymer systems. Substitution of pendant groups on neutral carriers and replacement of solvent systems can reduce potential shifts caused by changes in hydrodynamic conditions in the sample while retaining calcium selectivity ( I l l d ) . The role of the phosphate groups in organophosphate exchangers has been investigated in detail (17d). Carbon-13 NMR and X-ray crystallography of the calcium salts of these exchangers indicate that, in the solid state, the phosphate groups do not chelate the calcium. This reemphasizes the need for a second reagent that has coordinating properties for proper electrode functioning. The interferences seen by calcium electrodes have been studied by use of bipolar pulse conductometric techniques (109d)while the effects of anionic surfactants (36d, 374 and polar additives (30d) have also been tabulated. The electrochemical properties of additional ion-exchange materials have been studied (89d)as well as new derivatives of cyclic polyether amides (71d, 108d). Some miscellaneous applications include analysis of calcium in water samples (28d), titrimetric uses (69d),and calibration techniques for microelectrodes (90d). Ion-exchange materials have been applied to a variety of applications including cations, complex cations, anions, and drug or organic ian species. Table I1 lists these electrodes with a brief description of exchanger material and solvent or application. Other liquid-membrane-based ion exchange electrodes have been studied in great detail for organic cations and pharmaceuticals (24d) and organic anions (1IOd). Liquid membrane electrodes can be used for the determination of other species by titrimetric approaches. In this way sulfa drugs ( 7 4 ,cations God, 51d, 165d),and species involved in azo-coupling reactions (148d, 149d) can be effectively quantified. The analytical applications of nitrate-ion-selective electrodes include water, soil and agricultural uses (52d, 53d, 60d, 82d, 86d, 97d, 114d, 115d), studies on plant uptake of nitrate (26d, 276 43d, 113d), and miscellaneous academic studies (Zd,12d, 29d, 99d). Neutral-Carrier-Based ISEs. The requirements for

electrode

application

tantalum

determination of tantalum in: niobium ores

ref 46c 205c

neutral complexing agents in membranes of ion-selective electrodes have been reviewed (129d). The effects of lipophilicity, the kinetics of ligand exchange reactions, and those factors that affect selectivity are discussed a t length. The application of crown ethers in ion-selective electrode analysis has been reviewed as well (125d). The effects of adding lipophilic salts ( 3 4 , organophosphorus compounds (64d),or tetraphenyl borates (48d, 91d) to the performance and selectivity of neutral carrier electrodes have been studied. An analysis of electrode and transport properties of macrocyclic polyether-based ISEs has been made which describes the response and selectivity on the basis of crown ether structure (45d). A study of membranes based on macrocyclic lactones and lactone lactams indicates that introduction of amide and ester groups into cyclic polyethers modifies the electrode selectivity greatly (10d). Numerous applications of neutral-carrier-based ISEs are found in the literature. These applications are listed in Table 111,which includes the species to which the electrode responds, the ionophore used, and the reference. Lithium-selective electrodes have been studied by use of a variety of neutral carriers as selective components of the sensing membrane. Lithium electrodes have been studied in general (40d), using crown ether derivatives (38d) and incorporating lipophilic diamine compounds as neutral complexing agents (39d). Chromoionophore-based lithium responding membranes have been prepared to investigate selectivity and transport phenomenon (146d). The lithium ion cotransport with sugar system has been studied in E. coli using neutral diamine derivatives (144d). Miscellaneous Liquid Membrane Systems. Liquid membrane electrodes have lent themselves to surfactant analysis by incorporating salts of surfactants within membrane matrixes. Thus, organic sulfate surfactant responding electrodes have been prepared and selectivity coefficients have been measured vs. interfering surfactants (83d, 116d). Both nonionic and anionic type surfactant sensing electrodes have been studied (61d, 133d). Photopolymerized polymer membranes have been prepared by using two different approaches. In the first, calcium-selective membranes were prepared by mixing organophosphate exchangers with acrylate monomers and photoinitiators (16d). After exposure to UV light, a tough calcium responsive membrane is formed that responds in a Nernstian fashion. In the second approach, crown ethers are derivatized directly to the reactive acrylates (163d). Upon photocuring, oriented monolayer films of the polymerized crown ether are formed that are ion responsive. With the advent of single use electrodes becoming a more common reality, a procedure is described that protects the electrode membrane and is removed just prior to use giving the electrode a long shelf life (143d). A novel method of producing ion-sensitivemembranes involves soaking a polymer form in a solvent that is capable of both swelling the polymer and also containing the ionophore and plasticizers, which are required for proper electrode functioning (13d,35d). A recipe is given for the preparation of ion-sensitive microelectrodes based on double-barreled glass pipets (96d). Details are given as to silanization of the glass so that the surface adheres the organic solvent efficiently.

COATED WIRE ELECTRODES AND ION-SELECTIVE FIELD EFFECT TRANSISTORS

The need to measure analytes in smaller sample volumes has driven research efforts in two different directions. The coated wire electrode (CWE) uses components of conventional I S E s except that no internal aqueous filling solution is used. Instead, a conductor is directly coated with an ion-responsive membrane (usually PVC based). This conductor can be metallic or graphite-based and be of any convenient geometric shape (i.e., wire, disk, cylinder, thin film, etc.). The ion-selective field effect transistor (ISFET) achieves size reduction ANALYTICAL CHEMISTRY, VOL. 58, NO. 5, APRIL 1986

89R

ION-SELECTIVE ELECTRODES

Table 11. Applications of New Ion Exchanger Based Liquid and Polymer Membrane ISE's species sensed Bi(II1) Mn(I1) In(II1) La(II1) Mo(V1) Tl(U CU(U Cu(I1) Cu(I1) Cu(I1) Fe(I1) gold complexes

gold complexes silver complexes silver complexes MI),M I ) Cr(V1) uranium complexes uranyl thiocyanate bichromate tetrachlorothallate hexafluorophosphate hexafluoroarsenate tetrabromothallium tetrachloroferrate picrate trichloromercurate dichromate perrhenate perrhenate

exchanger 5-mercapto-3-(l-naphthyl)-1,3,4-thiadiazol-2-thione in tetrachloroethane bis(4-decyl-3,5-dimethylphenyl) phosphate in dinonyl phthalate dodecyltriheptylammonium indium tetrabromide bis(2-ethylhexy1)phosphoric acid or dinonylnaphthalenesulfonic acid N-benzoyl-N-phenylhydroxylaminein nitrobenzene, 1,2-dichloroethane, or chloroform cyanotriphenylborate in 4-ethylnitrobenzene 2,9-dimethyl-l,lO-phenantroline in dibutyl phthalate 1-(2-pyridylaz0)-2-naphtholin nitrobenzene dialkyldithiophosphates 8-quinolinedithiocarboxylicacid 8-quinolinedithiocarboxylic acid in 1,2-dichloroethane Malachite green dicyanoaurate, Rhodamine B tetrachloroaurate, or Methylene blue tetrachloroaurate in o-dichlorobenzene or dichloroethane cetylpyridinium tetrachloroaurate in dioctyl phthalate tetradecylphosphonium dicyanoargenate hexadecyltrioctylammonium dicyanoargenate gold dithiourea-tetranitrodiammine cobaltate and silver trithiourea-2,4,6-trinitrophenol triheptyldodecylammonium iodide

UOAMe2SO)dPh4B)2 uranyl-benzoic acid-ethyl violet trihexylcetylammonium thiocyanate bis(tripheny1phosphine)iminium bichromate in nitrobenzene tetradecylphosphonium tetrachlorothallate in dibutyl phthalate tetradecylphosphonium hexafluorophosphate in dibutyl phthalate tetradecylphosphonium hexafluoroarsenate in dibutyl phthalate Ethyl violet-tetrabromothallium trioctylhexadecylammonium tetrachloroferrate Ethyl violet-picrate tetradecylphosphonium trichloromercurate tetrapentylammonium dichromate in 2-nitrotoluene 2,4,6-triphenylpyrylium perrhenate in dichloroethane and methylene chloride triheptyldodecylammonium iodide in dibutyl phthalate or bis(2-ethylhexyl) o-phthalate perrhenate basic dyes benzylcetyldimethylammonium permanganate in nitrobenzene permanganate 2-aminoperimidinium sulfate in nitrobenzene sulfate tris(bathophenantro1ine)iron perchlorate perchlorate lead sulfate or Dowex 1x8 sulfate vitamin BIZlipophilic derivative in bis(1-butylpentyl) adipate nitrite trioctylmethylammonium chloride in dibutyl phthalate alizarin methyltrioctylammonium complex in nitrobenzene diethyldithiocarbamate trioctylmethylammonium flufenamate flufenamic acid benzyldimethylcetylammonium cholate cholate quaternary phosphonium benzoates in 1-decanol or nitrobenzene benzoate 2,4-dichlorophenoxyaceticacid (2,4-D) triheptyloctyldecylammonium 2,4-D tetradodecylammonium iodide in bis(2-ethylhexyl) phthalate butyl xanthate cinchoninium pirolonate in nitrobenzene cinchoninium diphenhydramine tetraphenylborate diphenhydramine levamisole tetraphenylborate levamisole promethazine picrolate or tetraphenylborate in dibutyl phthalate promethazine tetrahydropalmatine picrolate or tetraphenylborate in dibutyl phthalate tetrahydropalmatine berberine tetraphenylborate in dibutyl phthalate berberine quinidine tetraphenylborate quinidine triphenylstilbenyl borate complexes in 2-nitrophenyl octyl ether bisquaternary drugs atropine reineckate in benzyl alcohol atropine tetraphenylborate or dinonylnaphthalenesulfonic acid complexes phenothiazine drugs bis(2-ethylhexyl)sulfosuccinate Rhodamine B in nitrobenzene Rhodamine B mffeinp caffeine oicrvlsulfonate in 1-octanol ---- ---- -I

"

with completely different technology. The input stage of a pH meter consists of a field effect transistor. This FET takes the high-impedance signal of an ion-selective electrode and outputs a low-impedance, noise-insensitive signal. The ISFET eliminates the connecting cable between the ISE and the meter by incorporating the ion-sensing membrane directly on the gate area of the FET. Not only does this result in an exceedingly small sensor but the output signal is of low impedance and is more insensitive to noise than conventional

ISE's. T h e development of coated wire electrodes has recently been reviewed and includes information on multisensor probes that can be used in seawater analysis (7e). A more extensive review covers coated wire electrodes and the technology of polymer-coated as well as solid contact devices that make u p 90R

ANALYTICAL CHEMISTRY, VOL. 58. NO. 5, APRIL 1986

ref 135d, 136d 132d 158d 134d 128d 19d 72d 85d 147d 44d 84d 46d 138d 66d 160d 120d 33d 159d 32d 153d 150d 79d 80d 81d lOld 47d 104d 78d 49d 164d 34d 102d 70d 112d 137d 106d 119d 161d 65d 77d 14d,15d 4d 105d 31d 156d 121d 122d 155d 157d 18d 23d 21d 55d 22d 145d 54d

this ever expanding field (5e). Copper-selective wire electrodes can be prepared by treating bare copper wire with either gaseous or aqueous-based hydrogen sulfide (30e). Sodium and potassium levels were measured in human urine and serum simultaneously by using a pair of coated wire electrodes that utilized crown ethers as the selective agents (27e). An aluminum wire electrode that is coated with PVC plasticized with 2-nitrophenyl alkyl ether was used for the potentiometric titration of singly charged anthraquinone dyes (31e). Beside metallic conductors, graphite has been used with good success for making coated-type electrode devices. Graphite rods and powders have been formed into electrodes that are coated with chemically modified polymer films (19e). Instead of using PVC as the polymer, several different polymers and modified polymers were tested. Poly(acry1ic acid)

ION-SELECTIVE ELECTRODES

Table 111. Applications of Neutral Carrier Based ISE’s species sensed potassium potassium sodium sodium

neutral carrier crown ethers and derivatives valinomycin

hemispherands triglycolic bis(dibenzy1amide) monensin sodium crown ethers sodium crown ethers alkali metals hemispherands alkali metals cryptands alkali metals tin organics anions vitamin BIZderivatives anions crown ethers guanidinium anesthic cations crown ethers oxadicarboxylic amides lead N,N,N’,N’’-tetrabutyl-3,6cadmium dioxaoctanedithioamide barium poly(acry1amide)crown ether derivatives

Table IV. Applications of Gas- and Biosensing Potentiometric Membrane Electrodes

ref 62d, 74d-76d, 100d, 126d, 154d 8d, 25d, 93d, 95d, 130d 142d 139d, 151d 117d 67d, 127d 88d, 140d 141d 124d 152d 118d 9d 123d 87d 59d

analyte

sensing element

alkaline phosphatase carbonates flavin adenine dinucleotide

104-

glucosamine 6-phosphate glucose

“3

g1u cose

F-

glutamate

COZ

L-lactate

Pt

methotrexate

“3

nitrite

“3

nitrogen

“3

co2 “3

I-

98d

and modified poly(vinylbenzy1 chloride) containing substituted amines were used to form both cation- and anion-responsive electrodes. The potentiometric response and studies of similar polymer-film, chemically modified graphite electrodes have been published (18e). Interest in these and other forms of coated-type electrodes has caught the attention of industrial firms as the number of patents rise (28e, 29e, 32e-34e). The operational principles, design, and technology of ionselective field effect transistors (ISFETs) have been discussed and reviewed in detail (16e). The discussion includes conventional ion-selectiveelectrodes and compares the two sensor types in terms of operation and application. In another review, the principles of operation and preparation details are given and the response characteristics and selectivity are discussed (Zle). In a further discussion, the role of the total measuring system is taken into account when comparing the similarities and differences between ISE’s and ISFET’s (14e). The operation of ISFET pH sensors was studied by assessing the influence of pH on the surface charge at the gate-solution interface (3e). Several insulating materials were included in the study, which indicated that compact aluminum oxide layers obtained via chemical vapor deposition produced the optimum pH ISFET sensor. Other studies show that the mechanism of operation of inorganic-gate p H ISFET’s can be divided into three categories (4e). Bulk ionic diffusion, changes in the insulator-solution interface, and reactions of surface sites are the models that have been proposed in the literature. Surface effects are shown to be the most likely candidate. Buried OH sites beneath the surface of the gate are shown to be created by steam oxidation or by exposure to the aqueous electrolyte sample. A pH-responding ISFET was developed and tested using silicon nitride deposited on a planar silicon plate with a sputtering technique ( l e ) . The operation of these pH ISFET devices has raised a question concerning the drain-to-source voltage and whether it produces a nonuniform electric field across the electrolyte-insulator-semiconductor interfaces (17e). Calculations and studies have shown that with normal gate lengths and bias voltages, the effect of the bias voltage does not affect the p H ISFET operation. ISFET sensors have seen increasing application and study as availability of the devices increases. Hybrid construction techniques can be used to form p H sensors using thick film techniques (20e). A reference electrode ISFET was shown using a Parylene coating on the gate area (22e). The material is site free and forms an ion-blocked film over the gate which should be insensitive to ion activities. A chloride ISFET was prepared by laying a membrane of methyltridodecylammonium chloride over a silicon nitride gate (35e). Comparison was made to a conventional chloride ISE, and the response characteristics of operating range, limit of detection, slope response, and selectivity between the two sensors agreed well. ISFET’s can be combined with biological agents to form biosensors as has been done with conventional ISE’s. When

ornithine carbamyl NH3 transferase COP salicylate urea

comments

ref

kinetic assay of analyte in serum analysis of detergents dual enzyme biosensor with alkaline phosphatase and adenosine deaminase tissue-based biosensor using porcine kidney biosensor with glucose oxidase immobilized in a PVC membrane at the surface of a solid-state electrode biosensor with glucose oxidase and peroxidase, a fluoroorganic compound is required air-gap electrode with immobilized glutamate decarboxylase biosensor using permeabilized yeast cells as biocatalyst serum analysis using enzyme amplification inhibition comparison of methods for environmental sample analysis semiautomated microanalysis using steam pyrolysis serum analysis

16f

biosensor using immobilized salicylate hydroxylase NH4+ whole blood analysis using biosensor based on immobilized urease and a polymer membrane electrode

46f 33f 28f If

18f

54f 51f 42f

45f 36f 21f

13f 55f

pH ISFET’s are covered with microorganisms or enzymes and are used in conjunction with unmodified pH ISFET’s, selective microbial or enzyme biosensors result with differential output proportional to the analyte of interest (2e, 8 e ) . A quadruple-function ISFET device has been prepared that simultaneously monitors potassium, calcium, sodium, and pH in whole blood samples (25e). ISFET’s have also been prepared that respond to carbon dioxide and organic acids (6e). Of interest here is the difference seen between conventional ISE’s and ISFET’s in their response to gases and organic acids. With conventional ISE’s, there exists a well-defined solution interface on the backside of the membrane that can support ionization of gases and organic acids. With ISFET’s, there is no well-defined region of hydration but, evidence is discussed that may explain the drift that is often seen when using ISFET devices in particular samples and matrixes. The Japanese have been very active in the field of ISFET development and the patent literature points this out (ge-lle, 13e, 23e, 24e, B e ) . There has been other foreign literature that describes the development of ISFET reference devices as well (12e, 15e).

GAS SENSORS AND BIOSELECTIVE ELECTRODE SYSTEMS We review here literature related to the introduction, development, and application of potentiometric gas-sensing probes, biocatalytic membrane electrodes, and other systems with potentiometric membrane electrodes coupled to biocatalyzed or immunological reactions. Table IV lists various analytical applications of gas- and bio-sensing potentiometric electrode systems that have been reported. Cas-Sensing Probes, Considerable work has been published within the past 2 years concerning the dynamic response characteristics of gas-sensing potentiometric membrane electrodes. This activity is understandable in light of the ANALYTICAL CHEMISTRY, VOL. 58, NO. 5, APRIL 1986

91 R

ION-SELECTIVE ELECTRODES

rather poor rate of response generally observed at low analyte concentrations and during recovery processes with this class of electrodes. Indeed, the lack of patience when using gas sensors can result in significant errors particularly a t low concentrations. Van Der Schoot and Bergveld (50f) offer a digital simulation for predicting the time-dependent response of carbon dioxide gas sensing probes. They demonstrate with acquired data that their simulation accurately predicts the dynamic response for high carbon dioxide concentrations. Unfortunately, no details are given concerning the dynamic response a t low concentrations or for probe recovery times. Overall, the simulation appears to be accurate for the conditions tested and future tests should be extended to more extreme conditions. The effect of using moderately soluble ammonium salts as the principal component of the internal electrolyte solution for ammonia gas sensing probes has been investigated ( 4 0 . Results indicate that storage and operation of such electrodes in solutions of higher osmolarity than the internal electrolyte solution adversely affects the response time of the sensor. Under these conditions, water is lost from the internal electrolyte solution in response to the osmolarity difference across the gas-permeable membrane. Owing to the moderate solubility of the ammonium salt, this loss of water, which increases the concentration of the salt, eventually leads to the precipitation of this salt onto the gas-permeable membrane. The buildup of a salt layer drastically reduces the rate of ammonia diffusion into the internal electrolyte solution which increases the electrode dynamic response characteristics. This problem can be simply avoided by using an ammonium salt with high aqueous solubility such as ammonium chloride. Guilbault and co-workers (15f)report improvements in the dynamic performance of ammonia gas sensors using innovative gas-sensor designs. Two new designs are described that, in both cases, allow for rapid replacement of the internal electrolyte solution a t the sensor tip between sample measurements. Such electrode designs result in dramatic improvements in the rate of base line recovery. These improved gas sensors are used in the construction of urea sensing probes with the immobilization of urease. In related work, a procedure is detailed in a short letter by Keeley and Walters (23f) to decrease the recovery process of both ammonia and carbon dioxide gas sensing probes. This procedure involves placing the electrode in a conditioning solution between measurements. For the ammonia electrode, the conditioning solution is a 0.1 M sodium phosphate pH 10.0 buffer, and for carbon dioxide sensor a 0.1 M sodium citrate pH 4.5 buffer is proposed. Such electrode treatment quickens the recovery process by minimizing the amount of the gaseous form of the analyte in the external solution during the recovery process. When this technique is used, care must be maintained to avoid errors in measurements because immediately after the proposed treatment the electrode system is not in equilibrium with respect to the external solution that will be used in the analysis. Sufficient time must be alloted for this equilibrium to be established before the analysis. Failure to obtain the same base line state before each analysis could lead to irreproducibility, especially a t low analyte concentrations. Selectivity characteristics of the carbon dioxide gas sensing probe have received attention by several research groups. Lopez (26f) has reported the results of a study that quantifies interferences to the carbon dioxide probe. Her results show a strong correlation between extent of interference and interferent acidity. In fact, a mathematical model is presented based on acid-base properties of the interferents that accurately predicts the equilibrium response of the carbon dioxide sensor. These results by Lopez do not match those reported earlier by Kobos et al. (24f) in which the selectivity of the carbon dioxide gas sensor was found to be dependent mostly on the volatility of the interferent. Morf and co-workers (35f) convincinglyexplain these apparently conflicting results using their own mathematical treatment, which addresses the time-dependent selectivity properties of the carbon dioxide gas sensing probe. Their theoretical treatment and experimental results show that for short time periods after the introduction of an interferent, the electrode response is strongly related to the diffusion rate of the interferent through the gas-permeable membrane and, thus, to the volatility of the interferent. For longer time periods, however, the electrode response is principally governed by the acidity and 92R

ANALYTICAL CHEMISTRY, VOL. 58, NO. 5, APRIL 1986

basicity of the interferent. Thus, the results of Kobos et al. (24f) appear to reflect the selectivity under pseudoequilibrium conditions shortly after exposure to the interferent, whereas the results of Lopez (26f)reflect the true equilibrium selectivity of the sensor. Overall, these results suggest that the effective sensor selectivity is dependent on the mode of operation. Meyerhoff and co-workers a t the University of Michigan continue their development of gas-sensing systems based on polymer membrane electrodes as internal sensing elements. Specifically, this research group reports a mathematical model that predicts the steady-state response characteristics of carbon dioxide and ammonia gas sensors based on carbonate and ammonium responsive polymer membrane electrodes, respectively (300. In addition, the experimental response characteristics of both ammonia and carbon dioxide sensing systems using a polymer pH electrode are reported (37f). In this latter study, the highly selective neutral carrier tridodecylamine is employed and both static and continuous flow gas-sensing arrangements are detailed. Finally with respect to gas sensors, Hassan and Tadros ( I 7f) report a detailed study concerning the steady-state and dynamic response characteristics of the nitrogen oxide gas sensor. The performance of this sensor has been evaluated with respect to detection limit, response time, and selectivity. Also, the origin of the potentiometric response and the influence of membrane type have been studied. Biosensing Systems. Several overview type papers have appeared concerning biosensors ( I l f , 14f, 25f, 34f, 47f, 5379. Of particular interest are reviews by Krull and Thompson on the possibilities of lipid membrane biosensors (25f) and by Wilson on the application of biosensors for process control (53f). With respect to novel potentiometric biosensing probes, Pau and Rechnitz (380 report an L-alanine selective biosensor in which dextran-bound nicotinamide adenine dinucleotide (NAD) is coimmobilized with alanine dehydrogenase and lactate dehydrogenase at the surface of an ammonia gas sensor. The first enzyme is used to generate ammonia from alanine with the reduction of NAD+ to NADH. The second enzyme catalyzes the regeneration of NAD' from the product of the first reaction, pyruvate. This unique biocatalytic arrangement not only regenerates the required cosubstrate (NAD+)but also removes the product of the first catalyzed reaction and drives the reaction in the desired direction. Because the cosubstrate is immobilized a t the electrode surface, only a simple pH buffer is required for optimal sensor response. A similar cycling scheme involving NAD has been reported for an amperometric glucose sensor (40f). In work involving novel types of biocatalytic materials, the use of treated plant leaf as the biocatalytic component of a biosensor for L-cysteine has been reported by Smit and Rechnitz (44f). Before the leaf can be used effectively, the outer, waxy cutical layer must be removed to allow the substrate access to the biocatalytic activity. In this first example of a leaf-based biosensor, a leaf from a cucumber plant is immobilized at the surface of an ammonia gas sensor. Other researchers have reported biosensors based on the use of tissue biocatalysts. Specifically, Schubert et al. ( 4 1 f ) detail the use of a slice of potato tuber and glucose-6-phosphate hydrolase a t the surface of an amperometric oxygen sensor for the electrochemical determination of phosphate and fluoride. This tissue system is based on the inhibitory effects of these anions on the immobilized biocatalytic activities. Vincke et al. (52f) have compared four classes of biocatalysts for the construction of amperometric sensors for ascorbic acid. A tissue-based hydrogen peroxide sensing bioprobe has been described by Mascini and Palleschi (290 where a thin slice of bovine liver is held at the surface of an amperometric oxygen electrode. Finally, the use of mammalian organ acetone powders (2f)and meals of plant materials (3f) have been demonstrated as suitable biocatalytic components for potentiometric biosensors for adenosine monophosphate and urea, respectively. Bradley and Rechnitz have studied various properties of enzyme electrodes, In their first study (Sf), two. distin!t adenosine deaminase enzymes with differing enzymatic kinetic parameters are compared as biocatalysts for adenosine biosensors. Results indicate that various experimental factors can alter the kinetic parameters of the immobilized enzyme, which

ION-SELECTIVE ELECTRODES

can affect the resulting electrode response. In their second study (Sf),the effect of various membrane barriers on the dynamic response of ammonia gas sensors and adenosine enzyme electrodes is examined. Results from this second study show that thicker gas-permeable membranes result in longer response times. Also, they show that BSA-glutaraldehyde layers can alter the rate limiting processes (reaction kinetics or substrate diffusion) at the surface of an enzyme electrode. Work toward the development of microbiosensors has been reported by two groups. First, Joseph (190 has reported fabrication of microbiosensors with 10-pm sensing tips using glass capillaries with antimony pH electrodes as the internal sensing element. With this design, a microsensor for urea is detailed where urease is immobilize in a bovine serum albumin (BSA)-glutaraldehyde matrix. Janata and co-workers report the immobilization of enzymes on the pH sensitive gate of field effect transistors, which results in enzyme field effect transistors (ENFET). In part one of a three part series, a detailed mathematical model is presented which describes the response of ENFETs (Sf). Part I1 details the construction and response of a glucose ENFET in which glucose oxidase is entrapped in an uncharged gel matrix (Sf). Part I11 describes a penicillin ENFET where penicillinase is immobilized ( 1 O f ) . Other FET-based biosensing systems have been reported for urea (32f) and glucose (31f) (see section on coated wire electrodes and ion-selective field effect transistors for related systems). Several papers have appeared that describe the use of potentiometric membrane electrodes in conjunction with immunoglobulins. A membrane electrode that responds selectively to specific immunoglobulins has been described by Keating and Rechnitz @Of, 39f). They term this electrode system a potentiometric ionophore-modulated immunoassay (PIMIA) because the electrode response involves the interaction between an antibody in solution with an antigen-ionophore complex in a plastisized polymer membrane. A difference in membrane potential is measured upon antibody binding to the membrane bound antigen-ionophore complex. This type of membrane electrode has been developed for the selective determination of antidigoxin antibody in the pg/mL concentration range. Through a competitive binding approach, digoxin can be quantified at the 1C-100 nM level with the same electrode system. A homogeneous immunoassay procedure for the selective determination of human immunoglobulin G (IgG) has been developed (1Zf). This procedure is based on the modulation of chloroperoxidase activity upon antigen-antibody interaction. Detection limit for human IgG is 0.5 yg/mL with this assay. A novel homogeneous enzyme immunoassay procedure suitable for protein determination is reported by Brontman and Meyerhoff (7f). Their procedure is based on a protective effect of an antibody-antigen interaction against the inhibition of an enzyme label by a second antibody, which is selective for the enzyme label active site. The feasibility of this novel approach is demonstrated by use of adenosine deaminase as the enzyme label and human serum albumin (HSA) as the analyte protein of interest. Detection of 1 pg of HSA is demonstrated. A homogeneous enzyme immunoassay procedure for the determination of digoxin using a carbon dioxide gas sensing probe has been described (22f). Enzymatic activity bound to polystyrene beads is conveniently measured by the gas-sensing probe without concern of sample turbidity. Detection in the nanogram range is reported. In a separate report, a new type of immunoassay detection scheme is described which uses a fluoride ion selective electrode to monitor the activity of peroxidase enzyme label with 4-fluorophenol as the enzymatic substrate (43f). An assay procedure for the determination of syphilis antibodies has been developed in which tetrapentylammonium ions (TPA+) are loaded in phospholipid liposomes (49f). Complement mediated immunolysis of these loaded vesicles is caused in the presence of syphilis antibodies. Release of the TPA+ marker is measured potentiometrically and is related to antibody presence. A similar approach has been reported involving potentiometric detection of immunolysed ion loaded phospholipid vesicles to study antigen-antibody reactions (480.

ION-SELECTIVE ELECTRODES I N FLOW ARRANGEMENTS AND CLINICAL APPLICATIONS The application of ion-selective electrodes in flow and clinical systems assays is a natural result of the ISE’s sample requirements, selectivity, and response characteristics. Flow Applications. The use of ISE’s in flow analysis has been reviewed and covers various aspects of their use (48g, 79g, 109g). A frequent difficulty that any detector faces in flow analysis is that of bubbles entering the detector cell. A unique design for a tubular debubbler was constructed for continuous flow analyzers using ISE detection (60g). Concentric tubes, the inner one of microporous poly(tetrafluor0ethylene), separate the liquid from entrailed air in a simple way but with high efficiency. The response time curves of flow-through electrode systems have been studied using step concentration changes (25g). The dependence of the time constant upon the flow rate was examined and two curve fitting models explained the observed responses. Response times were further studied using bipolar pulse conductometric monitoring, which showed that diffusion and migration processes were key factors (77g). Flow injection analysis (FIA) has enjoyed rapid growth over the past few years. As such, much interest has been generated in the analytes that can be assayed and the detectors to measure those analytes. Some of the characteristics of FIA using ISE detection have been reviewed with an emphasis on calcium determinations (99g). Copper wire indicating electrodes have proven popular and effective for the determination of organic ligands (6g),inorganic anions (5g),and metal ions (7g). Chloride has been analyzed in tap and sewage waters using a very simple, open ISE flow cell arrangement where filter paper is the vehicle for transporting the carrier stream past the electrodes (47g). A tubular electrode lacking internal electrolyte solution was constructed and incorporated within a FIA analysis manifold for nitrate determinations (4g). The parameters affecting measurements in FIA systems were evaluated by use of a tubular pH sensor (46g). The buffer capacity of the carrier stream had to be lower than that of the sample to obtain reliable results. The minimum required sample volume was calculated by studying the overall response of the system and measuring the dispersion factor. Other miscellaneous applications of‘ISE’s in FIA include the analysis of potassium in serum (62g),chloride in river waters ( I I O g ) , sulfide in sewage effluents (39g), cyanide in electroplating wastewater (69g),and calcium in water samples (32g). Ion-selective electrodes have also been used with success as detectors for chromatographic systems. Monovalent cations were determined by ion chromatography with ISE detection (95g). Cyanide and sulfide were also detected with a silver sulfide ISE (117g). Electrodes based on tetraalkylammonium exchangers were used for general anion detection (96g). Iodide was determined in seawater samples with ion chromatography using an iodide ISE (17g). Either silver or copper wires could be used for monitoring eluted proteins following chromatographic separation (45g). The wire electrodes were cleaned by electrochemical treatment before each measurement using a platinum foil auxiliary electrode. Finally, a relatively large number of patents were uncovered in our search of this topic area. They are of interest for the different construction techniaues and materials that are used in the making of ISE flow-detectors (18g, 40g, 50g, 87g, 1052-1 082). a i n i c i l Applications. Ion-selective electrodes have made great inroads into the testing of electrolytes and have replaced flame photometers for this use in a large number of laboratories. The application and recent progress of ISE’s in physiology and clinical chemistry have been reviewed in detail (31g, 76g, 80g, 94g). There have been more specific reviews that concern themselves with the use of ISE’s for electrolyte measurements (55g, 58g, 113g). There has been a vexing problem when the results of flame photometric assays are compared with those from ISEs. The comparison is between concentration measurements and activity measurements and arises from the differences in the quantities being measured. Factors have been discussed at length that can be used to equate the two results (57g). The discrepancy has been explained by dilution and electrochemical effects (83g) and points out the need for proper standANALYTICAL CHEMISTRY, VOL. 58, NO. 5, APRIL 1986

* 93R

ION-SELECTIVE ELECTRODES

ardization. The red cell volume component of whole blood (the hematocrit) can effect the response of ISE’s in a variety of ways. As the pH of the plasma changes, water distribution between the plasma and erythrocytes changes, thus altering the activities of the electrolytes that are dissolved in the plasma (30g). The hematocrit can also effect the liquid junction potential at the reference electrode interface with the sample (89g, 121g). The physicochemical quantities and units used in clinical chemistry have been defined (88g). The effects of activities and activity coefficients are taken into account and specific recommendations are included that cover the use of ISE detectors in clinical analysis. The use of standard reference solutions has been suggested with the formulation of a five-function reference fluid that can be used for the standardization of the common electrolytes and pH (21g). Specific establishment of a calcium reference method includes factors such as anaerobic sample handling, sampling procedure, time between sampling and analysis, and calibration fluids composition (16g). These concerns and others have been the subject of an international workshop devoted to the direct potentiometric measurements in blood samples (78g). The workshop was held in early 1983 a t the National Bureau of Standards, Gaithersburg, MD, to address the needs of researchers, manufacturers, and users of clinical instrumentation with the potentiometric measurement of electrolytes in blood samples. The various topics included water, activity coefficients and residual liquid junction effects, anal@ binding, and reference methods, materials, and nomenclature. The literature that concerns itself with application of ISEs in clinical measurements by and large is focused on the electrolytes, Na+, K+, Ca2+,C1-, and HC03-. The methods that have been used (including ISE’s) to measure these electrolytes have been reviewed in both blood and urine samples (86g). The use of ISE’s in continuous monitoring of blood samples has also been reviewed with emphasis on polymeric electrodes (91g). The determination of sodium levels in blood can be influenced by both cations (14g) and anions such as bicarbonate (15g). An improved neutral-carrier-based ISE has been used for the direct determination of sodium in whole blood (log). Besides strictly for clinical uses, sodium electrodes have been used to measure the sodium effluxes of human erythrocytes in real time (12g). Ion-selective electrode combinations have been used for the multiple determination of electrolytes in blood serum samples (3g, 72g, 122g). The most popular combination of electrolytes that is measured is that of sodium and potassium and clinical samples (27g-29g, 33g, 56g, 124g). Silicone-rubber-based membranes have been used for the determination of potassium in blood samples (9g). These types of electrodes have universal applicability to body fluid analysis and can be miniaturized for low sample volume requirements. The measurement of calcium activity in whole blood has been reviewed in detail and the effects of calcium on the heart and circulatory system are discussed (85g). The activity coefficient of calcium in plasma is emphasized in a discussion entitled, “What is Ionized Calcium?’! (9Og). In addition to the concern of measuring ionized calcium, additional substances compound the measurement process. A study was performed that not only investigated pH and ionic strength but showed a substantially enhanced degree of calcium binding to albumin in the presence of free fatty acids (81g). Sodium heparin also causes depressed calcium readings at levels >5 units/mL (115g). Magnesium a t intracellular levels affects the response of calcium electrodes as well (71g). Various serum-based materials have been prepared as control and calibrator fluids that usually outperform aqueous-based controls for serum and whole blood ionized calcium analyzers (1OOg). The measurement of calcium in blood, plasma, and serum has been evaluated and the results show that whole blood samples yield more reliable results when they are collected, handled, and stored anaerobically a t 0-4 OC (116g). There are a number of applications of calcium assays besides for clinical use. Calcium activities have been monitored continuously in extracorporeal shunts during drug administration in dogs ( I l g ) . Protein binding studies and calcium and EDTA administration are two addition applications that have been cited for a low cost calcium electrode method (70g). The mechanism of bilirubin stone formation was investigated, in part, by the analysis of calcium by ISE in the bile of patients 94R 0

ANALYTICAL CHEMISTRY, VOL. 58, NO. 5, APRIL 1986

with gallstones (97g). The level of calcium activity in both raw and processed milk was measured and the influence of heat treatment and rapid cooling was established (38g). Calcium was also determined in skim-milk powders and yielded better results than the conventional, dry-ashing process followed by AAS (8g). A variety of other applications dealing with the use of ISE’s for clinical samples will be summarized here. A micromethod for the determination of plasma ammonium nitrogen in newborns and adults has been described and the effect of storage at low temperature was documented (20g). Urea can be measured by enzymatic conversion to ammonium and carbon dioxide and then sensed with either an ammonium electrode (98g) or a differential pH technique (82g). A bicarbonate-selective electrode was developed and shows improved selectivity by using a gas-permeable, hydrogen ion carrier membrane (67g). Miniature electrodes were constructed based on this optimized configuration. The lanthanum fluoride electrode has been used for the clinical assay of fluoride in individuals who have been exposed to exogenous sources of fluoride. Fluoride is not found under normal physiological conditions, so its presence usually marks a drug treatment method or contamination from the environment. The limit of detection for one assay technique was 0.005 ppm fluoride when the body fluids of rats were analyzed (114g). The effects of environmental exposure to fluoride and the role of other factors, such as sex, age, smoking, and food intake, was determined by monitoring the urine and blood serum of volunteers (123g). Fluoride was also monitored in the urine of workers at a nuclear site to survey those who may have been exposed to fluoride-containing compounds (75g). Nonvolatile fluoride in the plasma and urine of pediatric patients was measured by ISE after undergoing methoxyflurane anaesthesia (74g). Finally, a rather interesting use of the fluoride ISE occurred during a postmortem on an individual who had committed suicide by taking zinc hexafluorosilicate or hydrofluoric acid (93g). The organs and both fluids were analyzed with relative standard deviations of 0.1-3% and sensitivity to 0.05 Mg/g of sample. Dried thyroid gland samples were subjected to analysis for iodide content using an iodide ISE (112g). The new procedure was compared to the volumetric and kinetic procedures that it replaced with satisfactory accuracy and reproducibility. A potentiometric sensor based on dinonylnaphthalenesulfonic acid was responsive to a variety of calcium channel blocking drugs as well as a ,&adrenergic blocking agent (22g). Nernstian responses were observed and the selectivity followed that expected from distribution constants for the respective drugs. These electrodes were used for pharmaceutical preparation analysis and for pharmacokinetic studies. A number of instrument evaluations and comparisons have been documented during the time period covered by this review. In general, the electrolyte analyzers are compared either to other electrode-based analyzers or to flame photometers for correlation analysis and bias determination. The analyzers for sodium, potassium and chloride are included in this group ( I g , 13g, 68g, 84g, 118g-12Og). Other forms of the evaluation process can include multiple, interlaboratory evaluations that report within-lab and lab-to-lab standard deviations as was done for a calcium study ( I l l g ) . The discovery of interferences that electrode analyzers suffer is often brought to the attention of the instrument manufacturer who then corrects the problem through reformulation or redevelopment of the product. This was seen for the total carbon dioxide sensor used in the Ektachem 400 analyzer where benzoic acid and other carboxylic acids interfered positively (92g). A number of patents have either been issued or patent applications applied for during the time period covered by this review that are of interest here. Reference liquids, diluents, and devices and methods for affecting the viscosity of liquids were the subject of patents either issued or pending (19g, 23g, 49g, 51g). A patent was issued for a novel planar format, solid contact ISE for single use that was suggested for clinical analysis (73g). The remaining patent references deal with new geometries and construction of ISE’s (2g, 34g, 41g, 43g, 52g-54g, 61g, 104g) and analyzer systems and apparatus for serum and blood analysis based on ISE detection (24g, 26g, 35g-37g, 42g, 44g, 59g, 63g-66g, 10lg-103g).

ION-SELECTIVE ELECTRODES

ACKNOWLEDGMENT The authors wish to acknowledge the support from the University of Iowa, Department of Chemistry, and to thank the Photosystems and Electronic Products Department for their support in providing library and computer search facilities from the Lavoisier Library at the Experimental Station, Wilmington, DE. LITERATURE

CITED

BOOKS AND REVIEWS

( l a ) Ammann, D.; et al. Ion-Sel. Electrode Rev. 1983,5,3. Chem. Abstr. 1983, 99,353912. (2a) Buck, R. P. I n "Compr. Treatlse Electrochem."; White, R. E., Ed.; Plenum: New York, 1984; Vol. 8, p 137. Chem. Abstr. 1985, 102, 174854w . (3a) Buck, R. P. I n "Water Anal."; Minear, R. A., Lawrence, H., Eds.; Academic: Orlando FL, 1984; Vol. 2, p 249. Chem. Abstr. 2 2 1 4 1 6 ~ . (4a) Cosofret, V. V.; Buck, R. P. Ion-Sel. Electrode Rev. 1984, 6, 59. Chem. Abstr. 1984, 101, 1 5 7 7 3 4 ~ . (5a) Covington, A. K. I n "Ion Exch. Membr."; Flett, D. S., Ed.; Horwood: Chichester, UK, 1983; p 75. Chem. Abstr. 1984, 101, 100045r. (6a) Covington, A. K.; Rebelo, M. J. F. Ion-Sel. Electrode Rev. 1983,5,93. Chem. Abstr. 1983, 99, 60764f. (7a) Decker, U. P.; Geyer, R. Acta Hydrochlm. Hydrobiol. 1984, 12, 19. Chem. Abstr. 1984, 100, 144589e. (Ea) Hiiro, K. Bunseki 1984, 2, 115. Chem. Abstr. 1984, 100, 167112h. (9a) Honold, F. MTA-J. 1984, 6, 54. Chem. Abstr. 1984, 100, 2058521. (loa) Kihara, S.; Fujinaga, T. Kagaku 1984,39, 840. Chem. Abstr. 1985, 102, 159512. ( l l a ) Koryta, J. Anal. Chim. Acta 1984, 159, 1. Chem. Abstr. 1984, 101, 64984k. (12a) Koryta, J.; Stulik, K. "Ion-Selective Electrodes", 2nd ed.; Cambrldge University Press: Cambridge, 1983. Chem. Abstr. 1984, 100, 2027022. (13a) Linder, P. W.; Torrington, R. G.; Williams, D. R. "Analysls Uslng Glass Electrodes"; Open University Press: Milton Keynes, UK, 1984; Chem. Abstr. 1985, 102, 71993m. (14a) Llu, C. C.; Kllnk, F. W. AIChE Symp. Ser. 1983, 79, 46. Chem. Abstr. 1984, 100, 114003s. (15a) Mascini, M.; Liberti, A. Sci. Total Envlron. 1984, 37, 121. Chem. Abstr. 1984, 101, 9 7 2 2 7 ~ . (16a) Materova, E. A,; Bart, T. Y. Ionnyi Obmen Ionometrlya 1984, 4, 92. Chem. Abstr. 1984, 101, 2 2 1 4 0 8 ~ . (17a) Midgley, D. Anal. Proc. 198q321, 284. Chem. Abstr. 1984, 101, 221403q. (18a) Midgley, D.; Mulchay, D. E. Ion-Sel. Electrode Rev. 1983, 5, 185. Chem. Abstr. 1984, 100, 167854. (19a) Moody, G. J.; Thomas, J. D. R. Ion-Sel. Electrode Rev. 1984,6, 209. Chem. Abstr. 1985, 102, 71750e. (20a) Nikol'skil, B. P.; Materova, E. A. Ion-Sel. Electrode Rev. 1985, 7, 3. Chem. Abstr. 1985, 102, 2 3 0 8 9 3 ~ . (21a) Perez, 0. R. Quim. Ind. 1983,29, 583. Chem. Abstr. 1984, 100, 1087016. (22a) Perez, 0. R. lng. Quim. 1984, 16, 35. Chem. Abstr. 1985, 102, 18576~. (23a) Pungor, E.; et al. Pure Appl. Chem. 1983, 55,2029 Chem. Abstr. 1984, 100, 7 8 9 6 6 ~ . (24a) Schlndler, J. G.; Schindler, M. M. "Bioelectrochemicai Membrane Electrodes"; de Gruyter: Berlin, Fed. Rep. Ger., 1983. Chem. Abstr. 1984, 100, 480713. (25a) Van der Schoot, 6. H.; Bergveld, P. PT-Procestech. 1984, 39, 25. Chem. Abstr. 1985, 102, 142332h. (26a) Uchida, T. Keiryo Kenkyusho Hokoku 1983, 32, 320. Chem. Abstr. 1984, 100, 4 4 4 8 8 ~ . (27a) Umezawa, Y. Kagaku 1983, 38, 805. Chem. Abstr. 1984, 100, 93302~. (28a) Wang, H. I n "Trace Elem. Anal. Chem. Med. BIOI., Proc. Int. Workshop, 2nd"; Braetter, P., Schramel, P., Eds.; de Gruyter: Berlin, Fed. Rep. Ger., 1983. Chem. Abstr. 1983,99, 115027a. (29a) Wang, H. Rev. Anal. Chem. 1983, 7, 78. Chem. Abstr. 1983, 99, 168499n. GENERAL DEVELOPMENTS I N ION-SELECTIVE ELECTRODE METHODOLOGY

(lb) Aggeryd, I.; Liang, Y. C.; Olln, A. Anal. Chim. Acta 1985, 169, 231-6. (2b) Aleksandrov, V. V.; Glazkova, E. N.; Izmabilova, G. A,; Rubtsov, V. I. SPSTL 1982, 438, 12 (Russ). Chem. Abstr. 1983,99, 1 3 0 1 9 6 ~ . (3b) Becht, U.; Ebel, S.; Reyer, B. Fresenius' 2.Anal. Chem. 1984,319, 371-5. (4b) Bobreshova, 0. V.; Pozhidaeva, T. N.; Kharebava, T. S. Zh. Fiz. Khim. 1985, 59, 260-1 (Russ). Chem. Abstr. 1985, 102, 1568032. (5b) Bond, A. M.; Hudson, H. A.; Van den Bosch, P. A.; Waiter, F. L.; Exelby, H. R. A. Anal. Chem. 1983, 55,2017-5. (6b) Caceci, M. S. J . Chem. Educ. 1984, 61, 935-6. (7b) Cantallops, J.; Estela, J. M.; Cerda, V. Anal. Chlm. Acta 1885, 169, 397-402. (8b) Covington, A. K.; Rebelo, M. J. F. Ion-Sel. Electrode Rev. 1983, 5, 93-128. (9b) Covington, A. K.; Whalley, P. D. Anal. Chlm. Acta 1985, 169, 221-9. (lob) Ebel, S.; Becht, U. Fresenius' 2.Anal. Chem. 1985, 320, 117-20 (Ger). Chem. Abstr. 1985, 102, 1 5 9 5 3 8 ~ . ( l l b ) Efstathlou, C. E. Anal. Chim. Acta 1983, 154, 41-9.

(12b) Fassett, J. R.; Jackson, M. A.; Quon, W. S. Amer. Lab. 1984, 1 6 ( 1 ) , 92-96. (13b) Feng, D. Fenxl Huaxue 1984, 12, 251-4 (Ch). Chem. Abstr. 1984, 101, 3 2 4 6 2 ~ . (14b) Gadzekpo, V. P. Y.; Christian, 0. D. Anal. Chim. Acta 1984, 164, 279-82. (15b) Glalster, M. G.; Moody, G. J.; Nash, T.; Thomas, J. D. R. Anal. Chim. Acta 1984, 165, 281-4. (16b) Hendler, R. W.; Setty, 0. H.; Shrager, R. I.; Songco, D. C.; Friauf, W. S. Rev. Sci. Instrum. 1983,54, 1749-55. (17b) Huang, J.; Chen, X.; Dai, P.; Yuan, D. FenxiHuaxue 1984, 12, 148-51 (Ch). Chem. Abstr. 1984, 100, 1 6 7 2 0 3 ~ . (18b) Ilcheva, L.; Polianova, M.; Dalukov, J.; Chapman, 8. R. Analyst (London) 1985, 110, 359-83. (19b) Jain, R.; Schultz, J. S. Anal. Chem. 1984,56, 141-7. (20b) Jyo, A.; Mori, K.; Ishibashl, N. Bull. Chem. SOC. Jpn. 1983, 56, 3507-8 (Eng). Chem. Abstr. 1984, 100, 2 8 9 8 2 ~ . (21b) Kiselev, G. G.; Llchko, R. P.; Mezhburd, T. A. Gidrokhim. Mater. 1983, 88, 56-67 (Russ). Chem. Abstr. 1985, 102, 31788s. (22b) Kiselev, G. G.; Mezhburd, T. A.; Petrukhim, 0. M.; Avdeeva, E. N.; Trofimova, E. V. Zh. Anal. Khim. 1985,40, 88-93 (Russ). Chem. Abstr. 1985,102, 1248589. (23b) Kiselev, G. G.; Nikonov, V. N. Zavod. Lab. 1983, 49, 7-9 (Russ). Chem. Abstr. 1983,99, 1 3 2 8 3 3 ~ . (24b) Kuraray Co. Ltd. Jpn. Kokai Tokkyo Koho (Patent) 59/192951, Nov 1, 1984, Appl. 83167510, Apr 15, 1983. Chem. Abstr. 1985, 102, 142499t. (25b) Langmaier, J.; Stulik, K.; Kalvoda, R. Anal. Chim. Acta 1983, 748,

.-

19-35

(26b) Li, L.; Zhao, X. JlsuanJi Yu Yingyong Huaxue 1984, 1, 217-21 (Ch). Chem. Abstr. 1985, 102, 7 1 8 0 1 ~ . (27b) Linder, E.; Toth, K.; Pungor, E. Anal. Chem. 1984, 56,808-10. (28b) Luo, C. S.; Chang, F. C. Hau Hsueh 1984, 42, 69-76 (Ch). Chem. Abstr. 1984, 101, 183011a. (29b) Macca, C.; Cakrt. M. Anal. Chlm. Acta 1983, 154, 51-60. (30b) Maeda, T.; Satake, I.Bull. Chem. SOC.Jpn. 1984,57, 2396-9 (Eng). Chem. Abstr. 1984, 101, 216858n. (31b) Meier, P. C. Anal. Chem. 1985, 57,373-5. (32b) Midgley, D. Anal. Proc. (London) 1984,21, 284-7. (33b) Midgiey, D. Ion-Selective Electrode Rev. 1981,3, 43-104. (34b) Nagy, G.; Moghaddam, B.; Oke, A,; Adams, R. N. Neurosci. Lett. 1985,55, 119-24. (35b) O h , A.; Wikmark, G. Anal. Chem. 1983,55, 1402-5. (35.5b) Otto, M.; Thomas, J. D.R. Anal. Chem. 1985,55,2647-51. (36b) Palanivel, A,; Riyazuddin, P. J. Chem. Educ. 1984, 61, 920. (37b) Pan. 2 . FenxlHuaxue 1983, 1 1 , 364-7 (Ch). Chem. Abstr. 1983,99, 205 123h. (38b) Phillips, K. A.; Rix, C. J. Anal. Chim. Acta 1985, 169, 263-71. (39b) Powely, C. R.; Nieman, T. A. Anal. Chlm. Acta 1983, 155, 1-9. (40b) Rakhman'ko, E. M.; Starobinets, G. L.; Brezovskaya, L. A,; Salishchev, V. G.; Kosenkova, N. M. Vestsi Akad. Navuk BSSR, Ser. Khim. Navuk 1984, 6. 33-7 (Russ). Chem. Abstr. 1985, 102, 51319t. (41b) Rice, T. D. Anal. Chlm. Acta 1983, 151, 383-9. (42b) Scholle, S.; Scholle, S. Chem. Prum. 1983, 33, 661-4 (Czech). Chem. Abstr. 1984, 100, 150143. (43b) Schuler, P.; Degner, R. GIT Fachz. Lab. 1984,28, 785-8, 790 (Ger). Chem. Abstr. 1985, 102, 16746h. (44b) Selig, W. S. Amer. Lab. 1984, 1 6 ( 4 ) ,36-43. (45b) Senkyr, J.; Kourii, K. J. Electroanal. Chem. Interfacial Electrochem. 1984, 180, 383-93. (46b) Shatkay, A.; Hayano, S. Anal. Chem. 1985,57,364-6. (47b) Stellmacher, K. Ger. Offen. DE 3324297 AI, Jan 17, 1985; Appl. 3324297, Jul 6, 1983. Chem. Abstr. 1985, 102, 156896g. (48b) Tan, X.; Peng, Z.; Lai, G. Fenxi Huaxue 1984, 12, 169-74 (Ch). Chem. Abstr. 1984, 101, 1828189.. (49b) Toa Electronics, Ltd. Jpn. Kokai Tokkyo Koho (Patent); 58/24853 A2, Feb 14, 1983; Appl. 81/123402, Aug 6, 1981. Chem. Abstr. 1983,99, 112941h. (50b) Toa Electronics, Ltd. Jpn. Kokai Tokkyo Koho (Patent); 58124852 A2, Feb 14, 1983; Appl. 81/123401, Aug 6, 1981. Chem. Abstr. 1983,99, 112942j. (51b) Tomida, Y.; Kato, N.; Ando, T. Bunseki Kagaku 1984,33, 420-5 (Jpn). Chem. Abstr. 1984, 101, 1 4 3 1 3 6 ~ . (52b) Tyler, J. E.; Comer, J. E. A. Analyst (London) 1985, 110, 15-18. (53b) Wall, P.; Bellinger, E. G.; Brown, T. Lab. Pract. 1983,32, 88-9. (54b) Walters, F. H. Anal. Lett. 1984, 17, 1681-91. (55b) Wang, J.; Yang, X.; Zhang, M.; Xu, A.; Wu, H. FenxiHuaxue 1985, 13, 389-92 (Ch). Chem. Abstr. 1985. 103. 63946d. (56b) Zeng, Y:; Lln, S. Jlsuanji Yu Yhgyoig Huaxue 1984, 1, 222-6 (Ch). Chem. Abstr. 1985. 102. 7 1 8 0 2 ~ . (57b) Zhang, S.; Zhang, C.;'Chen, j. Fenxi Huaxue 1985, 13, 145-8 (Ch). Chem. Abstr. 1985, 102, 2143102. (58b) Zhuang, Y.; Qi, D. Gaodeng Xuexiao, Huaxue Xuebao 1983,4, 703-8 (Ch). Chem. Abstr. 1985, 100, 4 4 4 9 5 ~ . (59b) Zykina, G. K.; Materova, E. A. Khim. Sel'sk. Khoz. 1984, 12, 50-1 (Russ). Chem. Abstr. 1985, 102, 77714t. GLASS AND SOLID-STATE MEMBRANE ELECTRODES (IC) Aihara, M.; Kanetake, S.; Fukuda, Y. Bull. Chem. SOC.Jpn. 1985,58, 16 17- 17. (2c) AI-Hitti, I. K.; Moody, G. J.; Thomas, J. D. R. Analyst 1983, 108, 1209-20. (3c) Aruscavage, P. J.; Campbell, E. F. Talanta 1983,30, 745-9. (4c) Averill, W. F.; Food Techno/. (Chicago) 1983,37, 44, 46-52, 56. (5c) Bernal, J. L.; Del Nozal, M. J.; Aller, A. J.; Oeban, L. An. Bromatoi. 1983, 33, 219-24 (Span). Chem. Abstr. 1983, 99, 6 8 8 5 3 ~ .

ANALYTICAL CHEMISTRY, VOL. 58, NO. 5, APRIL 1986

95R

ION-SELECTIVE ELECTRODES (6c) Betti, A.; Fagioll, F.; Pietrogrande, M. C. HSI, Hung. Scl. Instrum. 1982, 53,23-7 (Eng). Chem. Absb. 1983, 99,7 6 5 4 4 ~ . (7c) Bhargava, 0. P.; Gmitro, M. Am. Lab. 1983, 15 (6),28, 31-2. (8c) Bibik, 0. V.; Ruzal, G. I.; Zorlna, L. M.; Tremasov, N. V. Khim-Farm. Zh. 1985, 19, 113-5. (9c) Bixler, J. W.; Solomon, L. S. Anal. Chem. 1984, 56, 3004-5. (1Oc) Bhattacharyya, A. P.; Guha, S. K. Trans. Indian Ceram. SOC. 1983, 41. 167-70. ( I l c ) 'Bhattacharyya, A. P.; Guha, S. K. Trans. Indian Ceram. SOC.1983, 41. 94-6. 100. (12c) Bhattacharyya, A. P.; Guha, S. K. Glass Udyog 1983, 12,7-14 (Eng). Chem. Abstr. 1984, 101, 113646. (13c) Body, P. E.; Stimburys, P.; Mulcahy, D. E. Anal. Lett. 1985, 18, 915-27. (14c) Body, P. E.; Stimburys, P.; Mulcahy, D. E. Anal. Lett. 1984, 17, 1335-41, (15c) Bordi, S.;Carla, M.; Papeschi, G. Anal. Chem. 1984, 56, 317-19. (16c) Brenchukov, Y. A.; Klyuev, V. L.; Revut, 8. I.; Shapchenko, V. M. USSR (Patent) SU 1062590 AI, Dec 23, 1983; Appl. 3492572, Sep 22, 1982. Chem. Abstr. 1984, 100, 150394d. (17c) Brentrup, L.; Koschei, W. Zem.-Kaik-Gips, Ed. 8 1984, 37, 87-90 (Ger). Chem. Abstr. 1984, 100, 161032. (16c) Bykova, L. N.; Gridina, N. N.; Novikov, A. V.; Shirokova, L. G. Khim. Volokna 1983, 6 , 56-7 (Russ). Chem. Abstr. 1984, 100, 52987e. (19c) Bykova, L. N.; Gridlna, N. N. Zavod. Lab. 1984, 50, 9-11 (Russ). Chem. Abstr. 1984, 101, 650658. (20c) Calokerinos, A. C.; Hadjiioannou, T. P. Microchem. J. 1983, 28, 464-9. (21c) Calokerinos, A. C.; Timotheou-Potamia, M.; Sarantonis, E.; Hadjiioannou, T. P. A n d . Chim. Acta 1983, 151,85-90. (22c) Campanella, L. Metodi Anal. Acque 1983, 3 , 67-73 (Ital). Chem. Abstr. 1984, 100, 197500a. (23c) Campbell, A. D.; Graham, P. B. N. Z. J. Sci. 1983, 26, 433-5 (Eng). Chem. Abstr. 1984, 100, 126610a. (24c) Cha, K. W.; Cho, D. S.;Kim, J. H. Kich'o Kwahak Yonguso Nonmunjip 1983, 4 ,45-53 (Eng). Chem. Abstr. 1984, 102:197007m. (25c) Chambers, J. Q.; Kinstle, J. F.; Day, R. W.; Lange, M. A. Anal. Chem. 1984, 56,301-2. (26c) Chang, F. C. Hua Hsueh 1982, 40,66-9 (Ch). Chem. Abstr. 1984, 101, 1628142. (274 Cheek, Y. M.; Gill, J. B.; Balt, S.; Renkema, W. E. J. Solution Chem. 1983, 12,829-46. (28c) Chen, Y.; Cao, D.; Wei, S.;Wang, R.; Ding, G. Shipln Yu Fajiao Gongye 1984, 1 , 11-19 (Ch). Chem. Abstr. 1984, 101, 532068. (29c) Coetzee, J. F.; Deshmukh. B. K. Anal. Chem. 1983, 55, 2422-4. (30c) Compagnon, P. A. Sci. Tech. Pharm. 1983, 12,495-9 (Fr). Chem. Abstr. 1984, 100, 109199f. (31c) Davison, W.; Woof, C. Anal. Chem. 1985, 57, 2567-70. (32c) De Robertis, A.; Rigano, C.; Sammartano, S. Ann. Chim. (Rome) 1984, 74,33-9. (33c) Decker, U. P. Wiss. Z. Tech. Hochsch. "Carl Schorlemmer" Leuna Merseburg 1983, 25,464-70 (Ger). Chern. Abstr. 1984, 100, 126638r. (34c) Decker, U. P.; Brott, R. Z. Chem. 1984, 24, 77-8 (Ger). Chem. Abstr. 1984, 101, 121981h. (35c) Deng, M.; Zhang, H.; Shu, S. Fenxi Huaxue 1984, 12,946-50 (Ch). Chem. Abstr. 1985, 102,66599h. (36c) Deshmukh, 8. K.; Coetzee, J. F. Anal. Chem. 1984, 56, 2373-76. (37c) Dimante, A,; Veveris, A. Latv. PSR Zinat. Akad. Vestis, Kim. Ser. 1983, 3 ,360-2 (Russ). Chem. Abstr. 1983, 99, 1363676. (38c) Doe, H.; Shibagaki, A.; Kitagawa, T. Inorg. Chem. 1983, 22, 1639-43. (39c) Dojlido, J.; Szumielewicz, J. Gar. Woda Tech. Sanit. 1983, 57,75-8 (Pol). Chem. Abstr. 1983, 99, 163759n. (40c) East, G. A,; Da Silva, I.A. Anal. Chim. Acta 1983, 148,41-50. (41c) East, G. A,; Da Silva, I . A. Anal, Chlm. Acta 1983, 149, 227-34. (42c) Engell, J. E.; Mortensen, S. PCT Int. Appl. WO 84/1629 A I , May 10, 1964; Appl. 83/DK101, Oct 31, 1963. Chem. Abstr. 1984, 101, 163035m. (43c) Eyde, B. Fresenius' Z. Anal. Chem. 1983, 316,299-301. (44c) Eyde, B. Fresenius' 2.Anal. Chem. 1985, 320,41-4. (45c) Fadeeva, V. P.; Moryakina, I.M. Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Khlm. Nauk 1985, 2, 85-8 (Russ). Chem. Abstr. 1985, 102, 231 164x. Feng, D.; Chen, C. Fenxi Huaxue 1982, 10, 676-6 (Ch). Chem. (46;) Abstr. 1983. 99.47154n. (4713 Ferry. D.; Machtinger, M.; Bauer, D. Analusis 1984, 12, 90-5 (Fr). Chem. Abstr. 1984, 100, 167163a. (46c) Flllpenko. A. T.; Skobets, E. M.; Ryabushko. 0. P.; Savin, Y. S. Ukr. Khim. Zh. (Russ Ed) 1984, 50,490-3 (Russ). Chem. Abstr. 1983, 101, 142967~. (49c) Fisher, J. E. Am. Lab. 1984, 16 ( 6 ) ,54-60. (50c) Fjeldly, T. A,; Nagy, K. PCT Int. WO 84/2002 A I , May 24, 1984; Appi. 83lN049, Nov IO, 1963; Chem. Abstr. 1984, 101. 80719h. (51c) Fulton, B. A.; Meloan, C. F.; Wichman, M. D.;Fry, R. C. Anal. Chem. 1984, 56, 2919-20. ( 5 2 ~ )Furuta, S.; Okada, M.; Matsushita. H. Denki Kagak oyobi Kogyo Butsuri Kagaku 1983, 51, 488-90 (Jpn). Chem. Absb. 1983, 99, 1302136. (53C) Furuta, S.; Okada, M.; Matsushlta, H. Denki Kagak oyobl Kogyo Butsuri Kagaku 1983, 51, 488-90 (Jpn). Chem. Abstr. 1984, 100, 956176. (54c) Fux, P.; Lagrange, J.; Lagrange, P. Anal. Chem. 1984. 56, 160-3. (55c) Geissler, M.; Kunze, R. Z.Chem. 1984, 24, 269-70 (Ger). Chem. Abstr. 1985, 102, 165949. ( 5 6 ~ )Geissler, M.; Kunze, R. Fresenius' 2 . Anal. Chem. 1984, 318,15-18. (57c) Gao, G.; Yan, B.; Yang, L. Fuel 1984, 63,1552-5. (58c) Gomathi, H.; Subramanian, G.; Chandra, N.; Rao, G. P. Talanta 1983, 30. 861-3.

96R

ANALYTICAL CHEMISTRY, VOL. 58, NO. 5, APRIL 1986

(59c) Gomez Del Rio, M. I.; Barbas Arrlbas, M. C.; Sanchez Batanero, P. Analusis 1983, 1 1 , 131-5. (60c) Gornostaeva, T. D.; Pronin, V. A,; Semenov, V. Y. Zavod. Lab. 1983, 49, 14-16 (Russ). Chem. Absb. 1983, 99, 132949~. (61c) Gostomczyk, M. A.; Jozewicz, W. Ochr. Powietrza 1983, 17,15-17 (Pol). Chem. Abstr. 1983, 99,58078s. (62c) Gratzl, M.; Lindner. E.; Pungor, E. Anal. Chem. 1985, 57, 1506-11. (63c) Gratzl, M.; Lindner, E.; Pungor, E. Magy. Kem. Foly. 1985, 91,101-8 (Hung). Chem . Abstr. 1985, 103,3 1633h. (64c) Gruber, H. GIT Frachz. Lab. 1984, 28,429-33 (Ger). Chern. Abstr. 1984, 101, 142950n. (65c) Gulens, J.; West, S. J.; Ross, J. W., Jr. Anal. Chem. 1984, 56, 2367-8. (66c) Guo, D.; Cui, H. Huaxue Tongbao 1984, 1 , 19-22 (Ch). Chem. Absfr. 1984, 101, 156699~. (67c) Guo, D.; Long, Y. Fenxi Huaxue 1983, 1 1 , 205-7 (Ch). Chern. Abstr. 1983, 99, 186500k. (68c) Gupta, A.; Johnson, E. F.; Schlossel, R. H. Anal. Chim. Acta 1985, 171,351-5. (69c) Hara, H.; Okazaki, S. Analyst (London) 1984, 109,1317-20. (70c) Harsanyi, E. G.; Toth, K.; Pungor, E. Anal. Chim. Acta 1983, 152, 163-7 1. (71c) Harsanyi, E. G.; Toth, K.; Pungor, E. Anal. Chlm. Acta 1984, 161, 333-41. (72c) Harsanyi, E. G.; Toth, K.; Pungor, E.; Umezawa, Y.; Fujiwara, S. Taianta 1984, 31, 579-64. (73c) Hassan, S. S. M.; Tadros, F. S.;Selig, W. Microchem. J. 1985, 31, 1-6. (74c) Havemann, C. H. Corros. Coat. S . Afr. 1984, 1 1 , 17, 19, 23, 25, 27, 29 (Eng). Chem. Abstr. 1984, 101, 182942t. (75c) Hefter, G. T.; Longmore, A. R . I n t . J. €nvirom.'Anal. Chem. 1984, 16, 315-23. (76c) Heumann, K. G.; Schroedl, W.; Weiss, H. Fresenius' 2.Anal. Chern. 1983, 315,213-16 (Ger). Chern. Absb. 1983, 99,63491a. (77c) Hitchman, M. L. Anal. Chlm. Acta 1985, 171, 131-139. (76c) Hitchman, M. L.; Azlz, A.; Chingakule, D. D. K.; Nyasulu, F. W. M. Anal. Chim. Acta 1985. 171. 141-150. (79c) Hirata, H. Kankyo Gvutsu 1983, 12,667-90 (Jpn). Chem. Abstr. 1985. 100. 73516r. (60c) Hirata,". PPM 1984, 15,37-44 (Jpn). Chem. Abstr. 1985, 102, 208869~. (81c) Hoffman, C. R.; Haskard, M. R.; Mulcahy, D. C. Anal. Lett. 1984, 17, 1499-509. (824 Holmberg, B.; Jarring, K. J. Nectroanal. Chem. Interfacial Necfrochem. 1983. 146. 447-51. (83c) Hori, M.; Hirako, M.; Ishii, K.; Kobayashi, Y. Bunseki Kagaku 1984, 33, 203-9 (Jpn). Chem. Abstr. 1984, 100, 2207726. (84c) Hren, S.;Silepcevic, 2.Kem. Ind. 1984, 33,661-4 (Serbo-Croatian). Chem. Abstr. 1985, 103,31800k. (85c) Hulanicki, A.; Krawczynski, T.; Lewenstam, A. Anal. Chlm. Acta 1984, 158,343-55. (664 Hulanicki, A.; Trojanowicz, M. Poi. PL 120056 B1. Nov 15, 1983. Appl. 202439, Nov 26, 1977. Chem. Abstr. 1984, 100, 1 8 5 0 0 3 ~ . (87c) Ihn, G. S.;Lee, J. H.; Min, T. W. Taehan Hwahakhoe Chi. 1984, 28, 238-43 (Korean). Chem. Abstr. 1984, 101, 122054~. (88c) Ikeda, S.; Satake, H.; Segawa, H. Bunsekl Kagaku 1985, 34, 60-2 (Jpn). Chem. Abstr. 1985, 102,159640e. (89c) Ilcheva, L.; Eienkova, N.; Tabbara, M. God. Vissh. Khim.-Tekhnol. Inst., Sofia 1984, 325-30 (Bulg). Chem. Abstr. 1985, 102,226796a. (9Oc) Ilcheva, L.; Polyanova, M.; Adewuyi, V.; Bozadzhiev, P. J. Indian Chem. SOC. 1982, 59, 1352-3. (91c) Islam, A. K. M. S.;Kerven, G. L.; Asher, C. J. Commun. Soil Sci. Plant Anal. 1983, 14,645-53. (92c) Itoh, H.; Hachiya, H.; Tsuchiya, M.; Suzuki, Y.; Asano, Y. Bull. Chem. SOC.Jpn. 1984, 57, 1689-90. (93c) Itoh, M.; Demura, R.; Tsukada, S.; Yamamoto, I. €/sei Kagaku 1983, 29, 167-71 (Jpn). Chem. Abstr. 1983, 99,138242f. (94c) Kaimins, A.; Probok, A. K.; Reinhoide, V.; Rutite, A. Mikrobn. Sint. Fermentov. Poluch. Ikh Prep. Form 1983, 122-4 (Russ). Chem. Abstr. 1984, 100, 190257t. (95c) Kamata, S.;Toyohara, M. Nippon Kagaku Kaishi 1985, 2 , 185-8 (Jpn). Chem. Abstr. 1985, 102,1 2 0 9 1 9 ~ . (96c) Kataoka, M.; Nishimura, K.; Kambara, T. Bunseki Kagaku 1983, 32, 516-21 (Jpn). Chem. Abstr. 1983, 99, 1 6 6 6 2 0 ~ . (97c) Kataoka, M.; Nishimura, K.; Kambara, T. Talanta 1983, 30, 941-4. (98c) Kataoka, M.; Tahara, S.;Ohzeki, K. Fresenius' 2 . Anal. Chem. 1985, 321, 146-9. (99c) Katuscakova, G.; Vrska, M.; Bohuslav. B. Vysk. P r . Odboru Pap. Celul 1984, 29 (V49-V80), 64-6 (Slo). Chem. Absb. 1985, 102,47592j. (1OOc) Kawamura. M.; Kida, Y.; Koide, Y.; Kashima, T. Kyoritsu Yakka Daigaku Kenkyu Nenpo 1982, 27, 7-13 (Jpn). Chem. Abstr. 1983, 99, 32377~. (101c) Kawano, K.; Yoshinaga, T.; Tanimura, T. Bunseki Kagaku 1983, 32, 308-13 (Jpn). Chem. Abstr. 1983, 99,846572. (102c) Kerven, G. L.; Edwards, D. G.; Asher, C. J. Soil Sci. 1984, 137, 91-9. (103c) Kindstedt, P. S.; Kosikowski, F. V. J. Dairy Sci. 1984, 67,879-63. (104c) Kiselev, G. G. Khim . Sel'sk , Khoz. 1984, I , 58-61 (Russ). Chern. Abstr. 1984. 100, 102108s. (105c) Kissa, E. Anal. Chem. 1983, 55, 1445-6. (106c) Konno, H.; Akizuki, M. Ganseki Kobufsu Kosho Gakkaishi 1982, 77, 368-73 (Jpn). Chem. Abstr. 1983, 99,3244811. (107c) Kuisl, M.; Ger Offen. DE 3230417 AI, Feb 16, 1984; Appi. 3230147, Aug 13, 1982. Chem. Abstr. 1984, 101,32563f. (108c) Jain, A. K.; Singh, R. P.; Bala, C. J. Chem. Technol. Biofechnol. Chem. Technol. 1984, 34A, 363-6.

ION-SELECTIVE ELECTRODES (109c) Jain, A. K.; Bala, C. Fresenlus' 2. Anal. Chem. 1984, 319, 307. (11Oc) Jain, A. K.; Baia, C. Ann. Chim. (Rome) 1985, 75,101-5. (11IC) Japan Organo Co., Ltd. Jpn. Kokai Tokkyo Koho JP (Patent) 59/338 A2, Jan 5, 1984; Appl. 85/109813, Jun 28, 1982. Chem. Abstr. 1984, 100, 1286854. (112c) Jyo, A,; Nagamoto, A,; Khono, T.; Ohyoshi, A. Bull. Chem. SOC. Jpn. 1983, 56, 3062-4. ( 1 1 3 ~ ) Lazaro, F.; Luque de Castro, M. D.; Valcarcel, M. Microchem. J. 1984, 30,358-68. ( 1 1 4 ~ ) Lebska, B.; Krakowski, J. frzegl. fapier 1983, 39, 43-7 (Pol). Chem. Abstr. 1984, 100, 8 8 1 9 ~ . ( 1 1 5 ~ ) Leszczynski, A. Gar. Woda Tech. Sanlt. 1983, 57, 186-8 (Pol). Chem. Abstr. 1984, 100, 1088558. (11612) Lewenstam, A.; Sokalski, T.; Hulanicki, A. Talanta 1985, 32,531-7. ( 1 1 7 ~ ) Li, J.; Gu, Y.; Duan, S. Fenxl Huaxue 1984, 12, 1009-11 (Ch). Chem. Abstr. 1985, 102, 55168r. (118c) Licht, S.Anal. Chem. 1985, 57,514-9. ( 1 1 9 ~ )Lima, J. L. F. da C.; Machado, A. A. S. C. Rev. fort. Quim 1982, 2 4 , 156-72. (119.5~) Linder, E.; Toth, K.; Pungor, E. Anal. Chem. 1982, 54, 202-7. (120c) Llvanos, G.; Milham, P. J. J. Assoc. Off. Anal. Chem. 1984, 67, 10-12. ( 1 2 1 ~ )Lu, B.: Han, H.; Wang, R. FenxiHuaxue 1983, 11, 165 (Ch). Chem. Abstr. 1983, 99, 186498r. (122c) Lu, C.; Zhao, 2. Fenxi Huaxue 1984, 12,17-21 (Ch). Chem. Abstr. 1984, 100, 150343m. (123c) Lu, W.; Zhu, Z.; Zhang, Y. Fenxl Huaxue 1983, 11, 765-7. ( 1 2 4 ~ ) Luo, M.; Li, Y.; Cheng, X.; Gou, B. f/ge Keji 1983, 1 , 8-14 (Ch). Chem. Abstr. 1983, 99, 1 0 5 2 0 ~ . ( 1 2 5 ~ ) Maresova, A. Slllkaty (Prague) 1984, 28, 123-34 (Czech). Chem. Abstr. 1984, 100. 214376j. (126c) Marzilli, J. R. J. Assoc. Off. A n d . Chem. 1984, 67, 682-4. (127c) Mldgley, D. Anal. Chlm. Acta 1984, 159,63-70. (128c) Midgley, D.; Mulcahy, D. E. Talanta 1985, 32, 7-10. (129c) Mo, J.; Ou, C.; Tang, F.; Fu, G.; Zeng, N. Huaxue ShJie 1982, 23, 350-3 (Ch). Chem. Abstr. 1984, 100, 114050e. (130c) Montonaka, J.; Ikeda, S.;Tanaka, N. Bunseki Kagaku 1984, 33, 551-5 (Jpn). Chem. Abstr. 1985, 102, 16702r. (131c) Muros, G. P.; Olea, M. F.; Garcia-Vlllanova, R. An. Bromatol. 1984, 36, 77-81 (Span). Chem. Abstr. 1985, 103,590036. (132c) Nagashima, K.; Matsumoto, M.; Suzuki, S.Bunseki Kagaku 1983, 32, 717-22. (133c) Neidhart, H. J.; Steinleitner, H. D. Acta Hydrochim. Hydrobiol. 1984, 12,247-53 (Ger). Chem. Abstr. 1984, 101, 5 9 8 8 2 ~ . (134c) Niedrach, L. W. Anal. Chem. 19838, 55,2426-7. ( 1 3 5 ~ ) Neshkova, M.; Havas, J. Anal. Left. 1983, 16, 1567-80. (136c) Neshkova, M.; Sheytanov, H. Talanta 1985, 32,654-56. ( 1 3 7 ~ ) Nomura, T.; Nakagawa, G. Bull. Chem. SOC. Jpn. 1983, 56, 3632-4. (138c) Nomura, T.; Nakagawa, G. Bull. Chem. SOC. Jpn. 1984, 57, 1491-3. (139c) Okutani, T. Bunseki Kagaku 1984, 33,443-7. (140c) O h , A,; Wallen, B. Anal. Chim. Acta 1983, 151,65-75. ( 1 4 1 ~ )Ouyang, R.; Yuan, C.; Li, Q. He Huaxue Yu Fangshe Huazue 1983, 5, 186-8 (Ch). Chem. Abstr. 1983, 99,32461m. ( 1 4 2 ~ ) Ozerov, A. I.; Mlrkin, V. A.; Fal'kenshtern, L. E.; Lapshin, V. A.; Gaditskil, V. V. Nektrokhimiya 1985, 21,523 (Russ). Chem. Abstr. 1985, 102,230940k. ( 1 4 3 ~ ) Palanivel, A.; Riyazuddin, P. Indian J. Chem., Sect. A 1984, 23, 1051-2. ( 1 4 4 ~ )Przyborowski, L.; Smajklewicz, A. Blul. Lube/. Tow. Nuak. 1981, 23, 65-70 (Eng). Chem. Abstr. 1983, 99,76965h. ( 1 4 5 ~ ) Pungor, E.; Gratzl, M.; Polos, L.; Toth, K. Anal. Chlm. Acta 1984, 156, 9-18. ( 1 4 6 ~ )Qian, W.; Gu, Y.; Li, J.; Sun, D.; Zhu, X. Shandong Haiyang, Xueyuan Xuebao 1984, 14, 47-55 (Ch). Chem. Abstr. 1985, 102, 84148n. ( 1 4 7 ~ )Qiu, 2 . ; Chen, Z. YaowuFenxiZazhl 1984, 4, 159-61 (Ch). Chem. Abstr. 1984, 101, 7 8 9 4 8 ~ . (148c) Qureshi, M. A ; Shah, 2. H. Sind. Univ. Res. J . , Sci. Ser. 1983, 15, 151-5 (Eng). Chem. Abstr. 1985, 102. 1 9 7 1 2 ~ . (149c) Radic, N.; Muliigan, K. J.; Mark, H. B., Jr. Anal. Chem. 1984, 56, 297-8. ( 1 5 0 ~ ) Rosol, M.; Supuka, J. Blologia (Bratislava) 1984, 39, 41-6 (Slo). Chem. Abstr. 1984, 100, 151995n. ( 1 5 1 ~ )Rothstein, F.; Fisher, J. E. Am. Lab. 19885, 17(9),124-133. ( 1 5 2 ~ ) Sarin, R. J. Indian Inst. Sci. 1983, 64, 121-5. (153~)Sarin, R. Trace Anal. Technol. Dev. 1983, 135-9 (Eng). Chem. Abstr. 1984, 101, 59860n. ( 1 5 4 ~ )Swant, R. M.; Rizvi, G. H.; Chaudhuri, N. K.; Patll, S.K. J . Radioanal. Nuci. Chem. 1985, 89,373-8. ( 1 5 5 ~ ) Selig, W. S. Mlcrochem. J. 1983, 28, 489-500. ( 1 5 6 ~ ) Sellg, W. S. Ind. Eng. Chem. Prod. Res. Dev. 1984, 23, 140-3. ( 1 5 7 ~ )Sellg, W. S.J. Chem. Educ. 1985, 62,431-3. ( 1 5 8 ~ )Sharma, B. S.;Bhargava, L.; Gurtu, A. K.; Agarwal, B. R. J. Nectrochem. SOC. India 1984, 33, 243-7. ( 1 5 9 ~ )Sharma, P.; Slngh, M. Proc.-Indian Acad. Sci. 1982, 91,527-33 (Eng). Chem. Abstr. 1983, 99,3 2 4 3 2 ~ . (160c) Shin, D. S.;Lee, S. C. Taehan Hwahakhoe Chi 1984, 28, 86-94 (Korean). Chem. Abstr. 1984, 100, 1 6 7 2 0 9 ~ . ( 1 6 1 ~ )Siemroth, J.; Hennig, I.; Claus, R. Ger. (East) DD 159672 2, Mar 23, 1983; Appl. 230719, Jun 11. 1981. Chem. Abstr. 1983, 99,984812. ( 1 6 2 ~ )Simeonov, . V.; Voulgaropoulos, A.; Sofoniou. M.; Vaslllkiotis, G. Fresenitis' Z. Anal. Chem. 1984, 319,376-8. ( 1 6 3 ~ ) Siskos. P. A.; Diamandis, E. P.; Gillieron, E.; Colbert, J. C. Talanta 1983, 30, 980-2.

( 1 8 4 ~ ) Shklnev, V. M.; Spivakov, B. Y.; Vorob'eva, G. A,; Zolotov, Y. A. Anal. Chim. Acta 1985, 167, 145-60. (16%) Sisterson, D. L.; Wurfel, B. E. Intern. J . Envlron. Anal. Chem. 1984, 18, 143-65. (166c) Soong, R.; Godbeer, W. C.; Swaine, D. J. N. 2.J. Sci. 1984, 27, 151-4 (Eng). Chem. Abstr. 1984, 101, 1 9 4 8 3 3 ~ . ( 1 6 7 ~ ) Srlvastava, S.K.; Kumar, S . ; Kumar, S. J. Electroanal. Chem. I n terfacial Nectrochem. 1984, 161, 345-54. (168c) Srivastava, S.K.; Pal, N.; Singh, R. P.; Agarwal, S. Indian J. Chem., Sect. A 1983, 22, 1033-6. (169c) Stecher, 0. Geostand. News/. 1983, 7, 283-7 (Eng). Chem. Abstr. 1984, 100, 790882. (170c) Stefanova, 0. K.; Manzhos, A. P.; Shul'ts, M. M. Elektrokhimiya 1985, 21,223-30 (Russ). Chem. Abstr. 1985, 102,1 9 3 8 0 3 ~ . (171c) Steger, H. F. Talanta 19858, 32,235-7. ( 1 7 2 ~ ) Steinhauser, L.; Sikola, J. Vet. Med. (Prague) 1983, 28, 696-8 (Czech). Chem. Abstr. 1984, 100, 667062. (173c) Stella, R.; Ganzerli Valentlni, M. T. Anal. Chlm. Acta 1983, 152, 191-202. (174c) Stella, R.; Ganzerli Valentini, M. T.; Borroni, P. A. Anal. Left, 1984, 17, 433-45. (17%) Subramanian, G.; Chandra, N.; Rao, P. Talanta 1984, 31, 79-81. ( 1 7 6 ~ ) Tan, K. Fenxi Huaxue 1983, 11 , 433-5 (Ch). Chem. Abstr. 1983, 99,2 0 5 1 8 9 ~ . (177c) Tanaka, T. Fresenlus' Z. Anal. Chem. 1985, 320, 278-80. ( 1 7 8 ~ )Tauchnitz, J.; Hanrieder, M.; Kiesil, G.; Mahrwald, R.; Hennig, H. Acta Hydrochlm. Hydroblol. 1984, 12, 315-20 (Ger). Chem. Abstr. 1984, 101, 78586n. (179c) Tolmachev, V. N.; Orlova, N. N.; Volovik, A. M.; Miroshnik, L. V.; Chlnenko, V. P. U.S.S.R. SU (Patent) 1096556 AI, Jun 7, 1984; Appl. 3467394, Jul 8, 1982. Chem. Abstr. 1984, 101, 1 0 3 2 6 1 ~ . (180~)Tsingarelll, R. D.; Nikolenko, I. P. Zh. Anal. Khim 1985, 39,2027-30 (Russ). Chem. Abstr. 1985, 102,1052156. ( 1 8 1 ~ )Tyler, J. E.; Commer, J. E. A. Analyst 1985, 110, 15-18. (182c) Vaientova, M.; Sucha, L.; Fischerova, H. S b . Vys. Sk. Chem-Techno/. Praze, Anal. Chem. 1982, H17, 43-55 (Eng). Chem. Abstr. 1983, 99,15681r. (183c) Valentova, M.; Vrbsky, J.; Trazmandiova, H. S b . Vys. Sk. ChemTechnol. Praze, Anal. Chem. 1984, H19, 97-106 (Eng). Chem. Abstr. 1985, 102, 197110q. ( 1 8 4 ~ )Van Oort, W. J.; Van Eerd, J. J. M. Anal. Chim. Acta 1983, 155, 21-7. (185c) Vijan, P. N.; Alder, B. Am. Lab. 1984, 16 (12),16, 19-22, 24. ( 1 8 6 ~ ) Vlasov, Y. G.; Bychkov, E. A. Ionnyi Obmen Ionometriya 1984, 4 , 142-9 (Russ); Chem. Abstr. 1985, 102,16574a. (187c) Valsov, Y. G.; Bychkov, E. A. H S I , Hung. Sci. Instrum. 1982, 53, 35-42 (Eng). Chem. Abstr. 1983, 99, 148298t. ( 1 8 8 ~ )Viasov, Y. G.; Bychkov, E. A,; Kazakova, E. A,; Borisova, Z. U. Zh. Anal. Khim. 1984, 39,452-5 (Russ). Chem. Abstr. 1984, 101, 3 2 4 5 2 ~ . ( 1 8 9 ~ )Vlasov, Y. G.; Bychkov, E. A,; Legin, A. V.; Khutsishvili, A. N.; Sarukhanova, E. P.; Tarasova, V. M. U.S.S.R. SU (Patent) 1075135 A I , Feb 23, 1984; Appl. 3549467, Feb 8, 1983. ( 1 9 0 ~ ) Vlasov, Y. G.; Bychkov, E. A,; Medvedev, A. M. Zh. Anal. Khlm. 1985, 40, 438-43 (Russ). Chem. Abstr. 1985, 103. 1 6 0 3 4 ~ . (19112) Vlasov, Y. G.; Miloshova, M. S . ; Antonov, P. P.; Bychkov, E. A,; Efa, A. Y. Elektrokhlmiya 1983, 19,1049-53 (Russ). Chem. Abstr. 1983, 99, 148310r. (192c) Vlasov, Y. G.; Bychkov, E. A.; Rozenkov, S.B.; Legin, A. V. U.S.S.R. SU (Patent) 1125533 A I , Nov 23, 1984; Appl. 3628934, Aug 3, 1983. Chem. Abstr. 1985, 102, 1 0 5 3 8 1 ~ . (193c) Vlasov, Y. G.; Bychkov, E. A.; Safarov, A. D.; Antonov, P. P.; Stamenkova, M. M. U.S.S.R. SU (Patent) 1125534 AI, Nov 23, 1984; Appl. 3628935, Aug 3, 1983. Chem. Abstr. 1985, 102, 1053806. (194c) Vlasov, Y.; Ermolenko, Y. Acta Chim. Hung. 1984, 117, 189-96 (Eng). Chem. Abstr. 1985, 102, 141506f. ( 1 9 5 ~ )Vlasov, Y. G.; Miloshova, M. S.; Antonov, P. P.; Efa, A. Y.; Bychkov, E. A. Elektrokhimiya 1983, 19, 1173-7 (Russ). Chem. Abstr. 1983, 99, 18648l e . (196c) Volkov, V. L.; Manakova, L. I . Zh. A n d . Khim. 1983, 38, 793-6 (Russ). Chem. Abstr. 1983, 99,63368r. (197c) Volkov, V. L.; Manakova, L. I. Zh. Anal. Khlm. 1985, 39, 2035-8 (Russ). Chem. Abstr. 1985, 102, 159567m. ( 1 9 8 ~ ) Volovik, A. M.; Miroshnik, L. V.; Tolmachev, V. N. Elektrokhimiya 1985, 21,402-4 (Russ). Chem. Abstr. 1985, 102,2 1 1 4 7 6 ~ . ( 1 9 9 ~ )Vytras, K.; Horcicova, M. S b . Ved. Pr ., Vys. Sk,Chemickotechnol. fardubice 1982, 45, 187-201 (Czech). Chem. Abstr. 1984, 100, 58599c. (200c) Walters, F. H. Anal. Lett. 1984, 17, 1681-91. (201c) Wang, G.; Shi, Q.; Weng, K.; Xiang, 2. Hangzhou Daxue Xuebao, Ziran Kexueban 1983, 10, 495-500 (Ch). Chem. Abstr. 1984, 100, 91006d. ( 2 0 2 ~ ) Wang, W.; Li, D. Fenxi Huaxue 1982, 10, 614-17 (Ch). Chem. Abstr . 1983, 99, 10550n. (203c) Wrecrycka, A.; Zelichowicz. N. Zesz. Nauk. Politecb. Czestochow. 1982, 22, 147-50 (Pol). Chem. Abstr. 1983, 99,32370f. (204c) Wu, J.; Zhang, Y. Fenxi Huaxue 1983, 11, 325-8 (Ch). Cbem. Abstr. 1983, 99, 115058m. (205c) Xu, S . ; Chen, Y.; Chen, 2.;Huang, X. Fenxi Huaxue 1984, 72,78 (Ch). Chem. Abstr. 1984, 707,1031194. (206c) Xu, X. Fenxi Huaxue 1983, 1 7 , 41-4 (Ch). Chem. Abstr. 99, 115054g. (207c) Xue, X.; Chen, J. Huaxue Shyie 1984, 25, 416-17 (Ch). Chem. Abstr. 1985, 102,1247116. (208~)Xue, X.; Zhou, 2. Huaxue Shlje 1984, 25, 331-3 (Ch). Chem. Abstr. 1985, 102, 392501. ANALYTICAL CHEMISTRY, VOL. 58,

NO. 5, APRIL 1986 97R

ION-SELECTIVE ELECTRODES (209c) Yao, G.; Shi, Y. Yaowu Fenxi Zazhl 1984, 4, 242-4 (Ch). Chem. Abstr. 1984, 101, 198291r. (210c) Young, V. Anal. Chem. 1985, 57, 1650-7. (211-4 Young, V.; McCaslin, P. C. Anal. Chem. 1985, 5 7 , 880-6. ( 2 1 2 ~ ) Yu, R.; Wang, K.; Zhou, X. Fenxi Huaxue 1983, 11, 343-7 (Ch). Chem. Abstr. 1983, 9 9 , 81817r. (213c) Yuchi, A.; Wada, H.; Nakagawa, G. Anal. Chim. Acta 1983, 149, 209-16. (214c) Zaki, M. T. M. Anal. Lett. 1985, 18, 1697-1702. ( 2 1 5 ~ ) Zeng, B.; Zhu, L.; Jiang, W. Zhongnan, Kuangye Xueyuan Xuebao 1984, 2 , 87-93 (Ch). Chem. Abstr. 1984, 101, 138063h. (216c) Zeng, J.; Hu, 0.Yaowu Fenxi Zazhll983, 3 , 105-7 (Ch). Chem. Abstr. 1983, 99, 1 1 0 8 2 8 ~ . (217c) Zhang, C.; Chen, J.; Tong, Y. Fenxi Huaxue 1984, 12, 61 1-13 (Ch). Chem. Abstr. 1985, 102, 67117m. (218c) Zhou, J. Halyang Yu Huzhao 1984, 15, 521-6 (Ch). Chem. Abstr. 1985, 102, 172310s. (219c) Zhu, Y.; Yu, R.; Lin, Y.; Jin, T. FenxlHuaxue 1982, 10, 548-50 (Ch). Chem. Abstr. 1983, 99, 1328162. LIQUID AND POLYMER MEMBRANE ION-SELECTIVE ELECTRODES

(Id) Abu Samrah, M. M.; et al. Appl. Appl. Phys. Commun. 1983, 3 , 225. Chem. Abstr. 1984, 100, 1046066. (2d) Agrawai, S.; Abe, M. Analyst 1983, 108, 712. Chem. Abstr. 1983, 99, 165640r. (3d) Ammann, D.; Pretsch, E.; Simon, W. Anal. Chlm. Acta 1985, 171, 119. (4d) Amoroso, P.; et al. J. Membr. Sci. 1983, 16, 259. Chem. Abstr. 1984. 100. 791742. (5d) Armstrong, R. D.; et al. Electrochlm. Acta 1984, 2 9 , 1127. Chem. Abstr. 1984. 101. 1827660. (6d) Armstrong, R. D.;~C&iigton, A. K.; Evans, G. P. Anal. Chlm. Acta 1984, 166, 103. Chem. Abstr. 1985, 102, 159582n. (7d) Balulescu, G. E.; et ai. Talanta 1985, 3 2 , 295. Chem. Abstr. 1985, 102, 2 0 9 5 4 0 ~ . (ad) Babenko, N. L.; et ai. Kompieksn. Ispol'z. Mlner. Syr'ya 1984, 11, 17. Chem. Abstr. 1985, 102, 214311a. (9d) Bochenska, M.;Biernat, J. F. Anal. Chim. Acta 1984, 162, 369. Chem. Abstr. 1985, 102, 8 9 3 6 8 ~ . (10d) Bogatskii, A. V.; et at. Anal. Chlm. Acta 1984, 157, 151. Chem. Abstr. 1984, 100, 1 8 4 9 4 4 ~ . ( l l d ) Bussmann, W.; et al. Helv. Chlm. Acta 1984, 67, 1439. (12d) Bykova, L. N.; Chesnokova, 0. Y.; Bogoslovskii, V. V. Zavod. Lab. 1984, 50, 4. Chem. Abstr. 1984, 101, 19352711. (13d) Calahan, P. T.; et al. Eur. Patent Appl. EP 133536 A2, 27 Feb 1985. Chem. Abstr. 1985, 103, 640769. (14d) Campanella, L.; Sorrentlno, L.; Tomassetti, M. Analyst 1983, 108, 1490. Chem. Abstr. 1984, 100, 74059f. (15d) Campanella, L.;Sorrentino, L.; Tomassetti, M. Ann. Chim. 1984, 74, 483. Chem. Abstr. 1984, 101, 198256h. (16d) Cattrall, R. W.; Iles, P. J.; Hamilton, I.C. Anal. Chlm. Acta 1985, 169, 403. Chem. Abstr. 1985, 103, 47376n. (17d) Cattrall, R. W.; Newlands, M. J.; Mackey, M. F. Anal. Chlm. Acta 1983, 155, 235. (led) Chi, H.; Zhou, T. Yaoxue Xuebao 1983, 18, 278. Chem. Abstr. 1984, 100, 26058. (19d) Coetzee, C. J. Talanta 1985, 3 2 , 821. (20d) Corfield, G. C.; Ebdon, L.; Ellis, A. T. Polym. Sci. Techno/. 1983, 2 1 , 341. Chem. Abstr. 1984, 100, 114056m. (21d) Cosofret. V. V.; Buck, R. P. Anal. Chim. Acta 1984, 162, 357. (22d) Cosofret, V. V.; Buck, R. P. Analyst 1984, 109, 1321. Chem. Abstr. 1985, 102, 5 0 9 9 9 ~ . (23d) Cosofret, V. V.; Buck, R. P. J. Pharm. Blomed. Anal. 1985, 3 , 123. (24d) Cunningham, L. J. Diss. Abstr. Int. B 1985, 45, 2530. Chem. Abstr. 1985, 102, 1 7 8 4 3 0 ~ . (25d) Daniel, D. S.; Kissel, T. R. Eur. Pat. Appi. EP 129233 A2, 27 Dec 1984. Chem. Abstr. 1985, 103, 34516h. (26d) Deane-Drummond, C. E.;Glass, A. D. M. Plant Physlol. 1983, 73, 100. Chem. Abstr. 1983, 9 9 , 138813t. (27d) Deane-Drummond, C. E.; Glass, A. D. M. Plant Physiol. 1983, 73, 105. Chem. Abstr. 1983, 9 9 , 1 3 8 8 1 4 ~ . (28d) Derkasova, V. G.; et al. USSR Patent SU 1081518 A I , 23 Mar 1984. Chem. Abstr. 1984, 101, 28073d. (29d) Drozdov, V. A.; Koibyagin, N. P.; Urusov, Y. I. Zh. Anal. Khlm. 1983, 3 8 , 2143. Chem. Abstr. 1984, 100, 1 1 4 0 6 5 ~ . (30d) Egorov, V. V.; et ai. Vestsl Akad. Navuk BSSR 1984, 4, 40. Chem. Abstr. 1984, 101, 182777t. (31d) Feng, D. Huanjing Kexue 1985, 6, 72. Chem. Abstr. 1985, 102, 190876~. (32d) Feng, D. Hauxue Tongbao 1984, 3 , 15. Chem. Abstr. 1984, 101, 162734~. (336) Feng, D.; Chen, C. Hauxue Xuebao 1983, 4 1 , 371. Chem. Abstr. 1983, 99, 47105. (346) Feng, D.; Xie, 2. Huaxue Tongbao 1983, 6, 22. Chem. Abstr. 1984, 100, 16808m. (35d) Foat. E. J.: et al. Anal. Chem. 1985, 57, 1155. Chem. Abstr. 1985, . 102, 7504866, (36d) Frend, A. J.; et ai. Anal. Proc. 1983, 2 0 , 122. Chem. Abstr. 1983, 99 - - , 7. -8-8-6 4 ~ (37d) Frend,.'A. J.; et ai. Analyst 1983, 108, 1072. Chem. Abstr. 1984, 100,27371s. (38d) Gadzekpo, V. P. Y.; Christian, G. D. Anal. Lett. 1983, 16, 1371. Chem. Abstr. 1984, 100, 1 1 4 0 7 2 ~ . (39d) Gadzekpo, V. P. Y.; et at. Anal. Chem. 1985, 57, 493. Chem. Abstr. 1985, 102, 5 5 5 0 9 ~ . (40d) Gadzekpo, V. P. Y. Dlss. Abstr. I n t . B 1985, 45, 3486. Chem. Abstr. 1985, 103, 639569.

98R

ANALYTICAL CHEMISTRY, VOL. 58, NO. 5, APRIL 1986

(41d) Gao, 2.; et al. Huaxue Xuebao 1983, 41, 139. Chem. Abstr. 1983, 99, 47148~. (42d) Gao, 2.; Shenn, H. Youil Huaxue 1983, 3 , 199. Chem. Abstr. 1983, 99, 94230~. (43d) Glass, A. D. M.; Siddiqi, M. Y.; Deane-Drummond, C. E. Plant, Cell Environ. 1983, 6, 247. Chem. Abstr. 1983, 99, 1 8 9 6 5 ~ . (44d) Golubev, V. N.; Ramkovich, V. V. Elektrokhimiya 1983, 19, 1443. Chem. Absb. 1984, 100, 1 6 8 0 8 ~ . (45d) Golubev, V. N.; Gutsol, A. D. Elektrokhimiya 1983, 19, 1588. Chem. Abstr. 1984, 100, 9 3 3 1 0 ~ . (46d) Golubev, V. N.; Timofeeva, S. K. Zh. Anal. Khim. 1983, 3 8 , 1998. Chem. Abstr. 1984, 100, 60982q. (47d) Gong, H.; et al. Gaodeng Xuexlao Huaxue Xuebao 1983, 4, 529. Chem. Abstr. 1983, 99, 1 6 8 5 2 8 ~ . (48d) Grekovich, A. L.; Shuina, T. A. Ionnyi Obmen Ionometrlya 1984, 4, 128. Chem. Abstr. 1985, 102, 16620n. (49d) Gritzapis, P. C.; Efstathiou, C. E.; Hadjiioannou, T. P. Anal. Chim. Acta 1985, 171, 165. (50d) Gur'ev, I. A.; Gur'va, 2. M. Zh. Anal. Khim. 1983, 3 8 , 1289. Chem. Abstr. 1983, 99, 168766~. (51d) Gur'ev, I.A.; Gur'va, 2. M.; Sankova, E. V. USSR Patent SU 1113740 A I , 15 Sept 1984. Chem. Abstr. 1984, 101, 2 3 9 6 4 3 ~ . (52d) Gur'ev, I.A.; et al. Zh. Anal. Khim. 1985, 40, 689. Chem. Abstr. 1985. 103. 47386r. (53d) Hara, H.; Okazaki, S. Analyst 1985, 110, 11. Chem. Abstr. 1985, 102. 1545026. (54d) Hassan, S. S. M.; Ahmed, M. A.; Saoudi, M. M. Anal. Chem. 1985, 57. 1126. (55d) 'Hassan, S. S. M.; Tadros, F. Sh. Anal. Chem. 1984, 56, 542. (56d) He, M.; Pan, J.; Liu, Y. Fenxi Huaxue 1983, 11, 81. Chem. Abstr. 1984. 100. 150173f. (57d) Hirsch, k. F.; Rachlin, E. M. J. Med. Chem. 1983, 2 6 , 1235. Chem. Abstr. 1983, 99, 87329e. (58d) Hobby, P. C.; Moody, G. J.; Thomas, J. D. R. Analyst 1983, 108, 581. Chem. Abstr. 1983, 99, 1 5 1 1 5 1 ~ . (59d) Hofstetter, P.; Pretsch, E.; Simon, W. Helv. Chim. Acta 1983, 66, 2 103. (60d) Hopirtean, E.; Stefaniga, E. Rev. Chlm. 1984, 35, 945. Chem. Abstr. 1985, 102, 8 9 1 9 6 ~ . (61d) Hu, Z.; et ai. Fenxi Huaxue 1983, 11, 746. Chem. Abstr. 1984, 100, 176875m. (62d) Huan, D.; et ai. Gaodeng Xuexiao Hauxue Xuebao 1984, 5 , 641. Chem. Abstr. 1985, 102, 3 8 8 0 4 ~ . (63d) Hundhammer, B.; et ai. J. Electroanal. Chem. Interfacial Electrochem. 1984, 180, 355. Chem. Abstr. 1985, 102, 86374j. (64d) Imato, T.; Katahira, M.; Ishibashi, N. Anal. Chim. Acta 1984, 165, 285. Chem. Abstr. 1985, 102, 159573k. (65d) Itoh, Y.; Niiyama, K. Fres. Z. Anal. Chem. 1985, 320, 573. Chem. Abstr. 1985, 102, 197005j. (66d) Jankauskas, V.; et ai. Zh. Anal. Khlm. 1983, 38, 636. Chem. Abstr. 1983. 99. 3 2 3 0 6 ~ . (67d) Jeng,'J.; Shih: J. S. Analyst 1984, 109, 641. Chem. Abstr. 1984, 101, 122037s. (68d) Kakiuchi, T.; Senda, M. Bull. Chem. SOC. Jpn. 1984, 57, 1801. Chem. Abstr. 1984. 101. 182762i. (69d) Kalous,J.; Vytras, K.; Terberova', A. Collect. Czech. Chem. Commun. 1983, 48, 1137. Chem. Abstr. 1983, 99, 32430a. (70d) Kataoka, M.; Unjyo, N.; Kambara, T. Talanta 1983, 30, 741. Chem. Abstr. 1984, 100, 258536. (71d) Keiichi, K.; et ai. Anal. Chem. 1984, 56, 2369. (72d) Kholmovoi, Y. P.; et ai. Zavod. Lab. 1983, 49, 1. Chem. Abstr. 1983, 99, 115060f. (73d) Kihara, S.; Yoshida, Z. Talanta 1984, 31 789. (74d) Kimura, K.; et al. Bull. Chem. SOC.Jpn. 1983, 56, 1859. Chem. Abstr. 1983, 99, 81642e. (75d) Kimura, K.; et ai. J. Chem. SOC.,Perkin Trans., 2 1984, 447. Chem. Abstr. 1984, 101, 110882a. (76d) Kimura, K.; Tamura, H.; Shono, T. J. Chem. SOC.,Chem. Commun. 1983, 9 , 492. Chem. Abstr. 1983, 9 9 , 158396n. (77d) Kiryu, S.; Oda, Y.; Sasaki, M. Chem. Pharm. Bull. 1983, 31, 1089. Chem. Abstr. 1983, 9 9 , 63786a. (78d) Kopytin, A. V.; et ai. Anal. Chlm. Acta 1983, 148, 35. Chem. Abstr. 1983, 99, 1 5 5 9 8 ~ . (796) Kopytin, A. V.; et ai. Anal. Chlm. Acta 1984, 162, 123. Chem. Abstr. 1985, 102, 1 0 5 2 0 5 ~ . (80d) Kopytln, A. V.; et al. Anal. Chim. Acta 1984, 162, 133. Chem. Abstr. 1985, 102, 89095e. (81d) Kopytin, A. V.; Gabor Kiatsrnanyy, P.; Pungor, E. Magy. Kem. Foly. 1983, 8 9 , 561. Chem. Abstr. 1984, 100, 78987e. (826) Kratochvil, V. LC, Llsty Cukrov. 1985, 101, 35. Chem. Abstr. 1985, 102, 172332a. (83d) Kresheck, G. C.; Constantinidis, I.Anal. Chem. 1984, 5 6 , 152. Chem. Abstr. 1984, 100, 3 6 1 4 4 ~ . Jansons, E. Latv. PSR Zlnat. Akad. Vestls (84d) Lebedeva, 0. A,; Stirks, 0.; 1983, 6 , 696. Chem. Abstr. 1984, 100, 110829t. (85d) Lee, H. L.; Yang, S. T. Taehan Hwahakhoe Chi. 1985, 2 9 , 137. Chem. Abstr. 1985, 103, 1 8 0 3 6 ~ . (86d) Li, S.; Smith, K. A. Commun. Soil Scl. Plant Anal. 1984, 15, 1437. Chem. Abstr. 1985, 102, 1657942. (876) Lindner, E.; Toth, K.; Pungor, E. Anal. Chem. 1984, 56, 1127. Chem. Abstr. 1984, 100, 2025589. (886) Lushchik, Y. F.; et ai. Vestsi Akad. Navuk BSSR 1983, 5 , 28. Chem. Abstr. 1983, 99, 22431h. (89d) Lushchik, Y. F.; et al. Vestsl Akad. Navuk BSSR 1985, 1 , 36. Chem. Abstr. 1985, 102, 193778r.

ION-SELECTIVE ELECTRODES (90d) May, P. M.; Murray, K.; Thomas, J. D. R. Anal. Chem. 1985, 57, 1511. Chem. Abstr. 1985, 103, 3134c. (91d) Meier, P. C.; et al. Anal. Chlm. Acta 1984, 156, 1. Chem. Abstr. 1984, 100, 1848802. (92d) Mikhel'son, K. N.; et al. Elektrokhimlya 1984, 20, 1457. Chem. Abstr. 1985, 102, 351516. (93d) Miyazaki, T.; Aomi, T. Denki Kagaku oyobi Kogyo Butsuri Kagaku 1984, 52, 521. Chem. Abstr. 1984, 101, 209218a. (94d) Morf, W. E.; Bussmann, W.; Simon, W . Helv. Chim. Acta 1984, 6 7 , 1427. (95d) Mostert, I.A.; et al. Microchim. Acta 1985, 1 , 33. Chem. Abstr. 1985, 103, 6396le. (96d) Munoz, J. L.; Deyhimi, F.; Coles, J. A. J . Neurosci. Methods 1983, 8 , 231. Chem. Abstr. 1983, 9 9 , 1907852. (97d) Muros, G. P.; Olea Serrano, M. R. F.; Garcia-Villanova, R. Ars Pharm. 1984, 2 5 , 415. Chem. Abstr. 1985, 103, 1 0 9 9 6 ~ . (98d) Nakamura, T.; Rechnltz, G. A. Anal. Chem. 1985, 5 7 , 393. Chem. Abstr. 1985, 102, 38806e. (99d) Nambiar, 0. G. B.; Weinzierl, J.; Urnland, F. Fres. Z . Anal. Chem. 1985, 322, 327. (100d) Norov, Sh. K.; et al. Zh. Anal. Khim. 1984, 3 9 , 613. Chem. Abstr. 1984, 101, 80598t. (1Old) Pan, J.; et al. Gaodeng Xuexiao Huaxue Xuebao 1983, 4 , 806. Chem. Abstr. 1984, 100, 41627m. (102d) Pan, J.; et al. Gaodeng Xuexiao Huaxue Xuebao 1984, 5 , 473. Chem. Abstr. 1984, 101, 1429752. (103d) Pan, J.; et al. Huaxue Xuebao 1984, 4 2 , 1094. Chem. Abstr. 1985, 102,55163k. (104d) Pan, J.; He, M.; Liu, Y. FenxiHuaxue 1983, 11, 518. Chem. Abstr. 1983, 9 9 , 132831a. (105d) Peon, A. M.; Del Toro, R.; Mlguel, M. Rev. Cienc. Ouim. 1984, 15, 191. Chem. Abstr. 1985, 103, 3 3 3 9 2 ~ . (106d) Persin, F.; Durand, G. Analysis 1984, 12, 312. Chem. Abstr. 1985, 102, 55177. (107d) Petr, J.; Senkyr, J. Scr. Fac. Sci. Nat. Unlv. Purkynianae Brun. 1983, 13, 161. Chem. Abstr. 1985, 102, 1246326. (108d) Petranek, J.; Ryba, 0. Collect. Czech. Chem. Commun. 1983, 48, 1944. Chem. Abstr. 1983, 9 9 , 195038t. (109d) Powley, C. R.; Nleman, T . A. Anal. Chim. Acta 1983, 155, 1. (110d) Rachlin, E . M. Diss. Abstr. I n t . 6 1983, 45, 864. Chem. Abstr. 1985, 102, 16847s. ( l l l d ) Ryba, 0.; Petranek, J. Collect. Czech. Chem. Commun. 1984, 4 9 , 2371. Chem. Abstr. 19858 102, 38816h. ( 1 12d) Sakuhara, T.; Kataoka, M.; Kambara, T . Denki Kagaku oyobi Kogyo Butsuri Kagaku 1983, 51,905. Chem. Abstr. 1984, 101, 324712. (113d) Samokhvalov, S. G.; et al. Agrokhimlya 1983, 4 , 106. Chem. Abstr. 1983, 9 9 , 4537x. (114d) Samokhvalov, S. G.; et al. Pochvovedenie 1984, 3 , 142. Chem. Abstr. I984* 101,2 2 4 2 9 ~ . ( 1 15d) Sarin, R.; Pande, S. P. J . Indian Inst. Scl. 1983, 6 4 , 51. Chem. Abstr. 1983, 9 9 , 163761g. (116d) Satake, I.; Noda, S.; Maeda, T. Bull. Chem. SOC.Jpn. 19838 5 9 , 2581. Chem. Abstr. 1983, 99, 182076d. (117d) Schindler, J. G.; Schindler, M. M. Fres. 2.Anal. Chem. 1985, 320, 258. Chem. Abstr. 1985, 102, 1 5 9 5 9 5 ~ . (118d) Schulthess, P.; et al. Helv. Chlm. Acta 1984, 67, 1026. (119d) Schulthess, P.; et al. Anal. Chem. 1985, 57, 1397. Chem. Abstr. 1985, 102, 1 9 6 9 8 7 ~ . (120d) Shavnya, Y. V.; et al. Zh. Anal. Khlm. 1984, 3 9 , 275. Chem. Abstr. 1984, 100, 1671979. (121d) Shen, G.; LI, X. Hunan Daxue Xuebao 1984, 11, 86. Chem. Abstr. 1985, 102, 16624s. (122d) Shen, G.; Lia, D. Yaowu Fenxi Zazhi 1984, 4 , 200. Chem. Abstr. 1984, 101, 1 9 8 2 8 8 ~ . (123d) Shirahama, K.; Kamaya, H.; Ueda, I. Anal. Lett. 1983, 16, 1485. Chem. Abstr. 1984, 100, 9 6 0 4 7 ~ . (124d) Shiral, T.; Suzuki, K.; Showa Denko, K. K. Jpn. Patent JP 59/163554 A2 [84/163554], 14 Sept 1984. Chem. Abstr. 1985, 102, 1247958. (125d) Shono, T. Bunseki Kagaku 1984, 3 3 , E449. Chem. Abstr. 1985, 102, 16579f. (126d) Shono, T.; Kimura, K.; Maeda, T. Eur. Pat. Appl. EP 97960 A2, 1 1 Jan 1984. Chem. Abstr. 1984, 101, 23517s. (127d) Shono, T.; Okabara, M.; Kimura, K. Jpn. Patent JP 58192852 A2 [83/92852], 2 June 1983. Chem. Abstr. 1983, 9 9 , 1 5 4 8 0 3 ~ . (128d) Shpigun, L. K.; et al. Taianta 1985, 3 2 , 659. (129d) Slman, W.; et al. Analyst 1984, 109, 207. Chem. Abstr. 1984, 100, 220660~. (130d) Stare, D. R. US Patent US 4487679 A, 11 Dec 1984. Chem. Absfr. 19858 102, 720169. (131d) Staroscik, R.; Balskiewicz, T. Pharmazie 1985, 40, 248. Chem. Abstr. 1985, 103, 272130'. (132d) Su, Y. Fenxi Huaxue 1983, 11, 905. Chem. Abstr. 1984, 100, 167 199s. (133d) Sugawara, M.; et al. Denkl Kagaku oyobi Kogyo Butsuri Kagaku 1983, 51, 97. Chem. Abstr. 1983, 99, 15595r. (134d) Sykut, K.; Dumkiewicz, R.; Dumklewicz, J. Zesz. Nauk. Poiitech. Siask., Chem. 1983, 108, 145. Chem. Abstr. 1985, 102, 38825k. (135d) Szczepaniak, W.; Ren, M. Talanta 1983, 3 0 , 945. Chem. Absfr. 1984, 100,131611f. (136d) Szczepaniak, W.; Ren, M. Talanta 1984, 3 1 , 212. Chem. Abstr. 1984, 100, 150349t. (137d) Tamura, T.; Kataoka, M. Bunseki Kagaku 1984, 3 3 , 591. Chem. Abstr. 1985, 102, 710682. (138d) Tan, X.; Lai, G.; Peng, 2 . Fenxi Huaxue 1984, 12, 479. Chem. Abstr. 1985, 102, 38826m.

(139d) Tan, G.; et al. Huaxue ShJl 1983, 5 , 100. Chem. Abstr. 1984, 100, 138716~. (140d) Toeke, L.; et al. PCT Int. Patent Appl. WO 83/149 A l , 20 Jan 1983. Chem. Abstr. 1983, 9 9 , 1 3 3 0 0 8 ~ . (141d) Toner, J. L.; Daniel, D. S. Eur. Patent Appl. EP 82518 A2, 29 Jun 1983. Chem. Abstr. 1983, 9 9 , 205259g. (142d) Toner, J. L.; Daniel, D. S.; Gear, S. M. US Patent US 4476007 A, 9 Oct 1984. Chem. Abstr. 1985, 102, 24654s. (143d) Toshiba Corp., Jpn. Patent JP 58/186038 A2 [83/186038], 29 Oct 1983. Chem. Abstr. 1984, 100, 128790h. (144d) Tsuchiya, T .; Oho, M.; Shiota-niiya, S. J . Biol. Chem. 1983, 258, 12765. Chem. Abstr. 1983, 9 9 , 2 0 9 5 2 5 ~ . (145d) UnJyo, N.; Kataoka, M.; Kambara, T. Denki Kagaku oyobi Kogyo ButsuriKagaku 1984, 5 2 , 160. Chem. Abstr. 1984, 101, 3 2 6 2 5 ~ . (146d) Villiger, A.; Morf, W. E.; Simon, W. Helv. Chim. Acta 1983, 66, 1078. Chem. Abstr. 1983, 99, 151169g. (1476) Vlasova, G. E.; et al. Zh. Anal. Chim. 1983, 38, 631. Chem. Abstr. 1983, 99, 15610s. (148d) Vytras, K.; Capoun, T.; Kalous, J. Anal. Chim. Acta 1984, 162, 141. Chem. Abstr. 1985, 102, 3 9 2 5 7 ~ . (149d) Vytras, K.; Capoun, T.; Kalous, J. Anal. Chim. Acta 1984, 162, 373. Chem. Abstr. 1985, 102, 39259r. (Mod) Werner, G.; et al. Ger. Patent DD 216110 A l , 28 Nov 1984. Chem. Abstr. 1985, 103, 4 7 5 4 8 ~ . (151d) Wu, G.; et al. FenxiHuaxue 1983, 11, 515. Chem. Abstr. 1983, 99, 1328302. (1526) Wuthier, U.; et al. Anal. Chem. 1984, 56, 535. (153d) Xu, X. Fenxi Huaxue 1983, 11, 41. Chem. Abstr. 1983, 9 9 , 1150549. (1546) Yang, Y.; Cai, S. Huaxue Shiji 1984, 6 , 133. Chem. Abstr. 1984, 101, 2033652. (1556) Yao, S.; Shen, G.; Chen, H. Yaowu Fenxi Zazhi 1984, 4 , 100. Chem. Abstr. 1984, 101, 137125t. (156d) Yao, S.; Shen, G.; Dai, G. Kexue Tongbao 1984, 2 9 , 1416. Chem. Abstr. 1985, 102, 1784310'. (157d) Yao, S.;Shen, G.; Ruo, 2. Yaowu FenxlZazhi 1984, 4 , 103. Chem. Abstr. 1984, 101, 137095h. (158d) Yao, S.; Shen, G.; Wang, H. Fenxi Huaxue 1983, 11, 405. Chem. Abstr. 1983, 9 9 , 1328326. (159d) Yln, J.; Sun, 2. He Huaxue Yu Fangshe Huaxue 1983, 5 , 188. Chem. Abstr. 1983, 9 9 , 471142. (160d) Yu, R. Q.; Huang, S. S. Talanta 1983, 3 0 , 427. Chem. Abstr. 1983, 9 9 , 168524. (161d) Yu, W.; Zhang, G.; Wang, H. Huaxue Xuebao 19838 4 1 , 228. Chem. Abstr. 1983, 9 9 , 3 2 5 2 8 ~ . (1626) Yuan, Q.; Liu, C.; Luo, J. Fenxi Huaxue 1984, 12, 412. Chem. Abstr. 1984, 101, 650439. (163d) Zaitsev, S. Y. Deposited Doc., VINITI 7085, Pt. 3, 452 (1983). Chem. Abstr. 1985, 102, 466299. (164d) Zarinskii, V. A.; et al. USSR Patent SU 1045103 A l , 30 Sept 1983. Chem. Abstr. 1983, 9 9 , 224375h. (1656) Zhang, G.; Wang, S.; Wang, H. FenxiHuaxue 1984, 12, 665. Chem. Abstr. 1985, 102, 552539. COATED-WIRE ELECTRODES AND ION-SELECTIVE FIELD EFFECT TRANSISTORS ( l e ) Akhalkatsi, E . G.; et al. Soobshch. Akad. Nauk Gruz. SSR 1983, 112, 329. Chem. Abstr. 1984, 100, 128690a. (2e) Anzai, J.; et al. BunseklKagaku 1984, 3 3 , E131. Chem. Abstr. 1984, 100, 2 0 5 8 7 8 ~ . (38) Bergveld, P.; Bousse, L. Ned. Tijdschr. Natuurkd., A 1983, A 4 9 , 74. Chem. Abstr. 1984, 100, 1140529. (4e) Bousse, L.; Bergveld, P.; Sens. Actuators 1984, 6 , 65. Chem. Abstr. 1985, 102, 124719k. (5e) Cattrall, R. W.; Hamilton, I. C. Ion-Sel. Nectrode Rev. 1984, 6 , 125. Chem. Abstr. 1985, 102, 69176d. (6e) Fogt, E. J.; et al. Anal. Chem. 1985, 57, 1998. (7e) Freiser, H. Report, TR-1; Order No. Ad-A123415, Avail. NTIS, Gov. Rep. Announce. Index(US) 1983, 8 3 , 2163. Chem. Abstr. 1983, 9 9 , 27666~. (8e) Hanazato, Y.; Shiono, S. Anal. Chem. Symp. Ser. 1983, 17, 513. Chem. Abstr. 1984, 100, 170864k. (9e) Hltachi, Ltd., Jpn. Patent JP 581167951 A2 [83/167951], 4 Oct 1983. Chem. Abstr. 1984, 100, 9 9 4 5 5 ~ . (lOe) Hitachi, Ltd., Jpn. Patent JP 59/24244 A2 [04/24244], 7 Feb 1984. Chem. Abstr. 1984, 101, 1222092. ( l l e ) Hitachi, Ltd., Jpn. Patent JP 60/73348 A2 [85/73348], 25 Apr 1985. Chem. Abstr. 1985, 103, 640800'. (12e) Hoffmann, W.; Min, M. T. German Patent DD 208706 A l , 4 Apr 1984. Chem. Abstr. 1984, 101, 162917k. (13e) Horiba, Ltd., Jpn. Patent JP 59/166853 A2 [84/166853], 20 Sep 1984. Chem. Abstr. 1984, 101, 2263371. (14e) Janata, J.; Sens. Actuators 1983, 4 , 255. Chem. Abstr. 1984, 100, 128785k. (15e) Klein, M. German Patent, DE 3330970 A I , 21 Mar 1985. Chem. Abstr. 1985, 102, 214350n. W e ) Kleln, M.; Kuisl, M.; Rlcker, T. TM, Tech. Mess. 1983, 5 0 , 381. Chem. Abstr. 1984, 100, 609426. (17e) KO, W. H.; et al. Sens. Actuators 1983, 3 , 91. Chem. Abstr. 1983, 99, 47098~. ( W e ) Lawton, R. S. Diss. Abstr I n t . 6 1984, 45. 2134. Chem. Abstr. 1985, 102, 1 0 5 2 1 2 ~ . (19e) Lawton, R. S.; Yacynych, A. M. Anal. Chim. Acta 1984, 160, 149. Chem. Abstr. 1984. 101. 102739d. .._ (20e) Leppavouri, S.1.1 Romppainen, P. S. Nectrocomponent Sci. Technoi. 1983, 10, 129. Chem. Abstr. 1983, 99, 32304n. ~

ANALYTICAL CHEMISTRY, VOL. 58, NO. 5, APRIL 1986

99R

ION-SELECTIVE ELECTRODES (21e) Matsuo, T.; Kagaku, 1984, 3 9 , 321. Chem. Abstr. 1984, 101, 641 18f. (22e) Matsuo, T.; Nakajima, H. Sens. Actuators 1984, 5 , 293. Chem. Abstr. 1985, 102, 124667s. (23e) Mitsubishi Electric Corp., Jpn. Patent JP 60139547 A2 [85/39547], 1 Mar 1985. Chem. Abstr. 1985, 103, 3 2 0 s . (24e) Olympus Optical Co., Ltd., Jpn. Patent JP 58/200155 A2 [83/200155], 21 Nov 1983. Chem. Abstr. 1984, 100, 2208639. (25e) Sibbald, A.; Covington, A. K.; Carter, R. F. Clin. Chem. 1984, 30, 135. (26e) Seiko Instr. and Electronics, Ltd., Jpn. Patent JP 60/14159 A2 [85/ 141591, 24 Jan 1985. Chem. Abstr. 1985, 103, 1 6 1 2 7 ~ . (27e) Tamura, H.; et al. Mikrochim. Acta 1983, 2, 267. Chem. Abstr. 1983, 99, 84552m. (28e) Toshiba Corp., Jpn. Patent JP 56/66449 A2 [83/86449], 24 May 1983. Chem. Abstr. 1983, 9 9 , 115221j. (299) Toshiba Corp., Jpn. Patent JP 59/214752 A2 [84/214752], 4 Dec 1984. Chem. Abstr. 1985, 102, 1 4 2 5 0 8 ~ . (30e) Vucurovic, B. D.; Rajikovic, M. B. Glas. Hem. Drus. Beograd 1984, 4 9 , 647. Chem. Abstr. 1985, 103, 47367k. (31e) Vytras, K.; et al. Anal. Chim. Acta 1983, 149, 217. Chem. Abstr. 1983,99, 23989n. (32e) Yanagisawa, S.; Shirai, N.; Showa Denko, K. K. Jpn. Patent JP 58/ 39940 A2 [83/39940], 8 Mar 1983. Chem. Abstr. 1983,99, 1866629. (33e) Yanagisawa, S.;Shirai, T.; Showa Denko, K. K. Jpn. Patent JP 58/ 55849 A2 [83/55849], 2 Apr 1983. Chem. Abstr. 1983,9 9 , 2 0 5 2 4 8 ~ . (34e) Yanagisawa, S.; Shirai, T.; Showa Denko, K. K. Jpn. Patent JP 58/ 58458 A2 [83/58458], 7 Apr 1983. Chem. Abstr. 1983,9 9 , 205253a. (35e) Zhukova, T. V.; et al. Zavod. Lab. 1984, 50, 18. Chem. Abstr. 1984, 101, 221484s. GAS SENSORS AND BIOSELECTIVE ELECTRODE SYSTEMS ( I f ) AI-Hitti, I.K.; Moody, G. J.; Thomas, J. D. R. Analyst (London) 1984, 109, 1205-8. (2f) Arnold, M. A.; Fiocchi, J. A. Anal. Lett. 1984, 17, 2091-2109. (3f) Arnold, M. A.; Glazier, S. A. Biotech. Lett. 1984, 6, 313-8. (4f) Arnold, M. A.; Rechnitz, G. A. Anal. Chim. Acta 1984, 158, 379-82. (5f) Bradley, C. R.; Rechnitz, G. A. Anal. Chem. 1984, 56, 664-7. (6f) Bradley, C. R.; Rechnitz, G. A. Anal. Chem. 1985, 5 7 , 1401-4. (7f) Brontman, S. B.; Meyerhoff, M. E. Anal. Chlm. Acta 1984, 162, 363-7. (8f) Caras, S. D.; Janata, J.; Saupe, D.; Schmitt, K. Anal. Chem. 1985,5 7 , 19 17-20. (9f) Caras, S. D.; Petelenz, D.; Janata, J. Anal. Chem. 1985,57, 1920-23. (10f) Caras, S. D.; Janata, J. Anal. Chem. 1985, 5 7 , 1924-5. ( I l f ) DeYoung, H. G. High Technology 1983,41-8. (12f) Fonong, T.; Rechnitz, G. A. Anal. Chem. 1984,56, 2586-90. (13f) Fonong, T.; Rechnitz, G. A. Anal. Chim. Acta 1984, 158, 357-62. (14f) Gronow, M. TIBS 1984,336-40. (15f) Guilbault, G. G.; Czarnecki, J. P.; Rahni, M. A. N. Anal. Chem. 1985, 57, 2110-16. (16f) Hartofylax. V. H.; Efstathiou, C. E. Anal. Chim. Acta 1985, 167, 375-80. (17f) Hassan, S. S. M.; Tadros, F. S. Anal. Chem. 1985, 57, 162-6. (18f) Ho, M. H.; Wu, T. G. Ann. N . Y . Acad. Sci. 1984, 434, 523-5. (19f) Joseph, J. P. Anal. Chim. Acta 1985, 169, 249-56. (20f) Keating, M. Y.; Rechnitz, G. A. Anal. Chem. 1984, 56, 801-6. (21f) Keating, M. Y.; Rechnitz, G. A. Anal. Lett. 1984, 17, 359-69. (22f) Keating, M. Y.; Rechnitz, G. A. Anal. Lett. 1985, 18, 1-10, (23f) Keeley, D. F.; Walters, F. H. Anal. Lett. 1983, 16, 1581-4. (24f) Kobos, R. K.; Parks, S.J.; Meyerhoff, M. E. Anal. Chem. 1982, 54, 1976-80. (25f) Krull, U. J.; Thompson, M. Trends Anal. Chem. 1985,4 , 90-6. (26f) Lopez, M. Anal. Chem. 1984, 5 6 , 2360-66. (27f) Lowe, C. R. Blosensors 1985, 1 , 3-16. (28f) Ma, Y. L.; Rechnitz, G. A. Anal. Lett. 1985, 18, 1635-46. (29f) Mascini, M.; Palleschi, G. Anal. Lett. 1983, 16, 1053-66. (30f) Meyerhoff, M. E.; Fraticelli, Y. M.; Opdycke, W. N.; Bachas, L. G.; Gordus, A. D. Anal. Chim. Acta 1983, 154, 17-31. (31f) Mitsubishi Electric Corp.; Jpn. Kokai Tokkyo Koho JP (Patent); 581 198753 A2, Nov 18, 1963; Appl. 82/82596, May 14, 1982. Chem. Abstr. 1984, 101, 3540r. (32f) Miyahara, Y.; Moriizumi, T.; Shiokawa, S.; Matsuoka, H.; Karube, I.; Suzuki, S. Nippon Kagaku, Kaishi 19838 6, 823-30 (Jpn). Chem. Abstr. 1983,99. 66885t. (33f) Mohd, A. R.; Riechel, T. L. Anal. Lett. 1984, 17, 835-55. (34f) Monroe, D. Amer. Clin. Prod. Rev. 1985,4 , 48-57. (35f) Morf, W. E . ; Mostert, I.A.; Simon, W. Anal. Chem. 1985, 57, 1122-26. (36f) Normura, A.; Morita, Y.; Kogure, Y. Kagaku Guutsu Kenkyusho, Hokoku 1984, 7 9 , 551-5 (Jpn). Chem. Abstr. 1985, 102, 159815r. (37f) Opdycke, W. N.; Parks, S . J.; Meyerhoff, M. E. Anal. Chim. Acta 1983, 155, 11-20. (38f) Pau, C. P.; Rechnitz, G. A. Anal. Chim. Acta 1984, 160, 141-7. (39f) Rechnitz, G. A. Chem. Eng. News 1984, 62 (Apr 2), 32-3. (40f) Schubert, F.; Kirstein, D.; Schroder, K. L.; Scheller, F. W. Anal. Chim. Acta 1985, 169, 391-6. (41f) Schubert, F.; Renneberg, R.; Scheller, F. W.; Kirstein, L. Anal. Chem. 1984. 56. 1677-82. (42f) Seegopaul. P.; Rechnitz, G. A. Anal. Chem. 1984, 5 6 , 852-4. (43f) Siddiqi, I.; Brochot, J. Eur. Pat. Appl. EP 125368 A l , Nov 21, 1984; Appl. 83/810563, Dec 5, 1983. Chem. Abstr. 1985, 103, 3226j'. (44f) Smit, N.; Rechnitz, G. A. Biotech. Lett. 1984,6, 209-14. (45f) Synnott, J. C.; West, S. J.; Ross, J. W. Stud. Envlron. Sci. 1984,2 3 , 143-53. (46f) Takano, S.; Kondoh, Y.; Ohtsuka. H. Anal. Chem. 1985,5 7 , 1523-26. (47f) Thompson, M.; Krull, U. Trends Anal. Chem. 1984,3, 173-8.

lOOR

ANALYTICAL CHEMISTRY, VOL. 58, NO. 5, APRIL 1986

Umezawa, Y. Anal. Chem. Symp. Ser. 1983, 17, 705-10. Umezawa, Y.; Sofue, S.;Takamoto, Y. Talanta 1984, 31, 375-8. Van der Schoot, B.; Bergveld, P. Anal. Chim. Acta 1984, 166, -101. (51f) Vincke, B. J.; Devleeschouwer, M. J.; Patriarche, G. J. Anal. Lett. 1985. 18. 593-607. (52f) Vincke, B. J.; Devleeschouwer, M. J.; Patriarche, G. J. Anal. Chem. 1985, 18, 1593-1606. (53f) Wilson, J. R. Trends Anal. Chem. 1984,3, 223-9. (54f) Yanushyavichyute, B. J.; Paulyukonis, A. B.; Kazlauskas, D. A. Anal. Chem. (USSR) 1983, 38, 498-502 (Russ). Translation: 1983, 38, 392-96. (55f) Yasuda, K.; Miyagi, H.; Hamada, Y.; Takata, Y. Analyst (London) 1984, 109, 61-4. ION-SELECTIVE ELECTRODES I N FLOW ARRANGEMENTS AND CLINICAL APPLICATIONS

(lg) Adam, A,; et al. Clin. Chem. 1984,30, 1720. Chem. Abstr. 1984,

101, 187361n. (29) Ahrens, K. 0.; Cullerton, J. F. PCT Int. Appl. WO 83/3004 A l , 1 Sep 1983. Chem. Abstr. 1983, 99, 172380j. (39) Akita, K.; et al. EiselKensa 1984,33, 688. Chem. Abstr. 1985, 102, 92398m

(69) Alexander, P. W.; Haddad, P. R.; Trojanowicz, M. Anal. Chim. Acta 1985, 171, 151. (79) Alexander, P. W.; Trojanowicz, M.; Haddad, P. R. Anal. Lett. 1984, 17, 309. (89) AI Hitti, I.K.; Thomas, J. D. R. Anal. Lett. 1985, 18, 975. (99) Anker, P.; et al. Clin. Chem. 1983,2 9 , 1447. Chem. Abstr. 1983,99, 66887~. (log) Anker, P.; et al. Clin. Chem. 1983,2 9 , 1508. Chem. Abstr. 1983, 99, 118595~. (119) Anker, P.; et al. Clin. Chem. 1984,30, 454. (129) Assailly, J.; et al. Clin. Chim. Acta 1984, 143, 37 Chem. Abstr. 1984, 101, 226217s. (139) Bijster, P.; Vlnk, K. L. J. Clin Chem. 1984,30, 6. (14g) Bijster, P.; Vink, K. L. J. Clin. Chem. 1984,30, 865. (159) Boink, F. B. f. J.; et al. Clin. Chem. 1985,3 1 , 523. (169) Bowers, G. N., Jr. ref 38, 1984, 81-103. Chem. Abstr. 1984, 101, 207051s. (179) Butler, E. C. V.; Gershey, R. M. Anal Chim. Acta 1984, 164, 153. Chem. Abstr. 1985, 102, 100518t. ( 1 8 ~ )Buzza, E. E. PCT Int. Appl. WO 83/3006 A I , 1 Sep 1983. Chem. Abstr. 1983, 99, 1 8 6 6 8 4 ~ . (209) Cooke, R. J.; Jensen. R. L. Clin. Cham. I Abstr. 1983. 99. 191 (219) -Covington, A. K.; k n k , A. B. T. J.; Maas, A. H. J. ref 38, 1984, 229-238. Chem. Abstr. 1984, 101, 187349q. (22g) Cunningham, L.; Freiser, H. Anal. Chim. Acta 1984, 157, 157. Chem. Abstr. 1984, 100, 150554f. (239) Czaban, J. D.; Cormier, A. D. US Patent US 4410631 A, 18 Oct 1983. Chem. Abstr. 1984, 100, 318791. (249) Czaban, J. D.; Cormier, A. D.; Legg, K. D. Eur. Patent Appl. EP 101236 A2, 22 Feb 1984. Chem. Abstr. 1984, 101, 68909n. (25g) Degawa, H.; Shinozuka, N.; Hayano. S. Bull. Chem. SOC.Jpn. 1984, 5 7 , 706. Chem. Abstr. 1984, 100, 184889j. (269) Dietze, W.; et al. Ger. Patent DE 3312923 A I , 11 Oct 1984. Chem. Abstr. 1985, 102, 42476q. (27a) Dobrolyubova, B. A. Glg. Sanit. 1984,8, 68. Chem. Abstr. 1984, 701, 166616j. (289) Duetsch, S.;et al. Anal. Chem. 1985, 57, 578. (299) Fogh-Andersen, N.; et al. Clin. Chem. 1984,3 0 , 433. Chem. Abstr. 1984, 100, 1 5 3 3 3 5 ~ . (309) Fogh-Andersen, N.; Siggaard-Andersen, 0. Clin. Chem. 1984, 30, 1843. Chem. Abstr. 1984, 101, 226218t. (319) Fong, H. Clin. Blochem. Rev. 1983,4 , 4. Chem. Abstr. 1983, 99, 101674~. (329) Frend, A. J.; et al. Ana/yst 1983, 108, 1357. Chem. Abstr. 1984, 100, 39310j'. 1330) Fuchs. C.; Dorn. D.: Armstrona. V. M. Laboratoriumsmedizin 1983, 7 , ' 508. Chem. Abstr. 1983,99, 826756. (349) Fuji Photo Film Co., Ltd. Jpn. Patent JP 58/47249 A2 [83/47249], 18 Mar 1983 Abstr. 1983. 99. 1 9 1 0 8 0 ~ . .. . .... Cham. .. (359) Fuji Photo Film Cd.;Ltd. Jpn: Patent JP 58/186041 A2 [83/186041], 29 Oct 1963. Chem. Abstr. 1984, 100, 185000~. (369) Fuji Photo Film Co., Ltd. Jpn. Patent JP 581186042 A2 [83/186042], 29 Oct 1983. Chem. Abstr. 1084, 100, 185001a. (37g) Fuji Photo Film Co., Ltd. Jpn. Patent JP 59130055 A2 [84/30055], 17 Feb 1984. Chem. Abstr. 1984, 101, 47884k. (38a) Geerts. J. P.: Bekhof, J. J.; Scherlon, J. W. Neth. Milk Dairy J. 1983, . 57, 197. Chem. Abstr. 1984, 101,.2217n. (399) Glaister, M. G.; Moody, G. J.; Thomas, J. D. R. Analyst 1965, 110, 713. Chem. Abstr. 1985, 102, 214235d. (409) Harman, J. N., 111; Jones, R. H. US Patent US 4411764 A, 25 Oct 1983. Chem. Abstr. 1983, 9 9 , 224377k. (41a) Hitachi. Ltd. JDn. Patent JP 58/167951 A2 [83/1679511, 4 Oct 1983. ' chem. Abstr. 1984, 100, 9 9 4 5 5 ~ . (429) Hitachi, Ltd. Jpn. Patent JP 58/204364 A2 [83/204364], 29 Nov 1983. Chem. Abstr. 1984, 100, 1 3 5 4 1 7 ~ .

ION-SELECTI VE ELECTRODES (439) Hitachi, Ltd. Jpn. Patent JP 59165248 A2 [84/65248], 13 Apr 1984. Chem. Abstr. 1984, 101, 122234d. (44g) Hitachi, Ltd. Jpn. Patent JP 59140258 84 [84/40258], 28 Sep 1984. Chem. Abstr. 1985, 102, 39130s. (459) Hitchman, M. L.; et al. Anal. Chlm. Acta 1983, 155, 219. (469) Hongbo, C.; Hansen, E. H.; Ruzlcka, J. Anal. Chlm. Acta 1985, 169, 209. Chem. Abstr. 1985, 102, 220000q. (47g) Iicheva, L.; Cammann, K. Fres. 2. Anal. Chem. 1985, 322, 323. (489) Ishibashi, N.; Jyo, A.; Imato, T. Kaguku no Ryoiki, Zokan 1983, 138, 107. Chem. Abstr. 1983, 99, 1327869. (499) Johansson, H. PCT Int. Appi. WO 83/3005 A I , 1 Sep 1983. Chem. Absfr. 1985, 100, 480769. (509) Kanno, K.; Gatayama, T.; Koyama, M. Eur. Patent Appi. EP 126426 A2. 28 Nov 1984. Cham Abstr 1985. 102. _. 231088a .... (51g) Kissel, T. R. US Patent US-4416735A, 22 Nov 1983. Chem. Absfr. 1984. 100. 99479f. (529) Kitajima, M.; Seshimoto, 0.; Mizutani, S. Ger. Patent DE 3309251 A I , 15 Sep 1983. Chem. Abstr. 1983, 99, 1910849. (53g) Koshiishi, K.; et ai. Ger. Patent DE 3240239 A l , 19 May 1983. Chem. Abstr. 1983, 99,78982k. (54g) Kuisl, M. Ger. Patent DE 3311768 A l , 4 Oct 1984. Chem. Abstr. 1985, 102,391171. (55g) Ladenson, J. H. Anal. Proc. 1983, 20, 554. Chem. Abstr. 1984, 100, 9921117. (56g) Leont’ev, V. G.; Sokoiova, M. M.; Tsayun, G. P. Flziol. Zh. SSSR lm. I. M . Sechenova 1983, 69,563. Chem. Abstr. 1983, 99, 84658a. (57g) Maas, A. H. J.; et al. Clln. Chem. 1985, 31, 482. Chem. Abstr. 1985, 102, 163256t. (58g) Maas, A. H. J., et ai., Eds. “Ionized Calcium, Sodium and Potassium by Ion-Selective Electrodes”; Private Press: Copenhagen, 1984; Vol. 5. Chem. Abstr. 1984, 101, 147286k. (59g) Marsoner, H. Ger. Patent DE 3403978 A l , 16 Aug 1984. Chem. Abstr. 1984, 101, 1 6 6 7 1 3 ~ . (60g) Martin, G. B.; Cho, H. K.; Meyerhoff, M. E. Anal. Chem. 1984, 56, 26 12. (61 ) Matsushita Electric Industrial Co., Ltd. Jpn. Patent JP 60169545 A2 r85/69545], 20 Apr 1985. Chem. Abstr. 1985, 103, 50886j. ( 6 2 ~ )Meverhoff, M. E.; Kovach, P. M. J. Chem. Ed. 1983. 60, 766. Chem. ibsfr..1983, 99,157349n. (639) Mitsubishi Rayon Co., Ltd. Jpn. Patent JP 58/135950 A2 [83/135950], 12 Aug 1983. Chem. Abstr. 1984, 100, 3074w. (64g) Mitsubishi Rayon Co., Ltd. Jpn. Patent JP 58/214850 A2 [83/214850], 14 Dec 1983. Chem. Abstr. 1984, 100, 135407s. (65g) Mitsublshi Rayon Co., Ltd. Jpn. Patent JP 59/111050 A2 [84/ 111050], 27 Jun 1984. Chem. Abstr. 1984, 101, 126320b. (66g) Mitsumaki, H.; Takano, N.; Ono, N. Eur. Patent Appi. EP 98550 A2, 18 Jan 1984. Chem. Abstr. 1984, 101, 3 5 4 3 ~ . (67g) Mostert, I. A.; Morf, W. E.; Simon, W. Mlkrochlm. Acta 1984, 3 , 425. Chem. Abstr. 1985, 103, 47365h. (68g) Ng, R. H.; et ai. Clln. Chem. 1985. 31, 435. (69g) Okumoto, C.; et ai. Eisei Kagaku 1984, 30, 7. Chem . Abstr. 198q9 10 1 . 78534a ... (70g) Ortolano, G. A.; et ai. Microchem. J. 1983, 28, 409. Chem. Abstr. 1983, 99, 101652d. (71g) Otto, M.; Thomas, J. D. R. Anal. R o c . 1984, 2 1 , 369. Chem. Abstr. 1985. 102. 2 0 6 5 5 ~ . (72g) Otto,M.; Thomas, J. D. R. Anal. Chem. 1985, 57, 2647. (73g) Pace, S. J. US Patent US 4454007 A, 12 Jun 1984. Chem. Abstr. 1984, 101, 68915m. (749) Phillips, K. A.; Rix, C. J. Anal. Chlm. Acta 1985, 169,263. (75g) Pires, M. A. F.; Abrao, A. An. Slmp. Bras. Electroqulm. Electroanal., 4th, 337 Dep . Qulm Univ. Fed. Sa0 Carlos: Sa0 Carlos, Brazil. Chem. Abstr. 1984, 101, 1031369. (76g) Popkov, V. A.; Reshetnyak, V. Y. Farmatsiya 1983, 32, 79. Chem. Absfr. 1983, 99, 1 1 0 8 0 7 ~ . (779) Powiey, C. R.; Nieman, T. A. Anal. Chim. Acta 1983, 152, 173. Chem. Abstr. 1983, 99,2051949. (78g) Proceedings of the Workshop on Direct Potentiometric Measurements in Blood, National Bureau of Standards, Gaithersburg, Maryland, May 1820, 1983. Published 1985 by the National Committee for Clinical Laboratory Standards. (79g) Pungor, E.; Toth, K.; Hrabeczy-Pail, A. Trends Anal. Chem. 1984, 3 , 28. Chem. Abstr. 1984, 100, 150114n. (8Og) Purdy, W. C. Chem. Int. 1984, 4, 14. Chem. Abstr. 1984, 101, 166694h. (81g) Rehfeid, S.J.; Barkeiey, J.; Loken, H. F. Clln. Chem. 1984, 30, 304. (82g) Ripamonti, M.; et al. Clln. Chem. 1984, 30, 556. (83g) Russell, L. J. Ref 38. 1984, 187-196. Chem. Abstr. 1984, 101, 187426n.

_.

.

(849) Sachs, C.; Truchaud, A.; Boigne, M. “Ioniz. Calcium, Sodium, Potassium Ion Sei. Electrodes, Proc. Meet. Eur. Work. Group Ion Select. Eiectrodes, Ist”, Maas, A. H. J., Ed.; Priv. Press: Copenhagen, 1984; p 213 Chem. Abstr. 101, 1 8 7 3 4 8 ~ . (85g) Scheidegger, D.; Drop, L. J. Anaesthesiol. Infenslvmed. 1984, 163, 57 pp. Chem. Abstr. 1985, 102, 89489m. (8Sg) Sekiguchi, M. Med. Techno/. 1983, 1 1 , 977. Chem. Abstr. 198a999, 154553~. (87g) Seshimoto, 0. US Patent US 4510035 A, 9 Apr 1985. Chem. Absfr. 1985, 102, 2 3 1 0 8 4 ~ . (88g) Siggaard-Andersen, 0.; Durst, R. A,; Maas, A. H. J. Pure Appl. Chem. 1984, 56, 587. Chem. Abstr. 1984, 100, 206150r. (89g) Siggaard-Andersen, 0.; Fogh-Andersen, N.; Thode, J. Scand. J. Clin. Lab. Invest., Suppl. 1983, 43, 43. Chem. Abstr. 1983, 99,26529. (90g) Siggaard-Andersen, 0.; Thode, J. Scand. J . Clin. Lab. Invest., Suppl. 1983 43, 11. Chem. Abstr. 1983, 99, 1 9 1 5 6 ~ . (91g) Simon, W.; et ai. Ann. N. Y. Acad. Sci. 1984, 428, 279. Chem. Absfr. 1984, 101, 1 0 6 8 3 8 ~ . (92g) Steelman, M.: et ai. Clln. Chem. 1984, 30, 562. (93g) Steinecke, H.; Fischer, W. 2.Med. Laboraforiumsdiagn. 1983, 2 4 , 304. Chem. Absfr. 1983, 99, 153322a. (94g) Su, Y. Shengwu Huaxue Yu Shengwu Wuli Jinzhan 1983 50, 2. Chem. Abstr. 1983, 99,2527v. (95g) Suzuki, K.; Aruga, H.; Shirai, T. Anal. Chem. 1983, 55, 2011. Chem. Abstr. 1983, 99, 115099a. (96g) Suzuki, K.; et ai. Bunseki Kagaku 19838 32, 585. Chem. Abstr. 1984, 100, 168679. (97g) Takahashi, H. Arch. Jpn. Chir. 1984, 53, 3. Chem. Abstr. 1984, 101, 189172a. (98g) Thanei-Wyss, U.; et al. Mikrochim. Acta 1983, 3 , 135. Chem. Abstr. 1983, 99, 154580~. (99g) Thomas, J. D. R. Anal. Chem. Symp. Ser. 1984, 18, 141. Chem. Abstr. 1984, 100, 184833m. (1OOg) Toffaietti, J.; Lee, K. M. Clin. Chem. 1985, 31, 1349. (101g) Toshiba Corp. Jpn. Patent JP 5812735 A2 [83/2735], 8 Jan 1983. Chem. Abstr. 1983, 99,67156t. (1029) Toshiba Corp. Jpn. Patent JP 58/2737 A2 [83/2737], 8 Jan 1983. Chem. Abstr. 1983, 99,6 7 1 5 7 ~ . (1039) Toshiba Corp., Jpn. Patent JP 581223741 A2 [83/223741], 26 Dec 1983. Chem. Abstr. 1984, 100, 1 3 5 4 0 9 ~ . (104g) Toshiba Corp. Jpn. Patent JP 59/70956 A2 [84/70956], 21 Apr 1984. Chem. Abstr. 1984, 101, 122239j’. (105g) Toshiba Corp., Jpn. Patent JP 59/100852 A2 [84/100852], 11 Jun 1984. Chem. Abstr. 1984, 101, 2216779. (106g) Toshiba Corp., Jpn. Patent JP 59/101852 A2 [84/101852], 12 Jun 1984. Chem. Abstr. 1984, 101, 203543f. (107g) Toshiba Corp., Jpn. Patent JP 60/10163 A2 [85/10163], 19 Jan 1985. Chem. Absfr. 1985, 102, 1 9 7 1 8 8 ~ . (108g) Toshiba Corp. Jpn. Patent JP 60/10164 A2 [85/10164], 19 Jan 1985. Chem. Abstr. 1985, 103, 475229. (109g) Trojanowicz. M. Anal. Chem. Symp. Ser. 1984, 18, 189 Chem. Absfr. 1984, 100, 184834n. (1log) Trojanowicz, M.; Matuszewski, W. Anal. Chim. Acta 1983, 151, 77. Chem. Abstr. 1983, 99,7 6 5 5 0 ~ . (1119) Uidall, A.; et ai. ref 92 1984, 165. Chem. Abstr. 1984, 101, 166610~. (1129) Vajgand, V. J.; et ai. Glas. Hem. Drus. Beograd 1984, 49, 113. Chem. Abstr. 1984, 101, 1 0 4 2 5 1 ~ . (1139) Van Lente, F. Lab. Med. 1984, 15, 165. Chem. Abstr 1984, 100, 170839f. (1149) Vegh, A. Dtsch. Zahnaerzfl. 2.1983, 38, 713. Chem. Abstr. 1983, 99,81967q. (115g) Vezzoll, G.; et al. Rlc. Clln. Lab. 1984, 14, 535. Chem Abstr. 1985, 102, 20670. (1169) Wandrup, J.; Kvetny, J. Clin. Chem. 1985, 31, 856. (1179) Wang, W. N.; Chen. Y. J.; Wu, M. T. Analyst 1984, 109, 281. Chem. Abstr. 1984, 101, 16433h (118g) West, P. J. Autom. Chem. 19838 5 , 182. Chem Abstr. 1984, 100, 199802. (119g) WhRe, J. K.; Chan, D. W. J. Clln. Lab. Autom. 1984, 4, 23. Chem Absfr. 1984, 100, 644126. (1209) Winkei, P.; et ai. Clln. Chem. 1985, 31, 457. (1219) Winkelman, J. W.; et ai. Clln. Chem. 1984, 30, 482. (122g) Xue, X.; et al. Fenxl Huaxue 1983, 1 1 , 548. Chem. Abstr 1983, 99,1 3 6 2 5 5 ~ . (1239) Yoshida, Y.; et al. Osaka I k a Daigakui’asshi 1983, 42, 71. Chem Abstr. 1983, 99, 172304n. (1249) Zhao, L.; Wang, H. Tlanjin Yiyao 1984, 12, 372 Chem. Abstr. 1985, 102,2 0 6 6 1 ~ .

ANALYTICAL CHEMISTRY, VOL. 58, NO. 5, APRIL 1986

101 R