IR Spectra of the Water Hexamer: Theory, with Inclusion of the

Mar 19, 2013 - The curious case of the water hexamer: Cage vs. ... Daniel P. Zaleski , Berhane Temelso , George C. Shields , Zbigniew Kisiel , Brooks ...
0 downloads 0 Views 797KB Size
Subscriber access provided by FORDHAM UNIVERSITY

Letter

IR Spectra of the Water Hexamer: Theory, with Inclusion of the Monomer Bend Overtone, and Experiment are in Agreement Yimin Wang, and Joel M Bowman J. Phys. Chem. Lett., Just Accepted Manuscript • DOI: 10.1021/jz400414a • Publication Date (Web): 19 Mar 2013 Downloaded from http://pubs.acs.org on March 20, 2013

Just Accepted “Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.

The Journal of Physical Chemistry Letters is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Page 1 of 18

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Physical Chemistry Letters

IR  Spectra  of  the  Water  Hexamer:  Theory,  with  Inclusion  of  the   Monomer  Bend  Overtone,  and  Experiment  are  in  Agreement       Yimin  Wanga  and  Joel  M.  Bowmanb   Department  of  Chemistry  and  Cherry  L.  Emerson  Center  for  Scientific  Computation   Emory  University,  Atlanta  GA    30322                                                            

ACS Paragon Plus Environment

The Journal of Physical Chemistry Letters

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 2 of 18

ABSTRACT     Signature  IR  spectra  of  isomers  of  the  water  hexamer  in  the  spectral  range  3000-­‐ 3800  cm-­‐1  have  been  reported  by  experimentalists  but  crucial  theoretical   interpretation  has  still  not  been  definitive.    Using  ab  initio  potential  and  dipole   moment  surfaces  and  a  fully  coupled  quantum  treatment  of  the  intramolecular   modes,  the  ring  and  book  are  assigned  to  spectra  obtained  in  the  He  nanodroplet  and   Ar  tagging  experiments,  respectively.    The  overtone  of  the  intramolecular  bend  at  ca   3200  cm-­‐1  is  a  new  calculated  feature  that  completes  an  important  missing  piece  in   previous  experimental  and  theoretical  comparisons  and  leads  to  a  consistent   assignment  of  these  two  experimental  spectra.    Calculated  IR  spectra  for  the  lowest   energy  forms  of  the  water  heptamer  and  octomer  are  also  presented  and  compared   to  experiment.    In  all  the  calculated  spectra  the  bend  overtone  is  demonstrated  to  be   a  noticeable  feature  and  this  is  one  important  conclusion  from  the  work.    Also,  the   danger  in  using  scaled  double-­‐harmonic  spectra  to  assign  spectra  is  demonstrated.                     Keywords:  water  book  hexamer,  ring  hexamer,  heptamer,  octomer,  local-­‐monomer,   bend-­‐overtone                  

 

ACS Paragon Plus Environment

2  

Page 3 of 18

TOC  Graphic      

2.0

Intensity (arbitrary units)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Physical Chemistry Letters

1.5

1.0

Exp - Ring Hexamer

0.5

Exp - non Hexamer

Bend overtone

Theory - RIng Hexamer

0.0 3200

3300

3400

3500

3600

3700

-1

ν (cm )                        

 

 

 

ACS Paragon Plus Environment

3  

The Journal of Physical Chemistry Letters

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 4 of 18

  The  water  hexamer  has  both  fascinated  and  bedeviled  theorists  and   experimentalists  for  more  than  twenty  years,  because  it  is  the  smallest  water  cluster   that  exists  in  numerous  nearly  iso-­‐energetic  isomeric  forms.    The  lowest  energy   forms,  the  prism  and  cage,  are  space-­‐filling  and  have  the  largest  number  of  hydrogen   bonds  and  are  thus  most  “ice-­‐like”.    Curiously,  while  high-­‐level  electronic  structure   calculations  are  unanimous  in  finding  the  prism  to  be  slightly  lower  in  electronic   energy  than  the  cage,1-­‐4  only  the  latter  had  been  seen  experimentally.    This  was  first   reported  in  seminal  high-­‐resolution  supersonic  jet  experiments,5  which  were   reported  prior  to  the  high-­‐  level  ab  initio  studies.    Very  recently,  the  prism  was   observed  for  the  first  time,  along  with  the  cage,  and  to  a  small  extent  the  higher   energy  book  isomer,  in  high-­‐resolution  supersonic  jet  experiments.6       The  higher-­‐energy  forms  of  the  hexamer,  such  as  the  book  and  ring  have   fewer  hydrogen  bonds  and  thus  are  floppier  and  thermodynamically  more  populated   as  the  temperature  increases.7-­‐10    However,  is  should  be  stressed  that  there  is  no   evidence  to  suggest  that  the  experiments  in  supersonic  jet  expansions  follow  a   Boltzmann  distribution  of  isomers.    Indeed,  signature  IR  spectra  of  the  hexamer   isomers  in  the  “OH-­‐stretch  region”,  i.e.,  roughly  3000  -­‐  3800  cm-­‐1,  have  been  reported   by  experimentalists11-­‐14  and  assigned  to  the  high-­‐energy  book11,12    and  even  the   higher-­‐energy  ring  isomers.13,14    Theoretical  interpretation  of  these  spectra,  mostly   based  on  scaled  double-­‐harmonic  analysis  (harmonic-­‐oscillator  wavefunctions  with  a   linear  approximation  to  the  dipole  moment  in  the  normal  modes),  unfortunately  are   still  not  definitive.    The  spectrum  of  the  hexamer  in  He  nanodroplets  was  reported   roughly  10  years  ago13,14  and,  based  on  several  arguments,  including  a  scaled  ab  initio   double-­‐harmonic  analysis,  was  assigned  to  the  high-­‐energy  ring  isomer.    However,   the  assignment  of  a  band  at  3229  cm-­‐1  was  noted  to  be  problematic.    Those  authors   assigned  it  to  the  lower-­‐energy  cage  isomer  and  indeed  a  scaled  double-­‐harmonic  

 

ACS Paragon Plus Environment

4  

Page 5 of 18

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Physical Chemistry Letters

calculation  did  find  a  peak  in  the  cage  spectrum,  at  around  3280  cm-­‐1.    However,   those  authors  concluded  cautiously  “Unfortunately,  a  definitive  assignment  of  this   spectral  feature  has  not  been  made…”    More  recently,  Diken  et  al.12  reported  the   spectrum  of  the  water  hexamer  using  Ar  tagging  and  electron  attachment  and   tentatively  assigned  it  to  the  book  isomer,  based  on  previous  scaled  double-­‐harmonic   calculations.15  (By  varying  experimental  conditions  Diken  et  al.  argued  that  multiple   isomers  of  the  hexamer  were  unlikely.)  The  assignment  of  the  book  in  these   experiments  was  recently  questioned  by  Tainter  and  Skinner,  who  presented  new   calculations  of  the  IR  spectrum  in  the  OH-­‐stretch  region,  based  on  a  local  OH-­‐stretch   model  that  includes  anharmonicity  in  that  mode.    They  assumed  a  thermal   distribution  of  hexamer  isomers  and  concluded  that  the  Diken  et  al.  spectrum  was  a   mixture  of  book  and  cage  isomers.     Thus,  the  current  status  of  the  understanding  of  the  hexamer  IR  spectra  is  still   unsettled.    We  believe  this  has  been  hampered  to  a  large  extent  by  the  use  of  scaled   double-­‐harmonic  analysis  (and  also  using  relatively  low-­‐level  ab  initio  theory)  to   interpret  the  spectra.    And,  while  the  recent  work  of  Tainter  and  Skinner  has   advanced  theory,  its  lack  of  consideration  of  the  monomer  bend,  specifically  the   overtone  of  the  bend,  is  a  concern.    There  is  solid  evidence  in  smaller  clusters,  e.g.  the   trimer,  of  significant  bend-­‐overtone  intensity.16,17    Very  recently,  we  reported  a   significant  contribution  of  this  overtone  in  the  OH-­‐stretch  region  of  IR  spectrum  of   clusters  of  192  monomers,  representing  two  ice  models.18      These  calculations  were   done  using  the  Local  Monomer  (LMon)  model,  briefly  reviewed  below,  which  does   describe  the  coupling  of  the  stretch  and  bend  modes  of  each  monomer  in  a  cluster.     Here  we  focus  on  comparisons  between  calculated  LMon  spectra  for  the  hexamer   and  experiment  and  show  the  importance  of  the  bend  overtone  band  in  the  IR   spectra.    More  significantly,  inclusion  of  this  band  does  lead  to  a  resolution  in   assigning  the  experimental  spectra  to  a  single  hexamer  isomer.    An  ancillary  part  of    

ACS Paragon Plus Environment

5  

The Journal of Physical Chemistry Letters

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 6 of 18

this  Letter  is  a  calculation  of  the  IR  spectra  for  the  lowest  energy  forms  of  the  water   heptamer  and  octomer  and  comparison  with  experimental  action  spectra.   The  present  calculations  use  full-­‐dimensional  ab  initio  potential  energy   surface  (PES)  and  dipole  moment  surface  (DMS),  referred  to  as  WHBB.19    The   potential  is  a  permutationally  invariant  representation  in  terms  of  all  1,  2,  and  3-­‐ body  interactions.    The  1-­‐body  potential  is  a  spectroscopically  accurate  potential,  the   2-­‐body  potential  is  a  precise  fit  to  roughly  30  000  CCSD(T)/aug-­‐cc-­‐pVTZ  electronic   energies  and  the  3-­‐body  potential  is  a  similar  fit  to  roughly  40  000  MP2/aug-­‐cc-­‐ pVTZ.    The  dipole  moment  surface  is  a  sum  of  all  1  and  2-­‐body  dipole  moments,   obtained  from  fitting  30  000  MP2/aug-­‐cc-­‐pVTZ  dipole  moments.  Detailed  tests  of  the   surfaces  have  been  given  elsewhere19  and  for  use  in  quantum  calculations  of  the  IR   spectrum,  these  surfaces  are  currently  the  most  accurate  ones  available.   The  calculation  of  the  IR  spectra  has  been  described  in  detail  previously,19,20   so  only  a  brief  summary  is  given  here.    After  optimization  to  a  given  isomeric  form  of   the  hexamer  ,  using  the  WHBB  PES  the  LMon  calculation  of  vibrational  energies,   wavefunctions  and  IR  spectrum  are  done  for  each  monomer  in  the  cluster.    The  LMon   calculations  employ  the  Watson  Hamiltonian  in  mass-­‐scaled  “lormal  modes”19-­‐21  and   in  fully-­‐coupled  three-­‐mode  (bend  and  two  stretches)  calculations  for  each  of  the  six   monomers  in  the  hexamer  cluster.    Specifically,  the  3-­‐mode  Schrodinger  equation  for   monomer  m  

[Tˆ

m

]

+ U m (Qm ) − E m ϕm vib (Qm ) = 0  

is  solved  in  parallel  using  a  modification  of  the  code  MULTIMODE.22    In  this  equation,   Qm  represents  the  three  high-­‐frequency  normal  modes  for  monomer  m  (which  we   € also  term  the  “lormal  modes”),     Tˆm is  the  kinetic  energy  operator  (including  the   vibrational  angular  momentum  terms)  and  Um  is  corresponding  potential  for   monomer  m,  perturbed  by  all  other  monomers.    To  be  clear,  Um  is  the  full  WHBB  PES   in  the  three  lormal  modes  of  monomer  m  in  the  field  of  all  other  monomers  held    

ACS Paragon Plus Environment

6  

Page 7 of 18

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Physical Chemistry Letters

fixed.    With  the  WHBB  DMS  intensities  for  the  all  transitions  involving  the  three   intramolecular  modes  are  calculated  rigorously  and  the  resulting  stick  spectra  are   then  smoothed  using  a  Gaussian  of  width  comparable  to  the  width  in  experiment.    It   is  perhaps  worth  noting  that  the  present  calculations  do  not  consider  the  coupling  to   low-­‐frequency  intermolecular  modes,  which  are  not  expected  to  play  a  signficant  role   in  these  low-­‐resolution  spectra.       The  first  set  of  results  is  shown  in  Figure  1,  where  LMon  and  scaled-­‐double   harmonic  (s-­‐dbl-­‐HO)  spectra  (both  using  the  WHBB  PES  and  DMS)  are  given  for  the   four  isomers  indicated.    The  dlb-­‐HO  scaling  factor  is  0.95  (a  commonly  used  factor)   and,  as  seen,  it  brings  the  latter  into  agreement  with  the  LMon  results  for  the  highest-­‐ frequency  free-­‐OH  band.    Even  with  this  scaling,  there  are  substantial  differences   between  the  LMon  and  s-­‐dbl-­‐HO  spectra.    This  lack  of  agreement,  post-­‐scaling,  has   been  reported  previously  for  water  clusters.23    However  beyond  this  disagreement,   the  most  glaring  one  is  the  absence  of  the  bend  overtone  in  the  s-­‐dbl-­‐HO,  which  by   definition  cannot  be  described  in  the  dbl-­‐HO  model.    Note  that  that  band  is  found  in   the  LMon  spectrum  for  all  the  isomers,  but  in  particular  notice  that  is  the  only  feature   in  the  most  red-­‐shifted  portion  of  the  “OH-­‐stretch”  region  of  the  ring  spectrum,  at   3220  cm-­‐1.    Also  note  that  the  s-­‐dlb-­‐HO  spectrum  has,  incorrectly,  an  intense  feature   at  around  3200  cm-­‐1  for  the  cage  (and  also  the  prism).    

 

ACS Paragon Plus Environment

7  

The Journal of Physical Chemistry Letters

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 8 of 18

  Figure  1  Comparison  of  Local  Monomer,  solid  blue  line  (see  text  for  details),  and   scaled  double-­‐Harmonic,  dashed  green  line,  spectra  of  the  indicated  water  hexamer   isomers.    The  filled  bands  are  due  to  the  bend  overtone     Next,  we  present  comparisons  of  LMon  spectra  with  experiment  and  we  begin   with  the  ring.    As  we  pointed  out  previously,  the  LMon  model  produces  an  artificially   degenerate  spectrum  for  the  ring  owing  to  its  high  symmetry.20    We  introduced  a   simple  and  accurate  method  to  split  that  degeneracy.21    For  the  ring  the  band-­‐width   increases  from  zero  to  at  most  20  cm-­‐1  for  the  three  intramolecular  modes.    The   intense  IR  mode  in  the  split  spectrum  is  at  3364  cm-­‐1,  in  good  agreement  with  the   experimental  band  reported14  at  3335  cm.-­‐1    Figure  2  shows  the  comparison  of  the   LMon  ring  spectrum  with  the  experimental  spectrum.13,14      As  carefully  analyzed  in    

ACS Paragon Plus Environment

8  

Page 9 of 18

references  13  and  14,  that  spectrum  contains  features  from  other-­‐sized  clusters,   which  were  assigned.    This  is  indicated  in  the  present  figure  by  showing  the  portion   of  the  experimental  spectrum  assigned  to  the  hexamer  in  red.    The  band  centered  at   roughly  3720  cm-­‐1  is  the  free-­‐OH  stretch,  which  appears  in  a           2.0           1.5         1.0   Exp - Ring Hexamer   Exp - non Hexamer     0.5 Theory - RIng Hexamer           0.0 3200 3300 3400 3500 3600 3700   -1   ν (cm ) Intensity (arbitrary units)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Physical Chemistry Letters

  Figure  2    Present  Local  Monomer  (Theory)  and  experimental,  He  nanodroplet,  (refs.   13,14),  IR  spectra  of  the  water  ring  hexamer.    The  green  line  portion  of  the   experimental  spectrum  is  due  to  other  water  clusters  smaller  than  the  hexamer.         The  feature  at  3212  cm-­‐1  in  the  theory  spectrum  is  due  to  the  bend  overtone.    The   experimental  spectrum  is  a  digitized  rendering  of  Figure  1  in  reference  14.    

 

ACS Paragon Plus Environment

9  

The Journal of Physical Chemistry Letters

number  of  water  clusters  and  so,  as  noted  in  the  experiment,  that  band  has   contributions  from  other  clusters.    However,  we  indicate  it  in  red  and  assign  it  othe   ring,  since  it  certainly  is  present  in  that  spectrum.    The  calculated  intensity  is  smaller   than  the  experimental  one  at  3335  cm-­‐1.    This  is  probably  due  to,  at  least  in  part,  to   overlapping  contributions  from  the  other  clusters.    With  that  caveat  in  mind,  the   comparison  between  theory  and  experiment  is  very  good  and  allows  us  to  assign  the   entire  spectrum  to  the  ring,  and  in  particular  the  experimental  band  at  3229  cm-­‐1  to   the  bend-­‐overtone  of  the  ring  isomer  and  not  to  the  cage.   Next  consider  the  comparison  between  the  LMon  hexamer  spectrum  with  the   Ar-­‐tagged  one  reported  by  Johnson  and  co-­‐workers,12  shown  in  Figure  3.    As  noted       2.5   Exp - Hexamer   Theory - Book Hexamer   2.0              

Intensity (arbitrary units)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 10 of 18

1.5

1.0

 

0.5

     

0.0 3100

3200

3300

3400

3500

3600

3700

3800

-1)

ν (cm

  Figure  3    Present  Local  Monomer  (Theory)    and  experimental,  Ar-­‐tagged  IR  spectra   (ref.  12)  of  the  book  hexamer.  The  broad  feature  in  the  range  3150-­‐3250  in  the   theory  spectrum  is  due  to  the  bend  overtone(s),  as  pointed  out  in  Figure  1.  

 

ACS Paragon Plus Environment

10  

Page 11 of 18

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Physical Chemistry Letters

  above,  they  tentatively  assigned  the  spectrum  to  the  book,  but  which  Tainter  and   Skinner10  recently  re-­‐assigned  to  both  the  cage  and  the  book,  with  the  most  red-­‐ shifted  feature  assigned  to  the  cage,  as  was  done  previously  for  the  ring.    Here  we   find  that  that  feature,  as  in  the  ring,  is  due  to  the  overtone  of  the  bend.    Further,  the   overall  agreement  with  experiment12  is  very  good  (perhaps  a  bit  fortuitously  so),   leading  us  to  assign  this  spectrum  to  the  book  isomer.    We  also  note  that  there  is  very   good  agreement  with  the  earlier  molecular  beam  experiments  of  Buch,  Buck  and  co-­‐ workers11  who,  as  it  turns  out,  correctly  interpreted  their  spectrum  as  the  book   isomer.        

Finally,  consider  the  water  heptamer  and  octomer.    The  spectra  of  these  

clusters  in  the  OH-­‐stretch  region  were  also  reported  by  Buck  and  co-­‐workers  using   action  spectroscopy.25    In  this  case,  mass-­‐selected  clusters  were  dissociated  in  a   molecular  beam  following  absorption  of  an  infrared  photon.    The  intensities  are  thus   not  directly  the  IR  dipole  intensities,  but  presumably  roughly  proportional  to  them.     The  lowest  energy  forms  of  these  clusters  were  used  in  the  calculations.    These  are   depicted  in  the  spectra  shown  below,  first  for  the  hepatamer  and  then  for  the   octomer..     The  theoretical  spectrum  is  for  the  lowest  energy  form  of  the  heptamer  and   the  orange  part  of  the  theoretical  spectra  indicates  the  bend  overtone  contribution  to   the  IR  spectrum.    The  comparison  between  theory  and  experiment  here  is  good  but   not  as  good  as  seen  for  the  hexamer.    The  good  agreement  lends  evidence,  though  not   conclusive,  that  experiment  also  corresponds  to  the  lowest  energy  form  of  the   heptamer.    The  largest  difference  with  experiment  is  below  3000  cm-­‐1  and  where  the   band  in  experiment  is  totally  absent  in  the  theory  and  we  have  no  definitive   explanation  for  this.    Note  that  the  weak  band  due  to  the  bend  overtone  is  evidently   missing  in  experiment.    This  could  be  due  to  the  weak  intensity  of  this  band  or    

ACS Paragon Plus Environment

11  

The Journal of Physical Chemistry Letters

perhaps  a  long  predissociation  lifetime  of  the  complex  with  excitation  of  the  bend   overtone  relative  to  the  stretch  excitation.    This  is  just  a  speculation  of  course.          

2.5

         

   

         

Intensity (arbitrary units)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 12 of 18

Exp - data and fit

2.0

1.5

1.0

Theory - without bend overtone Theory -

bend overtone

0.5

     

0.0 3000

3200

3400

3600

3800

-1

ν (cm )

 

Figure  4  Present  Local  Monomer  (Theory)  and  experimental  action  spectrum  (ref.   25)  of  the  water  heptamer.      The  experimental  spectrum  is  a  digitized  rendering  of   Figure  6  in  reference  25).     Consider  next  the  comparison  with  the  action  spectrum  for  the  water   octomer.    This  is  shown  in  Figure  5  and,  as  seen,  agreement  is  good  and  now  the   lowest  frequency  band(s)  in  experiment  are  in  the  range  3050-­‐3100  cm-­‐1  with   nothing  reported  below  3000  cm-­‐1.    Note  in  this  cluster  the  calculated  bend-­‐overtone   bands  are  fairly  weak  and  evidently  absent  in  the  experiment,  perhaps  for  the  same    

ACS Paragon Plus Environment

12  

Page 13 of 18

reason  speculated  for  their  absence  in  the  heptamer.    Notice  also  the  relative   simplicity  of  the  octomer  spectrum  compared  to  the  heptamer  one.      This  is  evidently   a  consequence  of  the  higher  symmetry  of  the  octomer  compared  to  the  heptamer.     somewhat  like  the  differences  between  the  ring  and  book  hexamer.     2.5

Intensity (arbitrary units)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Physical Chemistry Letters

2.0

1.5

Exp - data and fit

1.0

Theory - without bend overtone 0.5

0.0 3000

Theory - bend overtone

3100

3200

3300

3400

3500

3600

3700

3800

-1

ν (cm )

 

    Figure  5    Present  Local  Monomer  (Theory)  and  experimental  action  spectrum  (ref.   24)  of  the  water  octomer.      The  experimental  spectrum  is  a  digitized  rendering  of   Figure  6  in  reference  25).     In  summary,  we  used  ab  initio  potential  and  dipole  moment  surfaces  in  

coupled  three-­‐mode  calculations  of  the  IR  spectra  of  the  book  and  ring  isomers  of  the  

 

ACS Paragon Plus Environment

13  

The Journal of Physical Chemistry Letters

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 14 of 18

water  hexamer  in  the  3000-­‐3800  cm-­‐1  region.    By  including  the  bend  overtone  in   these  calculations,  we  were  able  to  firmly  assign  experimental  spectra  that   tentatively  made  these  isomer  assignments.    We  also  demonstrated  substantial   inaccuracies  in  the  widely-­‐used  scaled  double-­‐harmonic  approximation  to  assign  and   interpret  these  spectra.      Calculated  spectra  of  the  water  heptamer  and  octomer  in   this  spectral  range  were  also  presented  and  compared  to  experimental   predissociation  action  spectra,  and  with  some  caveats,  agreement  was  good.     The  authors  declare  no  competing  financial  interest.   AUTHOR  INFORMATION   Corresponding  Author   *E-­‐mail:  [email protected]     Acknowledgments:  We  thank  the  National  Science  Foundation  (CHE-­‐1145227)  for   financial  support.    We  also  thank  Mark  Johnson  for  sending  the  spectrum  shown  in   Figure  3,  and  Gary  Douberly  for  sending  his  He  nanodroplet  spectrum       References   1.  Dahlke,  E.  E.;  Olson,  R.  M.;  Leverentz,  H.  R.;  Truhlar,  D.  G.  Assessment  of  the   Accuracy  of  Density  Functionals  for  Prediction  of  Relative  Energies  and   Geometries  of  Low-­‐Lying  Isomers  of  Water  Hexamers.  J.  Phys.  Chem.  A  2008,   112,  3976-­‐3984.   2.    Santra,  B.;  Michaelides,  A.;  Fuchs,  M.;  Tkatchenko,  A.;  Filippi,  C.;  Scheffler,  M.   On  The  Accuracy  Of  Density-­‐Functional  Theory  Exchange-­‐Correlation   Functionals  For  H  Bonds  In  Small  Water  Clusters.  II.  The  Water  Hexamer  And   Van  Der  Waals  Interactions.  J.  Chem.  Phys.  2008,  129,  194111-­‐194114.  

 

ACS Paragon Plus Environment

14  

Page 15 of 18

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Physical Chemistry Letters

3.    Bates,  D.  M.;  Tschumper,  G.  S.  CCSD(T)  Complete  Basis  Set  Limit  Relative   Energies  for  Low-­‐Lying  Water  Hexamer  Structures.  J.  Phys.  Chem.  A  2009,  113,   3555-­‐3559.   4.    Gora,  U.;  Podeszwa,  R.;  Cencek,  W.;  Szalewicz,  K.  Interaction  Energies  Of   Large  Clusters  From  Many-­‐Body  Expansion.  J.  Chem.  Phys.  2011,  135,  224102-­‐ 224119.   5.  Liu,  K.;  Brown,  M.  G.;  Carter,  C.;  Saykally,  R.  J.;  Gregory,  J.  K.;  Clary,  D.  C.   Characterization  Of  A  Cage  Form  Of  The  Water  Hexamer.  Nature  1996,  381,   501-­‐503.   6.    Pérez,  C.;  Muckle,  M.  T.;  Zaleski,  D.  P.;  Seifert,  N.  A.;  Temelso,  B.;  Shields,  G.  C.;   Kisiel,  Z.;  Pate,  B.  H.  Structures  of  Cage,  Prism,  and  Book  Isomers  of  Water   Hexamer  from  Broadband  Rotational  Spectroscopy.  Science  2012,  336,  897-­‐ 901.   7.    Kryachko,  E.  S.  Ab  Initio  Studies  of  the  Conformations  of  Water  Hexamer:   Modelling  The  Penta-­‐Coordinated  Hydrogen-­‐Bonded  Pattern  In  Liquid  Water.   Chem.  Phys.  Lett.  1999,  314,  353-­‐363.   8.    Dunn,  M.  E.;  Pokon,  E.  K.;  Shields,  G.  C.  Thermodynamics  of  Forming  Water   Clusters  at  Various  Temperatures  and  Pressures  by  Gaussian-­‐2,  Gaussian-­‐3,   Complete  Basis  Set-­‐QB3,  and  Complete  Basis  Set-­‐APNO  Model  Chemistries;   Implications  for  Atmospheric  Chemistry.  J.  Am.  Chem.  Soc.  2004,  126,  2647-­‐ 2653.   9.    Wang,  Y.;  Babin,  V.;  Bowman,  J.  M.;  Paesani,  F.  The  Water  Hexamer:  Cage,   Prism,  or  Both.  Full  Dimensional  Quantum  Simulations  Say  Both.  J.  Am.  Chem.   Soc.  2012,  134,  11116–11119.   10.  Tainter,  C.  J.;  Skinner,  J.  L.  The  Water  Hexamer:  Three-­‐Body  Interactions,   Structures,  Energetics,  And  OH-­‐Stretch  Spectroscopy  At  Finite  Temperature.  J.   Chem.  Phys.  2012,  137,  104304-­‐104316.    

ACS Paragon Plus Environment

15  

The Journal of Physical Chemistry Letters

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 16 of 18

11.    Steinbach,  C.;  Andersson,  P.;  Melzer,  M.;  Kazimirski,  J.  K.;  Buck,  U.;  Buch,  V.   Detection  of  the  Book  Isomer  from  the  OH-­‐Stretch  Spectroscopy  of  Size   Selected  Water  Hexamers.  PCCP  2004,  6,  3320-­‐3324.   12.    Diken,  E.  G.;  Robertson,  W.  H.;  Johnson,  M.  A.  The  Vibrational  Spectrum  of  the   Neutral  (H2O)6  Precursor  To  The  “Magic”  (H2O)6-­‐  Cluster  Anion  by  Argon-­‐ Mediated,  Population-­‐Modulated  Electron  Attachment  Spectroscopy.  J.  Phys.   Chem.  A  2003,  108,  64-­‐68.   13.  Nauta,  K.;  Miller,  R.  E.  Formation  of  Cyclic  Water  Hexamer  in  Liquid  Helium:   The  Smallest  Piece  of  Ice.  Science  2000,  287,  293-­‐295.   14.    Burnham,  C.  J.;  Xantheas,  S.  S.;  Miller,  M.  A.;  Applegate,  B.  E.;  Miller,  R.  E.  The   Formation  of  Cyclic  Water  Complexes  by  Sequential  Ring  Insertion:   Experiment  and  Theory.  J.  Chem.  Phys.  2002,  117,  1109-­‐1122.   15.    Kim,  J.;  Kim,  K.  S.  Structures,  Binding  Energies,  and  Spectra  of  Isoenergetic   Water  Hexamer  Clusters:  Extensive  Ab  Initio  Studies.  J.  Chem.  Phys.  1998,  109,   5886-­‐5895.   16.    Salmi,  T.;  Kjaergaard,  H.  G.;  Halonen,  L.  Calculation  of  Overtone  O-­‐H   Stretching  Bands  and  Intensities  of  the  Water  Trimer.  J.  Phys.  Chem.  A  2009,   113,  9124-­‐9132.   17. Tremblay,  B.;  Madebene,  B.;  Alikhani,  M.  E.;  Perchard,  J.  P.  The  vibrational   spectrum  of  the  water  trimer:  Comparison  between  anharmonic  ab  initio   calculations  and  neon  matrix  infrared  data  between  11,000  and  90  cm-­‐1  Chem.   Phys.  2010,  378,  27−36.   18.  Liu,  H.;  Wang,  Y.;  Bowman,  J.  M.  Quantum  Calculations  of  Intramolecular  IR   Spectra  of  Ice  Models  Using  Ab  Initio  Potential  and  Dipole  Moment  Surfaces.  J.   Phys.  Chem.  Lett.  2012,  3,  3671-­‐3676.   19. Wang,  Y.;  Huang,  X.;  Shepler,  B.  C.;  Braams,  B.  J.;  Bowman,  J.  M.  Flexible,  Ab   Initio  Potential,  and  Dipole  Moment  Surfaces  for  Water.  I.  Tests  and    

ACS Paragon Plus Environment

16  

Page 17 of 18

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Physical Chemistry Letters

Applications  for  Clusters  up  to  the  22-­‐mer.  J.  Chem.  Phys.  2011,  134,  094509.   20.  Wang,  Y.;  Bowman,  J.  M.  Ab  Initio  Potential  And  Dipole  Moment  Surfaces  for   Water.  II.  Local-­‐Monomer  Calculations  of  the  Infrared  Spectra  of  Water   Clusters.  J.  Chem.  Phys.  2011,  134,  154510.   21. Wang,  Y.;  Bowman,  J.  M.  Coupled-­‐Monomers  in  Molecular  Assemblies:  Theory   and  Application  to  the  Water  Tetramer,  Pentamer,  and  Ring  Hexamer.  J.  Chem.   Phys.  2012,  136,  144113.   22. Bowman,  J.  M.;  Carter,  S.;  Huang,  X.  MULTIMODE:  A  Code  to  Calculate   Rovibrational  Energies  of  Polyatomic  Molecules.  Int.  Rev.  Phys.  Chem.  2003,   22,  533-­‐549.   23. Watanabe,  Y.;  Maeda,  S.;  Ohno,  K. Intramolecular  vibrational  frequencies  of   water  clusters  (H2O)n  (n=2–5):  Anharmonic  analyses  using  potential  functions   based  on  the  scaled  hypersphere  search  method,  J.  Chem.  Phys.  2008,  129,   074315.   24. Steinbach,  C.;  Andersson,  P.;  Melzer,  M.;  Kazimirski,  J.K.;  Buck,  U.;  Buch,  V.;   Detection  of  the  book  isomer  from  the  OH-­‐stretch  spectroscopy  of  size   selected  water  hexamers,  PCCP,  2004,  6,  3320–3324.   25. Sadlej,  J.; Buch,  V.;  Kazimirski,  J.K.; Buck,  U.  Theoretical  Study  of  Structure  and   Spectra  of  Cage  Clusters  (H2O)n,  n  =  7-­‐10.  J.  Phys.  Chem.  A  1999,  103,  4933-­‐ 4947.  

 

ACS Paragon Plus Environment

17  

The Journal of Physical Chemistry Letters

2.0

Intensity (arbitrary units)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 18 of 18

1.5

1.0

Exp - Ring Hexamer

0.5

Exp - non Hexamer

Bend overtone

Theory - RIng Hexamer

0.0 3200

3300

3400

3500

3600

3700

-1

ν (cm )

ACS Paragon Plus Environment