Subscriber access provided by UB + Fachbibliothek Chemie | (FU-Bibliothekssystem)
Article
Isomerization of second generation isoprene peroxy radicals: epoxide formation and implications for secondary organic aerosol yields Emma L. D'Ambro, Kristian H. Møller, Felipe D. Lopez-Hilfiker, Siegfried Schobesberger, Jiumeng Liu, John E. Shilling, Ben Hwan Lee, Henrik G. Kjaergaard, and Joel A. Thornton Environ. Sci. Technol., Just Accepted Manuscript • DOI: 10.1021/acs.est.7b00460 • Publication Date (Web): 07 Apr 2017 Downloaded from http://pubs.acs.org on April 9, 2017
Just Accepted “Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.
Environmental Science & Technology is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.
Page 1 of 30
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
Environmental Science & Technology
Isomerization of second generation isoprene peroxy radicals: epoxide formation and implications for secondary organic aerosol yields Emma L. D’Ambro1,2, Kristian H. Møller3, Felipe D. Lopez-Hilfiker1,a , Siegfried Schobesberger1,b , Jiumeng Liu4, John E. Shilling4,5, Ben Hwan Lee1, Henrik G. Kjaergaard3, Joel A. Thornton*,1,2 1
Department of Atmospheric Sciences, University of Washington, Seattle, Washington 98195, United States 2 Department of Chemistry, University of Washington, Seattle, Washington 98195, United States 3 Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark 4 Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA 5 Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99352, USA a Now at: Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Zurich, Switzerland b Now at: Department of Applied Physics, University of Eastern Finland, Kuopio, Finland Author Information Corresponding Author * Phone: 206-543-4010; Email:
[email protected]; Mail: 408 ATG Building, Box 351640, University of Washington, Seattle, WA 98195
1 ACS Paragon Plus Environment
Environmental Science & Technology
47
Page 2 of 30
Abstract
48
We report chamber measurements of secondary organic aerosol (SOA) formation from
49
isoprene photochemical oxidation, where radical concentrations were systematically varied and
50
the molecular composition of semi to low volatility gases and SOA were measured online. Using
51
a detailed chemical kinetics box model, we find that to explain the behavior of low volatility
52
products and SOA mass yields relative to input H2O2 concentrations, the second generation
53
dihydroxy hydroperoxy peroxy radical (C5H11O6•) must undergo an intra-molecular H-shift with
54
a net forward rate constant of order 0.1 s-1 or higher. This finding is consistent with quantum
55
chemical calculations which suggest a net forward rate constant of 0.3-0.9 s-1. Furthermore, these
56
calculations suggest the dominant product of this isomerization is a dihydroxy hydroperoxy
57
epoxide (C5H10O5) which is expected to have a saturation vapor pressure ~2 orders of magnitude
58
higher, as determined by group-contribution calculations, than the dihydroxy dihydroperoxide,
59
ISOP(OOH)2 (C5H12O6), a major product of the peroxy radical reacting with HO2. These results
60
provide strong constraints on the likely volatility distribution of isoprene oxidation products
61
under atmospheric conditions and thus on the importance of non-reactive gas-particle
62
partitioning of isoprene oxidation products as an SOA source.
63 64 65
1. Introduction Atmospheric submicron aerosol particles impact climate, human health, and visibility.1 A
66
large portion of submicron aerosol mass (~20-90%) is secondary organic aerosol (SOA),2,
67
which arises from chemical processes in the atmosphere that convert volatile organic compounds
68
(VOC) into condensed-phase organic material. A significant fraction of SOA is thought to be
69
formed from biogenic rather than anthropogenic VOC.4,
5
3
The annual emissions of isoprene
2 ACS Paragon Plus Environment
Page 3 of 30
Environmental Science & Technology
70
(C5H8), primarily from deciduous vegetation, represent nearly half the total of all non-methane
71
hydrocarbons.6 Thus, isoprene has the potential to generate large quantities of SOA, even if its
72
overall conversion is inefficient.
73
The formation of SOA from the free radical photochemical oxidation of biogenic VOC
74
(BVOC) is governed in part by the mass concentration (c) weighted volatility distribution of the
75
resulting products. For example, BVOC oxidation products having equilibrium saturation vapor
76
concentrations (c*) lower than ~100 µg m-3 can be expected to partition into an existing organic
77
condensed-phase and thus contribute to SOA, as typical organic aerosol mass concentrations
78
( ) are in the range of 1-10 µg m-3.7, 8 The volatility distribution of BVOC oxidation products
79
is governed by the ratio of the BVOC that undergoes functionalization relative to fragmentation
80
during atmospheric oxidation. Oxidation of BVOC is frequently initiated by the formation of a
81
carbon-centered radical primarily due to reaction with a hydroxyl radical (OH). In this initial
82
stage, atmospheric oxygen (O2) can add to the carbon-centered radical to form an organic peroxy
83
radical (RO2). RO2 can then undergo bimolecular reactions with typically HO2, NO, or RO2. All
84
of these bimolecular reactions can produce more functionalized products, while the latter two can
85
also form alkoxy radicals (RO) which can undergo H-shift isomerization9 or fragment into
86
smaller, more volatile products. Thus, the volatility distribution is largely determined by the fate
87
of RO2 intermediates.
88
In the specific case of isoprene (scheme 1), OH addition to a double bond followed by O2
89
addition yields a hydroxy RO2. Some isomers of the first-generation RO2 can undergo
90
unimolecular isomerization (not shown), with a forward rate constant of order 0.01 - 1 s-1,10-12
91
followed by HO2 loss to produce a hydroperoxyenal (HPALD),10, 11 or dihydroperoxy-carbonyl
92
peroxy radicals (di-HPCARP).12 The net isomerization rate constant weighted by the isomer
3 ACS Paragon Plus Environment
Environmental Science & Technology
12
Page 4 of 30
93
distribution was calculated to be ~0.001 s-1.11,
94
bimolecular reactions with HO2 to form a hydroxy hydroperoxide (ISOPOOH), NO to form an
95
alkyl nitrate,13 or NO or RO2 to form an alkoxy radical. The latter tends to decompose by carbon-
96
carbon bond scission to form products such as formaldehyde, methacrolein, or methyl vinyl
97
ketone.14-17 These first generation closed-shell products are rather volatile, and though they may
98
undergo multiphase reactions, their contribution to SOA by direct partitioning is likely small.
99
Given that a large fraction of isoprene reacts to form ISOPOOH under low NOx conditions,
100
possibly up to or greater than 70%,18 and that it likely has the lowest c* of the first generation
101
products, its oxidation products are the subject of continued focus.
The first generation RO2 can undergo
102
ISOPOOH reacts rapidly via OH addition to the remaining double bond producing a
103
carbon-centered radical often α to the hydroperoxide moiety (Scheme 1). This alkyl radical has
104
been shown to form an epoxide bridge with the hydroperoxide group. Consecutive loss of OH
105
from that hydroperoxide group forms an epoxydiol (IEPOX)18 ~70-80% of the time19 (Scheme
106
1). A significant fraction of isoprene-derived SOA is now understood to originate from acid
107
catalyzed aqueous phase chemistry of IEPOX,18, 20-27 although SOA also forms from isoprene
108
oxidation in the absence of an acidic aqueous phase.28-31 Recent gas-29 and particle-phase30-32
109
composition measurements of low-NOx OH oxidation of both isoprene and ISOPOOH reveal
110
highly oxygenated second generation products. A major particle-phase component has the
111
composition C5H12O6,30-32 likely a dihydroxy dihydroperoxide, which we refer to as
112
ISOP(OOH)2 (see Scheme 2, top reaction, for structure). This product is believed to form from
113
O2 addition to the carbon-centered radical from ISOPOOH + OH to yield a second generation
114
RO2 in competition with IEPOX formation (Scheme 1), followed by reaction of the RO2 with
115
HO2 (Scheme 2, top reaction). A fraction of ISOPOOH + OH is also expected to react via H-
4 ACS Paragon Plus Environment
Page 5 of 30
Environmental Science & Technology
116
abstraction from an alkyl group or the –OOH group, although these channels are relatively small
117
contributions to net ISOPOOH reactivity.19
118
In previous work, we showed that steady-state ISOP(OOH)2 and SOA mass yields
119
increase together as the OH and HO2 source,30 H2O2, is increased relative to isoprene. Reasons
120
for this behavior have yet to be determined. Mechanistic explanations for prominent products
121
from this system other than ISOP(OOH)2, such as C5H12O5 and C5H10O5-7, are also lacking.
122
Herein, we compare an expanded set of chamber experiments with novel predictions from a
123
detailed multiphase chemical model, and quantum chemical calculations of RO2 radical fates, to
124
improve our understanding of the isoprene oxidation mechanism and thus the formation of
125
isoprene SOA from non-IEPOX oxidation products. Specifically, we test different hypotheses for
126
the fate of the C5H11O6• peroxy radical so that we can understand the dependence of non-IEPOX
127
isoprene SOA formation on chamber oxidation conditions. We conclude with a discussion of the
128
atmospheric implications of our findings.
129 130
2. Methods
131
2.1 Laboratory Experiments
132
A suite of online instruments were employed to monitor the gas- and particle-phase chemical
133
composition. Ozone (Thermo Environmental Instruments model 49C), NO/NO2/NOx (Thermo
134
Environmental Instruments model 42C), and isoprene (Ionicon proton-transfer-reaction mass
135
spectrometer (PTR-MS)) concentrations were measured in the chamber outflow. Bulk submicron
136
organic and inorganic particle-phase composition and mass loading were measured with an
137
Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HRToF-AMS). A high-
138
resolution time-of-flight chemical ionization mass spectrometer (HRToF-CIMS) with iodide
5 ACS Paragon Plus Environment
Environmental Science & Technology
Page 6 of 30
139
ionization was coupled to a Filter Inlet for Gases and AEROsols (FIGAERO).33 The HRToF-
140
CIMS FIGAERO coupling has been described in detail previously in the configuration used in
141
these experiments.30, 32, 34 Briefly, the FIGAERO is an inlet manifold that allows for sampling
142
gas-phase composition at 1 Hz through an independent inlet while collecting aerosol particles on
143
a Teflon filter through another inlet. Particle-phase composition is assessed at approximately
144
hourly resolution by actuating the filter to be in front of the HRToF-CIMS entrance orifice and
145
performing temperature-programmed thermal desorption of particles. Vaporized particle-phase
146
compounds are then detected by the HRToF-CIMS.
147
Experiments presented here have been discussed previously,32 but the observed
148
relationships of SOA yields to radical sources in these specific experiments have not been
149
presented. In brief, experiments were performed in 2015 in the Pacific Northwest National
150
Laboratory’s 10.6 m3 fluorinated ethylene polypropylene (FEP) environmental chamber, which
151
has been described before.32, 35 The chamber was controlled to a constant 50% relative humidity
152
and operated in continuous-flow mode with a residence time of 5.2 hours where reactants are
153
continuously delivered at a constant flow rate while products are continuously monitored with a
154
suite of gas- and particle-phase instrumentation. OH and HO2 radicals were generated from the
155
photolysis of excess H2O2 (Sigma-Aldrich, 50% in water), with chamber concentrations ranging
156
from 0.1 s-1.
, which is slower than other recent determinations in chambers operated in batch-mode.45-48, 50, 51
290
The important role of isomerization is demonstrated further in Figure 2, where we
291
compare model predicted and observed ISOP(OOH)2 mass yields as a function of H2O2 in the
292
chamber, used as a proxy for [HO2] (Fig. S2). Model runs were conducted at isomerization rate
293
constants, kisom, of 0 (i.e. the base-case), 0.005, 0.3, and 0.8 s-1 and all other parameters the same
294
as the base-case (IEPOX yield of 82%, kwall =10-5 s-1). The runs at the two slowest isomerization
295
rates (0 and 0.005 s-1) are statistically the same and significantly over-predict the ISOP(OOH)2
296
mass yield relative to the measurements by up to a factor of 30. The runs with kisom of 0.3 and 0.8
297
s-1 are both much closer to the data, with the run at kisom = 0.8 s-1 predicting ISOP(OOH)2 mass
298
yields closest to the observations (Fig. 2, inset), and have the approximate linear increase of yield
299
with H2O2. We demonstrate in the SI with a steady-state chemical analysis that the dependence
12 ACS Paragon Plus Environment
Page 13 of 30
Environmental Science & Technology
300
of the ISOP(OOH)2 and SOA mass yields on changing input H2O2 concentrations requires the
301
existence of a pathway such as isomerization that competes with the RO2 + HO2 reaction. Simply
302
increasing kwall or ϕ moves the model curve down, but does not change the shape (Fig. S4), nor
303
does [OH] change enough to explain the observations. We can also rule out significant nitric
304
oxide chemistry using our observations of organic nitrates (and NOx).32 Increasing the RO2 +
305
RO2 reaction rate constant to the kinetic limit also did not improve the agreement. Thus, we
306
conclude that isomerization of the C5H11O6• peroxy radical competes with the reaction of
307
C5H11O6• with HO2 and thereby causes the observed trend with H2O2 concentration.
308
While Crounse et al.11 reported experimentally measured net isomer-weighted
309
isomerization rate of the first generation isoprene hydroxy peroxy radical, C5H9O3 (ISOPO2), of
310
order 0.001 s-1, we note specific isomers had larger isomerization rates,73 and other studies have
311
found the H-shift kisom of methacrolein and a peroxy radical of -OOH substituted 3-pentanone to
312
be 0.5 s-1 74 and >0.1 s-1,73 respectively. Computational studies have also calculated rates similar
313
to these for peroxy radical hydrogen shift reactions.54, 75 Thus, the kisom required for agreement
314
with the observations we present is consistent with kisom for other peroxy radicals.
315
Our independently performed quantum chemical calculations examined the isomerization
316
rate of C5H11O6• and possible products for the two most prominent ISOPOOH isomers, 1,2-
317
ISOPOOH (shown in Scheme 1) and 3,4-ISOPOOH. In Scheme 3, we show the C5H11O6•
318
isomers formed from 1,2-ISOPOOH, however, the same is obtained for 3,4-ISOPOOH due to the
319
rapid interconversion between the two peroxy radicals, which has also been previously
320
demonstrated for another hydroperoxy-peroxy system.76 The forward rates of the 1,5 H-shift
321
reactions were found to be 0.3 s-1 and 0.9 s-1 for the two isomers, respectively (Scheme 3). The
322
reverse rates in both cases were too slow at room temperature to compete with epoxide formation
13 ACS Paragon Plus Environment
Environmental Science & Technology
Page 14 of 30
323
or the addition of O2 to the resulting alkyl radical, which presumably occurs near the kinetic limit
324
(~108 s-1 at 1 atm total pressure) as previously shown.77 Thus, the ISOPOOH-derived RO2 will
325
convert into other products due to intramolecular H-shifts at a net forward rate of order 0.3 s-1 or
326
faster according to the quantum chemical calculations, consistent with the observations and box
327
modeling described above. The fact that the box model and quantum chemical calculations
328
independently arrive at a similar value for the rate of C5H11O6• isomerization supports the
329
hypothesis that such a pathway competes with HO2, not only in the chamber, but also the
330
atmosphere where HO2 concentrations are significantly lower.
331
For isomerization of the ISOPOOH-derived RO2 to explain a decreasing SOA mass yield,
332
the products that result from the isomerization must be of higher volatility than ISOP(OOH)2.
333
The quantum chemical calculations predict three possible products: a hydroxy dihydroperoxy
334
aldehyde or ketone (C5H10O6 or C5H10O7, respectively) and a dihydroxy hydroperoxy epoxide
335
(C5H10O5), (Schemes 2 and 3). Additionally, C5H10O5 could be a dihydroxy hydroperoxy
336
aldehyde formed from addition of OH to the internal carbon of the remaining ISOPOOH double
337
bond (Scheme S1). Previous studies suggest branching to this pathway is a few percent,13, 78, 79
338
and so was not included. As it is also a product of isomerization, it does not affect our
339
determination of kisom or conclusions (see SI). The calculations suggest that formation of the
340
epoxide, analogous mechanistically to the formation of IEPOX,18 is one to two orders of
341
magnitude faster than O2 addition to form the aldehyde/ketone, where O2 addition occurs at a
342
rate of ~107 s-1 for both 1,2- and 3,4-ISOPOOH and epoxide formation occurs at calculated rates
343
of 9 × 109 or 3 × 108 s-1 for 1,2- and 3,4-ISOPOOH, respectively. That an epoxide is formed is
344
intriguing, suggesting that epoxide formation may be a more general characteristic of isoprene
345
oxidation rather than specific to IEPOX, and that epoxide formation when a hydroperoxide is α
14 ACS Paragon Plus Environment
Page 15 of 30
Environmental Science & Technology
346
to a carbon-centered radical is more common than our current mechanisms of VOC oxidation
347
suggests.
348
Although the FIGAERO HRToF-CIMS does not provide structural information, we can
349
assess whether the products of C5H11O6• peroxy radical isomerization are consistent with the
350
observed compositions of measured oxidation products. Figure 3 shows the behavior of the sum
351
of isomerization products relative to the HO2 bimolecular reaction product, where we assume
352
ions with the compositions C5H10O5, C5H10O6, and C5H10O7 correspond to the predicted epoxide,
353
aldehyde, and ketone products, respectively. The model predicts the relative shape of the
354
relationship with respect to H2O2 correctly, but the absolute agreement in the ratio of these
355
products is better for kisom of ~0.1 s-1, as opposed to the 0.3 – 0.8 s-1 suggested by the comparison
356
to the concentration of ISOP(OOH)2. Uncertainties in the relative loss rates assumed in the
357
model and in the relative instrument response to these various products likely explain such
358
discrepancies. The results shown in Figures 2 and 3, combined with the quantum calculations, all
359
point to a kisom of 0.1-0.8 s-1. That independent approaches all arrive at kisom > 0.1 s-1 therefore
360
has important implications for SOA formation from isoprene in the atmosphere.
361
The SOA mass concentration and the distribution of compounds in the particle-phase
362
provide an additional test of the model. Figure 4, top, shows that a C5H11O6• kisom of 0.3 s-1
363
provides good model/measurement agreement of the SOA abundance (R2=0.98). The base-case
364
model over-predicts SOA, while kisom of 0.8 s-1 slightly under-predicts SOA. Consistent with the
365
observations, the modeled SOA contains 36% ISOP(OOH)2 (Fig. 4, bottom), with other major
366
components matching compositions of major components measured by the FIGAERO HRToF-
367
CIMS. The model predicts that the dihydroxy hydroperoxy epoxide formed from C5H11O6•
15 ACS Paragon Plus Environment
Environmental Science & Technology
Page 16 of 30
368
isomerization makes up 48% of the aerosol composition at the highest HO2 concentration and
369
kisom of 0.8 s-1, while it was observed to be 11%.
370
We do not expect perfect agreement between measured and modeled SOA abundance and
371
composition, in part because previous studies have shown that up to 50% of this non-IEPOX
372
SOA is possibly low volatility accretion-like products32 likely formed from multiphase chemistry
373
which is not included in the model. Thus, we expect to under-predict measured SOA by as much
374
as a factor of two with F0AM, as well as to be unable to simulate observed products which are
375
the result of thermal decomposition of low volatility oligomers during the desorption analysis.
376
As such, we conclude that the overall agreement with observations in the predicted SOA mass
377
abundance, dominant products, and response to changing H2O2 is reasonable, and that
378
constraining kisom for the C5H11O6• peroxy radical at >0.1 s-1 is more important than kwall for
379
predicting the SOA yield.
380 381
4. Atmospheric Implications
382
We utilize quantum chemical calculations and a detailed chemical kinetics box model
383
compared to measurements of gas- and particle-phase oxidation products of isoprene made in an
384
environmental chamber. To explain the responses of product distributions and SOA mass
385
concentrations to changes in chamber radical conditions, the C5H11O6• peroxy radical formed
386
from ISOPOOH + OH must undergo intra-molecular H-atom shift reactions (“RO2
387
isomerization”) at rates exceeding 0.1 s-1 to form products 1-2 orders of magnitude higher
388
volatility than that of ISOP(OOH)2, which forms if the peroxy radical reacts with HO2. Such a
389
pathway has significant implications for how low-NO chamber studies should be conducted, and
16 ACS Paragon Plus Environment
Page 17 of 30
Environmental Science & Technology
390
offers a way to reconcile differences in SOA yields measured under different chamber
391
conditions.28-31
392
While ISOP(OOH)2 and related highly oxygenated C5 compounds believed to come from the
393
ISOP(OOH)2 pathway, have been observed in the Southeastern U.S. atmosphere during the
394
SOAS 2013 field campaign, their abundance was only a few percent of the total SOA in an
395
isoprene dominated region.31 Using SOAS diurnally averaged measurements of HO2 and NO,
396
and our F0AM model presented here, we calculate the vast majority, >96%, of the C5H11O6• will
397
undergo isomerization instead of forming the lowest volatility ISOP(OOH)2 and related products.
398
The quantum calculations suggest the most likely product of the isomerization is a dihydroxy
399
hydroperoxy epoxide. While we and others observe a major second generation product with the
400
composition (C5H10O5) of such an epoxide,29 confirmation of the structure remains necessary.
401
Epoxides in general undergo heterogeneous uptake and acid catalyzed ring opening with the
402
potential to form SOA through subsequent substitution reactions.27, 80, 81 However, we speculate
403
that the dominant fate in aqueous acidic particles of this specific epoxide moiety will be nearly
404
instantaneous conversion to a dihydroxy hydroperoxy carbonyl, but direct experimental evidence
405
is needed. That said, its lower volatility relative to IEPOX will allow it to partition more strongly
406
to an organic phase where it may undergo accretion chemistry.
407
The dominance of epoxide formation over O2 addition to a carbon radical α to a
408
hydroperoxyl group, as calculated herein and for the case of IEPOX, suggests gas-phase epoxide
409
formation may be more common than current atmospheric chemistry mechanisms allow. Such a
410
situation would have implications for the propensity of acidity enhanced SOA formation from a
411
variety of biogenic and anthropogenic VOC.20,
412
autoxidation, where peroxy radicals form multiple hydroperoxide moieties by several intra-
26, 27, 81
For example, the peroxy radical
17 ACS Paragon Plus Environment
Environmental Science & Technology
Page 18 of 30
413
molecular H-shifts could well terminate to epoxides. Epoxide formation has been commonly
414
suggested, particularly for aromatic systems,82-88 supporting the idea that epoxides are potentially
415
a feature of low NOx oxidation of non-aromatics when a radical center occurs α to a hydroperoxy
416
group. Moreover, there is also recent evidence for epoxide formation from –ONO2 groups α to
417
the carbon radical.19, 89, 90 Thus, we suggest analytical methods specific to epoxides be developed
418
for assessing their ubiquity in the atmosphere and chamber studies.
419 420
Associated Content
421
Includes further detail on: chamber conditions, F0AM and the gas/particle partitioning module
422
used herein, quantum chemical calculations, and the dependence of ISOP(OOH)2 and SOA mass
423
yields on H2O2. Also includes a link to the gas/particle partitioning module for download.
424 425
Acknowledgements
426
This work was supported by the U.S. Department of Energy ASR grants DE-SC0011791.
427
E.L.D. was supported by the National Science Foundation Graduate Research Fellowship under
428
Grant No. DGE-1256082. B.H.L. was supported by the National Oceanic and Atmospheric
429
Administration (NOAA) Climate and Global Change Postdoctoral Fellowship Program. PNNL
430
authors were supported by the U. S. Department of Energy, Office of Biological and
431
Environmental Research, as part of the ASR program. Copenhagen authors were supported by
432
the University of Copenhagen. Pacific Northwest National Laboratory is operated for the DOE
433
by Battelle Memorial Institute under contract DE-AC05-76RL01830. We thank G.M. Wolfe
434
(NASA/UMBC), T.A. Spencer (Dartmouth College), R. Ditchfield (Dartmouth College), and
18 ACS Paragon Plus Environment
Page 19 of 30
Environmental Science & Technology
435
Rasmus V. Otkjær (University of Copenhagen) for helpful discussions, and the Danish Center
436
for Scientific Computing for computational time.
437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 19 ACS Paragon Plus Environment
Environmental Science & Technology
479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
Page 20 of 30
References 1. Poschl, U., Atmospheric aerosols: Composition, transformation, climate and health effects. Angew. Chem.-Int. Edit. 2005, 44 (46), 7520-7540; doi 10.1002/anie.200501122. 2. Jimenez, J. L.; Canagaratna, M. R.; Donahue, N. M.; Prevot, A. S. H.; Zhang, Q.; Kroll, J. H.; DeCarlo, P. F.; Allan, J. D.; Coe, H.; Ng, N. L.; Aiken, A. C.; Docherty, K. S.; Ulbrich, I. M.; Grieshop, A. P.; Robinson, A. L.; Duplissy, J.; Smith, J. D.; Wilson, K. R.; Lanz, V. A.; Hueglin, C.; Sun, Y. L.; Tian, J.; Laaksonen, A.; Raatikainen, T.; Rautiainen, J.; Vaattovaara, P.; Ehn, M.; Kulmala, M.; Tomlinson, J. M.; Collins, D. R.; Cubison, M. J.; Dunlea, E. J.; Huffman, J. A.; Onasch, T. B.; Alfarra, M. R.; Williams, P. I.; Bower, K.; Kondo, Y.; Schneider, J.; Drewnick, F.; Borrmann, S.; Weimer, S.; Demerjian, K.; Salcedo, D.; Cottrell, L.; Griffin, R.; Takami, A.; Miyoshi, T.; Hatakeyama, S.; Shimono, A.; Sun, J. Y.; Zhang, Y. M.; Dzepina, K.; Kimmel, J. R.; Sueper, D.; Jayne, J. T.; Herndon, S. C.; Trimborn, A. M.; Williams, L. R.; Wood, E. C.; Middlebrook, A. M.; Kolb, C. E.; Baltensperger, U.; Worsnop, D. R., Evolution of organic aerosols in the atmosphere. Science 2009, 326 (5959), 1525-1529; doi 10.1126/science.1180353. 3. Zhang, Q.; Jimenez, J. L.; Canagaratna, M. R.; Allan, J. D.; Coe, H.; Ulbrich, I.; Alfarra, M. R.; Takami, A.; Middlebrook, A. M.; Sun, Y. L.; Dzepina, K.; Dunlea, E.; Docherty, K.; DeCarlo, P. F.; Salcedo, D.; Onasch, T.; Jayne, J. T.; Miyoshi, T.; Shimono, A.; Hatakeyama, S.; Takegawa, N.; Kondo, Y.; Schneider, J.; Drewnick, F.; Borrmann, S.; Weimer, S.; Demerjian, K.; Williams, P.; Bower, K.; Bahreini, R.; Cottrell, L.; Griffin, R. J.; Rautiainen, J.; Sun, J. Y.; Zhang, Y. M.; Worsnop, D. R., Ubiquity and dominance of oxygenated species in organic aerosols in anthropogenically-influenced Northern Hemisphere midlatitudes. Geophys. Res. Lett. 2007, 34 (13), L13801; doi 10.1029/2007gl029979. 4. Weber, R. J.; Sullivan, A. P.; Peltier, R. E.; Russell, A.; Yan, B.; Zheng, M.; de Gouw, J.; Warneke, C.; Brock, C.; Holloway, J. S.; Atlas, E. L.; Edgerton, E., A study of secondary organic aerosol formation in the anthropogenic-influenced southeastern United States. J. Geophys. Res.-Atmos. 2007, 112 (D13), D13302; doi 10.1029/2007jd008408. 5. Schichtel, B. A.; Malm, W. C.; Bench, G.; Fallon, S.; McDade, C. E.; Chow, J. C.; Watson, J. G., Fossil and contemporary fine particulate carbon fractions at 12 rural and urban sites in the United States. J. Geophys. Res.-Atmos. 2008, 113 (D2), D02311; doi 10.1029/2007jd008605. 6. Guenther, A. B.; Jiang, X.; Heald, C. L.; Sakulyanontvittaya, T.; Duhl, T.; Emmons, L. K.; Wang, X., The model of emissions of gases and aerosols from nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions. Geosci. Model Dev. 2012, 5 (6), 1471-1492; doi 10.5194/gmd-5-1471-2012. 7. Pankow, J. F., An absorption-model of the gas aerosol partitioning involved in the formation of secondary organic aerosol Atmos. Environ. 1994, 28 (2), 189-193; doi 10.1016/1352-2310(94)90094-9. 8. Donahue, N. M.; Trump, E. R.; Pierce, J. R.; Riipinen, I., Theoretical constraints on pure vaporpressure driven condensation of organics to ultrafine particles. Geophys. Res. Lett. 2011, 38 (16), L16801; doi 10.1029/2011gl048115. 9. Atkinson, R.; Lloyd, A. C., Evaluation of kinetic and mechanistic data for modeling of photochemical smog. J. Phys. Chem. Ref. Data 1984, 13 (2), 315-444. 10. Peeters, J.; Nguyen, T. L.; Vereecken, L., HOx radical regeneration in the oxidation of isoprene. Phys. Chem. Chem. Phys. 2009, 11 (28), 5935-5939; doi 10.1039/b908511d. 11. Crounse, J. D.; Paulot, F.; Kjaergaard, H. G.; Wennberg, P. O., Peroxy radical isomerization in the oxidation of isoprene. Phys. Chem. Chem. Phys. 2011, 13 (30), 13607-13613; doi 10.1039/c1cp21330j. 12. Peeters, J.; Muller, J. F.; Stavrakou, T.; Nguyen, V. S., Hydroxyl radical recycling in isoprene oxidation driven by hydrogen bonding and hydrogen tunneling: the upgraded LIM1 mechanism. J. Phys. Chem. A 2014, 118 (38), 8625-43; doi 10.1021/jp5033146. 13. Paulot, F.; Crounse, J. D.; Kjaergaard, H. G.; Kroll, J. H.; Seinfeld, J. H.; Wennberg, P. O., Isoprene photooxidation: new insights into the production of acids and organic nitrates. Atmos. Chem. Phys. 2009, 9 (4), 1479-1501. 20 ACS Paragon Plus Environment
Page 21 of 30
527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
Environmental Science & Technology
14. Miyoshi, A.; Hatakeyama, S.; Washida, N., OH radical-initiated photooxidation of isoprene- an estimate of global CO production. J. Geophys. Res.-Atmos. 1994, 99 (D9), 18779-18787; doi 10.1029/94jd01334. 15. Paulson, S. E.; Seinfeld, J. H., Development and evaluation of a photooxidation mechanism for isoprene J. Geophys. Res.-Atmos. 1992, 97 (D18), 20703-20715. 16. Atkinson, R.; Aschmann, S. M.; Tuazon, E. C.; Arey, J.; Zielinska, B., Formation of 3-methylfuran from the gas-phase reaction of OH radicals with isoprene and the rate-constant for its reaction with the OH radical Int. J. Chem. Kinet. 1989, 21 (7), 593-604; doi 10.1002/kin.550210709. 17. Tuazon, E. C.; Atkinson, R., A product study of the gas-phase reaction of isoprene with the OH radical in the presence of NOx. Int. J. Chem. Kinet. 1990, 22 (12), 1221-1236; doi 10.1002/kin.550221202. 18. Paulot, F.; Crounse, J. D.; Kjaergaard, H. G.; Kurten, A.; St Clair, J. M.; Seinfeld, J. H.; Wennberg, P. O., Unexpected epoxide formation in the gas-phase photooxidation of isoprene. Science 2009, 325 (5941), 730-733; doi 10.1126/science.1172910. 19. St Clair, J. M.; Rivera-Rios, J. C.; Crounse, J. D.; Knap, H. C.; Bates, K. H.; Teng, A. P.; Jørgensen, S.; Kjaergaard, H. G.; Keutsch, F. N.; Wennberg, P. O., Kinetics and products of the reaction of the firstgeneration isoprene hydroxy hydroperoxide (ISOPOOH) with OH. J. Phys. Chem. A 2016, 120 (9), 14411451; doi 10.1021/acs.jpca.5b06532. 20. Gaston, C. J.; Riedel, T. P.; Zhang, Z. F.; Gold, A.; Surratt, J. D.; Thornton, J. A., Reactive uptake of an isoprene-derived epoxydiol to submicron aerosol particles. Environ. Sci. Technol. 2014, 48 (19), 11178-11186; doi 10.1021/es5034266. 21. Lin, Y. H.; Budisulistiorini, H.; Chu, K.; Siejack, R. A.; Zhang, H. F.; Riva, M.; Zhang, Z. F.; Gold, A.; Kautzman, K. E.; Surratt, J. D., Light-absorbing oligomer formation in secondary organic aerosol from reactive uptake of isoprene epoxydiols. Environ. Sci. Technol. 2014, 48 (20), 12012-12021; doi 10.1021/es503142b. 22. Lin, Y. H.; Knipping, E. M.; Edgerton, E. S.; Shaw, S. L.; Surratt, J. D., Investigating the influences of SO2 and NH3 levels on isoprene-derived secondary organic aerosol formation using conditional sampling approaches. Atmos. Chem. Phys. 2013, 13 (16), 8457-8470; doi 10.5194/acp-13-8457-2013. 23. Lin, Y. H.; Zhang, H. F.; Pye, H. O. T.; Zhang, Z. F.; Marth, W. J.; Park, S.; Arashiro, M.; Cui, T. Q.; Budisulistiorini, H.; Sexton, K. G.; Vizuete, W.; Xie, Y.; Luecken, D. J.; Piletic, I. R.; Edney, E. O.; Bartolotti, L. J.; Gold, A.; Surratt, J. D., Epoxide as a precursor to secondary organic aerosol formation from isoprene photooxidation in the presence of nitrogen oxides. Proc. Natl. Acad. Sci. U. S. A. 2013, 110 (17), 67186723; doi 10.1073/pnas.1221150110. 24. Lin, Y. H.; Zhang, Z. F.; Docherty, K. S.; Zhang, H. F.; Budisulistiorini, S. H.; Rubitschun, C. L.; Shaw, S. L.; Knipping, E. M.; Edgerton, E. S.; Kleindienst, T. E.; Gold, A.; Surratt, J. D., Isoprene epoxydiols as precursors to secondary organic aerosol formation: Acid-catalyzed reactive uptake studies with authentic compounds. Environ. Sci. Technol. 2012, 46 (1), 250-258; doi 10.1021/es202554c. 25. Liu, Y.; Kuwata, M.; Strick, B. F.; Geiger, F. M.; Thomson, R. J.; McKinney, K. A.; Martin, S. T., Uptake of epoxydiol isomers accounts for half of the particle-phase material produced from isoprene photooxidation via the HO pathway. Environ. Sci. Technol. 2014, 49, 250-258; doi 10.1021/es5034298. 26. Surratt, J. D.; Chan, A. W. H.; Eddingsaas, N. C.; Chan, M. N.; Loza, C. L.; Kwan, A. J.; Hersey, S. P.; Flagan, R. C.; Wennberg, P. O.; Seinfeld, J. H., Reactive intermediates revealed in secondary organic aerosol formation from isoprene. Proc. Natl. Acad. Sci. U. S. A. 2010, 107 (15), 6640-6645; doi 10.1073/pnas.0911114107. 27. Surratt, J. D.; Murphy, S. M.; Kroll, J. H.; Ng, N. L.; Hildebrandt, L.; Sorooshian, A.; Szmigielski, R.; Vermeylen, R.; Maenhaut, W.; Claeys, M.; Flagan, R. C.; Seinfeld, J. H., Chemical composition of secondary organic aerosol formed from the photooxidation of isoprene. J. Phys. Chem. A 2006, 110 (31), 9665-9690; doi 10.1021/jp061734m.
21 ACS Paragon Plus Environment
Environmental Science & Technology
574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621
Page 22 of 30
28. Kroll, J. H.; Ng, N. L.; Murphy, S. M.; Flagan, R. C.; Seinfeld, J. H., Secondary organic aerosol formation from isoprene photooxidation. Environ. Sci. Technol. 2006, 40 (6), 1869-1877; doi 10.1021/es0524301. 29. Krechmer, J. E.; Coggon, M. M.; Massoli, P.; Nguyen, T. B.; Crounse, J. D.; Hu, W. W.; Day, D. A.; Tyndall, G. S.; Henze, D. K.; Rivera-Rios, J. C.; Nowak, J. B.; Kimmel, J. R.; Mauldin, R. L.; Stark, H.; Jayne, J. T.; Sipila, M.; Junninen, H.; Clair, J. M. S.; Zhang, X.; Feiner, P. A.; Zhang, L.; Miller, D. O.; Brune, W. H.; Keutsch, F. N.; Wennberg, P. O.; Seinfeld, J. H.; Worsnop, D. R.; Jimenez, J. L.; Canagaratna, M. R., Formation of low volatility organic compounds and Secondary Organic Aerosol from isoprene hydroxyhydroperoxide low-NO oxidation. Environ. Sci. Technol. 2015, 49 (17), 10330-10339; doi 10.1021/acs.est.5b02031. 30. Liu, J. M.; D'Ambro, E. L.; Lee, B. H.; Lopez-Hilfiker, F. D.; Zaveri, R. A.; Rivera-Rios, J. C.; Keutsch, F. N.; Iyer, S.; Kurten, T.; Zhang, Z. F.; Gold, A.; Surratt, J. D.; Shilling, J. E.; Thornton, J. A., Efficient isoprene secondary organic aerosol formation from a non-IEPOX pathway. Environ. Sci. Technol. 2016, 50 (18), 9872-9880; doi 10.1021/acs.est.6b01872. 31. Riva, M.; Budisulistiorini, S. H.; Chen, Y. Z.; Zhang, Z. F.; D'Ambro, E. L.; Zhang, X.; Gold, A.; Turpin, B. J.; Thornton, J. A.; Canagaratna, M. R.; Surratt, J. D., Chemical characterization of secondary organic aerosol from oxidation of isoprene hydroxyhydroperoxides. Environ. Sci. Technol. 2016, 50 (18), 9889-9899; doi 10.1021/acs.est.6b02511. 32. D'Ambro, E. L.; Lee, B. H.; Liu, J.; Shilling, J. E.; Gaston, C. J.; Lopez-Hilfiker, F. D.; Schobesberger, S.; Zaveri, R. A.; Mohr, C.; Lutz, A.; Zhang, Z.; Gold, A.; Surratt, J. D.; Rivera-Rios, J. C.; Keutsch, F. N.; Thornton, J. A., Molecular composition and volatility of isoprene photochemical oxidation secondary organic aerosol under low- and high-NOx conditions. Atmos. Chem. Phys. 2017, 17 (1), 159-174; doi 10.5194/acp-17-159-2017. 33. Lopez-Hilfiker, F. D.; Mohr, C.; Ehn, M.; Rubach, F.; Kleist, E.; Wildt, J.; Mentel, T. F.; Lutz, A.; Hallquist, M.; Worsnop, D.; Thornton, J. A., A novel method for online analysis of gas and particle composition: description and evaluation of a Filter Inlet for Gases and AEROsols (FIGAERO). Atmos. Meas. Tech. 2014, 7 (4), 983-1001; doi 10.5194/amt-7-983-2014. 34. Lee, B. H.; Lopez-Hilfiker, F. D.; Mohr, C.; Kurten, T.; Worsnop, D. R.; Thornton, J. A., An iodideadduct high-resolution time-of-flight chemical-ionization mass spectrometer: application to atmospheric inorganic and organic compounds. Environ. Sci. Technol. 2014, 48 (11), 6309-17; doi 10.1021/es500362a. 35. Liu, S.; Shilling, J. E.; Song, C.; Hiranuma, N.; Zaveri, R. A.; Russell, L. M., Hydrolysis of organonitrate functional groups in aerosol particles. Aerosol Sci. Technol. 2012, 46 (12), 1359-1369; doi 10.1080/02786826.2012.716175. 36. Wolfe, G. M.; Marvin, M. R.; Roberts, S. J.; Travis, K. R.; Liao, J., The Framework for 0-D Atmospheric Modeling (F0AM) v3.1. Geosci. Model Dev. 2016, 9 (9), 3309-3319; doi 10.5194/gmd-93309-2016. 37. Wolfe, G. M.; Thornton, J. A., The Chemistry of Atmosphere-Forest Exchange (CAFE) Model Part 1: Model description and characterization. Atmos. Chem. Phys. 2011, 11 (1), 77-101; doi 10.5194/acp-11-77-2011. 38. Wolfe, G. M.; Thornton, J. A.; Bouvier-Brown, N. C.; Goldstein, A. H.; Park, J. H.; McKay, M.; Matross, D. M.; Mao, J.; Brune, W. H.; LaFranchi, B. W.; Browne, E. C.; Min, K. E.; Wooldridge, P. J.; Cohen, R. C.; Crounse, J. D.; Faloona, I. C.; Gilman, J. B.; Kuster, W. C.; de Gouw, J. A.; Huisman, A.; Keutsch, F. N., The Chemistry of Atmosphere-Forest Exchange (CAFE) Model - Part 2: Application to BEARPEX-2007 observations. Atmos. Chem. Phys. 2011, 11 (3), 1269-1294; doi 10.5194/acp-11-12692011. 39. Wolfe, G. M.; Thornton, J. A.; McKay, M.; Goldstein, A. H., Forest-atmosphere exchange of ozone: sensitivity to very reactive biogenic VOC emissions and implications for in-canopy photochemistry. Atmos. Chem. Phys. 2011, 11 (15), 7875-7891; doi 10.5194/acp-11-7875-2011. 22 ACS Paragon Plus Environment
Page 23 of 30
622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667
Environmental Science & Technology
40. Jenkin, M. E.; Young, J. C.; Rickard, A. R., The MCM v3.3.1 degradation scheme for isoprene. Atmos. Chem. Phys. 2015, 15 (20), 11433-11459; doi 10.5194/acp-15-11433-2015. 41. Hilal, S. H.; Karickhoff, S. W.; Carreira, L. A., Prediction of the vapor pressure boiling point, heat of vaporization and diffusion coefficient of organic compounds. QSAR Comb. Sci. 2003, 22 (6), 565-574; doi 10.1002/qsar.200330812. 42. Saleh, R.; Donahue, N. M.; Robinson, A. L., Time scales for gas-particle partitioning equilibration of secondary organic aerosol formed from alpha-pinene ozonolysis. Environ. Sci. Technol. 2013, 47 (11), 5588-5594; doi 10.1021/es400078d. 43. Compernolle, S.; Ceulemans, K.; Muller, J. F., EVAPORATION: a new vapour pressure estimation method for organic molecules including non-additivity and intramolecular interactions. Atmos. Chem. Phys. 2011, 11 (18), 9431-9450; doi 10.5194/acp-11-9431-2011. 44. Crump, J. G.; Flagan, R. C.; Seinfeld, J. H., Particle wall loss rates in vessels. Aerosol Sci. Technol. 1983, 2 (3), 303-309; doi 10.1080/02786828308958636. 45. Zhang, X.; Cappa, C. D.; Jathar, S. H.; McVay, R. C.; Ensberg, J. J.; Kleeman, M. J.; Seinfeld, J. H., Influence of vapor wall loss in laboratory chambers on yields of secondary organic aerosol. Proc. Natl. Acad. Sci. U. S. A. 2014, 111 (16), 5802-5807; doi 10.1073/pnas.1404727111. 46. Krechmer, J. E.; Pagonis, D.; Ziemann, P. J.; Jimenez, J. L., Quantification of gas-wall partitioning in teflon environmental chambers using rapid bursts of low-volatility oxidized species generated in situ. Environ. Sci. Technol. 2016, 50 (11), 5757-5765; doi 10.1021/acs.est.6b00606. 47. La, Y. S.; Camredon, M.; Ziemann, P. J.; Valorso, R.; Matsunaga, A.; Lannuque, V.; Lee-Taylor, J.; Hodzic, A.; Madronich, S.; Aumont, B., Impact of chamber wall loss of gaseous organic compounds on secondary organic aerosol formation: explicit modeling of SOA formation from alkane and alkene oxidation. Atmos. Chem. Phys. 2016, 16 (3), 1417-1431; doi 10.5194/acp-16-1417-2016. 48. Matsunaga, A.; Ziemann, P. J., Gas-wall partitioning of organic compounds in a teflon film chamber and potential effects on reaction product and aerosol yield measurements. Aerosol Sci. Technol. 2010, 44 (10), 881-892; doi 10.1080/02786826.2010.501044. 49. Loza, C. L.; Chan, A. W. H.; Galloway, M. M.; Keutsch, F. N.; Flagan, R. C.; Seinfeld, J. H., Characterization of vapor wall loss in laboratory chambers. Environ. Sci. Technol. 2010, 44 (13), 50745078; doi 10.1021/es100727v. 50. Yeh, G. K.; Ziemann, P. J., Alkyl nitrate formation from the reactions of C-8-C-14 n-alkanes with OH radicals in the presence of NOx: Measured yields with essential corrections for gas-wall partitioning. J. Phys. Chem. A 2014, 118 (37), 8147-8157; doi 10.1021/jp500631v. 51. McMurry, P. H.; Grosjean, D., Gas and aerosol wall losses in teflon film smog chambers Environ. Sci. Technol. 1985, 19 (12), 1176-1182; doi 10.1021/es00142a006. 52. Shilling, J. E.; Chen, Q.; King, S. M.; Rosenoern, T.; Kroll, J. H.; Worsnop, D. R.; McKinney, K. A.; Martin, S. T., Particle mass yield in secondary organic aerosol formed by the dark ozonolysis of alphapinene. Atmos. Chem. Phys. 2008, 8 (7), 2073-2088; doi 10.5194/acp-8-2073-2008. 53. Vereecken, L.; Peeters, J., The 1,5-H-shift in 1-butoxy: A case study in the rigorous implementation of transition state theory for a multirotamer system. J. Chem. Phys. 2003, 119 (10), 5159-5170; doi 10.1063/1.1597479. 54. Møller, K. H.; Otkjær, R. V.; Hyttinen, N.; Kurtén, T.; Kjaergaard, H. G., Cost-Effective Implementation of Multiconformer Transition State Theory for Peroxy Radical Hydrogen Shift Reactions. J. Phys. Chem. A 2016, 120 (51), 10072-10087; doi 10.1021/acs.jpca.6b09370. 55. Spartan '14, Wavefunction Inc.: Irvine, CA, 2014. 56. Clark, M.; Cramer, R. D.; Vanopdenbosch, N., Validation of the general-purpose TRIPOS 5.2 force-field. J. Comput. Chem. 1989, 10 (8), 982-1012; doi 10.1002/jcc.540100804.
23 ACS Paragon Plus Environment
Environmental Science & Technology
668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715
Page 24 of 30
57. Clark, T.; Chandrasekhar, J.; Spitznagel, G. W.; Schleyer, P. V., Efficient diffuse functionaugmented basis sets for anion calculations. III. The 3-21+G basis set for first-row elements, Li-F J. Comput. Chem. 1983, 4 (3), 294-301; doi 10.1002/jcc.540040303. 58. Becke, A. D., Density-functional thermochemistry .3. The role of exact exchange. J. Chem. Phys. 1993, 98 (7), 5648-5652; doi 10.1063/1.464913. 59. Frisch, M. J.; Pople, J. A.; Binkley, J. S., Self-consistent molecular-orbital methods .25. Supplementary functions for gaussian-basis sets J. Chem. Phys. 1984, 80 (7), 3265-3269; doi 10.1063/1.447079. 60. Hehre, W. J.; Ditchfield, R.; Pople, J. A., Self-consistent molecular-orbital methods .12. Further extensions of gaussian-type basis sets for use in molecular-orbital studies of organic-molecules J. Chem. Phys. 1972, 56 (5), 2257-+; doi 10.1063/1.1677527. 61. Lee, C. T.; Yang, W. T.; Parr, R. G., Development of the Colle-Salvetti correlation-energy formula into a functional of the electron-density Phys. Rev. B 1988, 37 (2), 785-789; doi 10.1103/PhysRevB.37.785. 62. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J., Gaussian 09 Revision D.01. 2009. 63. Chai, J.-D.; Head-Gordon, M., Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys. Chem. Chem. Phys. 2008, 10 (44), 6615-6620; doi 10.1039/b810189b. 64. Dunning, T. H., Gaussian-basis sets for use in correlated molecular calculations .1. The atoms boron through neon and hydrogen. J. Chem. Phys. 1989, 90 (2), 1007-1023; doi 10.1063/1.456153. 65. Kendall, R. A.; Dunning, T. H.; Harrison, R. J., Electron-affinities of the 1st-row atoms revistedSystematic basis-sets and wave-functions J. Chem. Phys. 1992, 96 (9), 6796-6806; doi 10.1063/1.462569. 66. Adler, T. B.; Knizia, G.; Werner, H. J., A simple and efficient CCSD(T)-F12 approximation. J. Chem. Phys. 2007, 127 (22), doi 10.1063/1.2817618. 67. Knizia, G.; Adler, T. B.; Werner, H. J., Simplified CCSD(T)-F12 methods: Theory and benchmarks. J. Chem. Phys. 2009, 130 (5), doi 10.1063/1.3054300. 68. Peterson, K. A.; Adler, T. B.; Werner, H. J., Systematically convergent basis sets for explicitly correlated wavefunctions: The atoms H, He, B-Ne, and Al-Ar. J. Chem. Phys. 2008, 128 (8), doi 10.1063/1.2831537. 69. Watts, J. D.; Gauss, J.; Bartlett, R. J., Coupled-cluster methods with noniterative triple excitations for restricted open-shell Hartree-Fock and other general single determinant reference functions Energies and analytical gradients J. Chem. Phys. 1993, 98 (11), 8718-8733; doi 10.1063/1.464480. 70. Werner, H. J.; Knizia, G.; Manby, F. R., Explicitly correlated coupled cluster methods with pairspecific geminals. Mol. Phys. 2011, 109 (3), 407-417; doi 10.1080/00268976.2010.526641. 71. Werner, H. J.; Knowles, P. J.; Knizia, G.; Manby, F. R.; Schütz, M.; Celani, P.; Györffy, W.; Kats, D.; Korona, T.; Lindh, R.; Mitrushenkov, A.; Rauhut, G.; Shamasundar, K. R.; Adler, T. B.; Amos, R. D.; Bernhardsson, A.; Berning, A.; Cooper, D. L.; Deegan, M. J. O.; Dobbyn, A. J.; Eckert, F.; Goll, E.; Hampel, C.; Hesselmann, A.; Hetzer, G.; Hrenar, T.; Jansen, G.; Köppl, C.; Liu, Y.; Lloyd, A. W.; Mata, R. A.; May, A. J.; McNicholas, S. J.; Meyer, W.; Mura, M. E.; Nicklass, A.; O’Neill, D. P.; Palmieri, P.; Peng, D.; Pflüger, K.; 24 ACS Paragon Plus Environment
Page 25 of 30
716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
Environmental Science & Technology
Pitzer, R.; Reiher, M.; Shiozaki, T.; Stoll, H.; Stone, A. J.; Tarroni, R.; Thorsteinsson, T.; Wang, M., Molpro, version 2012.1, a package of ab initio programs. 2012. 72. Eckart, C., The penetration of a potential barrier by electrons. Phys. Rev. 1930, 35 (11), 13031309; doi 10.1103/PhysRev.35.1303. 73. Crounse, J. D.; Nielsen, L. B.; Jørgensen, S.; Kjaergaard, H. G.; Wennberg, P. O., Autoxidation of organic compounds in the atmosphere. J. Phys. Chem. Lett. 2013, 4 (20), 3513-3520; doi 10.1021/jz4019207. 74. Crounse, J. D.; Knap, H. C.; Ornso, K. B.; Jørgensen, S.; Paulot, F.; Kjaergaard, H. G.; Wennberg, P. O., Atmospheric fate of methacrolein. 1. Peroxy radical isomerization following addition of OH and O-2. J. Phys. Chem. A 2012, 116 (24), 5756-5762; doi 10.1021/jp211560u. 75. Rissanen, M. P.; Kurten, T.; Sipila, M.; Thornton, J. A.; Kangasluoma, J.; Sarnela, N.; Junninen, H.; Jørgensen, S.; Schallhart, S.; Kajos, M. K.; Taipale, R.; Springer, M.; Mentel, T. F.; Ruuskanen, T.; Petaja, T.; Worsnop, D. R.; Kjaergaard, H. G.; Ehn, M., The formation of highly oxidized multifunctional products in the ozonolysis of cyclohexene. J. Am. Chem. Soc. 2014, 136 (44), 15596-15606; doi 10.1021/ja507146s. 76. Jørgensen, S.; Knap, H. C.; Otkjaer, R. V.; Jensen, A. M.; Kjeldsen, M. L. H.; Wennberg, P. O.; Kjaergaard, H. G., Rapid hydrogen shift scrambling in hydroperoxy-substituted organic peroxy radicals. J. Phys. Chem. A 2016, 120 (2), 266-275; doi 10.1021/acs.jpca.5b067613. 77. Park, J.; Jongsma, C. G.; Zhang, R. Y.; North, S. W., OH/OD initiated oxidation of isoprene in the presence of O-2 and NO. J. Phys. Chem. A 2004, 108 (48), 10688-10697; doi 10.1021/jp040421t. 78. Ziemann, P. J.; Atkinson, R., Kinetics, products, and mechanisms of secondary organic aerosol formation. Chem. Soc. Rev. 2012, 41 (19), 6582-6605; doi 10.1039/c2cs35122f. 79. Peeters, J.; Boullart, W.; Pultau, V.; Vandenberk, S.; Vereecken, L., Structure-activity relationship for the addition of OH to (poly)alkenes: Site-specific and total rate constants. J. Phys. Chem. A 2007, 111 (9), 1618-1631; doi 10.1021/jp066973o. 80. Surratt, J. D.; Lewandowski, M.; Offenberg, J. H.; Jaoui, M.; Kleindienst, T. E.; Edney, E. O.; Seinfeld, J. H., Effect of acidity on secondary organic aerosol formation from isoprene. Environ. Sci. Technol. 2007, 41 (15), 5363-5369; doi 10.1021/es0704176. 81. Eddingsaas, N. C.; VanderVelde, D. G.; Wennberg, P. O., Kinetics and products of the acidcatalyzed ring-opening of atmospherically relevant butyl epoxy alcohols. J. Phys. Chem. A 2010, 114 (31), 8106-8113; doi 10.1021/jp103907c. 82. Richters, S.; Herrmann, H.; Berndt, T., Different pathways of the formation of highly oxidized multifunctional organic compounds (HOMs) from the gas-phase ozonolysis of beta-caryophyllene. Atmos. Chem. Phys. 2016, 16 (15), 9831-9845; doi 10.5194/acp-16-9831-2016. 83. Yu, J. Z.; Jeffries, H. E., Atmospheric photooxidation of alkylbenzenes .2. Evidence of formation of epoxide intermediates. Atmos. Environ. 1997, 31 (15), 2281-2287; doi 10.1016/s1352-2310(97)886372. 84. Glowacki, D. R.; Wang, L. M.; Pilling, M. J., Evidence of formation of bicyclic species in the early stages of atmospheric benzene oxidation. J. Phys. Chem. A 2009, 113 (18), 5385-5396; doi 10.1021/jp9001466. 85. Bartolotti, L. J.; Edney, E. O., Density-functional theory derived intermediates from the OH initiated atmospheric oxidation of toluene. Chem. Phys. Lett. 1995, 245 (1), 119-122; doi 10.1016/00092614(95)00953-2. 86. Motta, F.; Ghigo, G.; Tonachini, G., Oxidative degradation of benzene in the troposphere. Theoretical mechanistic study of the formation of unsaturated dialdehydes and dialdehyde epoxides. J. Phys. Chem. A 2002, 106 (17), 4411-4422; doi 10.1021/jp015619h. 87. Suh, I.; Zhang, R. Y.; Molina, L. T.; Molina, M. J., Oxidation mechanism of aromatic peroxy and bicyclic radicals from OH-toluene reactions. J. Am. Chem. Soc. 2003, 125 (41), 12655-12665; doi 10.1021/ja0350280. 25 ACS Paragon Plus Environment
Environmental Science & Technology
764 765 766 767 768 769 770 771
Page 26 of 30
88. Pan, S. S.; Wang, L. M., Atmospheric oxidation mechanism of m-xylene initiated by OH radical. J. Phys. Chem. A 2014, 118 (45), 10778-10787; doi 10.1021/jp506815v. 89. Jacobs, M. I.; Burke, W. J.; Elrod, M. J., Kinetics of the reactions of isoprene-derived hydroxynitrates: gas phase epoxide formation and solution phase hydrolysis. Atmos. Chem. Phys. 2014, 14 (17), 8933-8946; doi 10.5194/acp-14-8933-2014. 90. Lee, L.; Teng, A. P.; Wennberg, P. O.; Crounse, J. D.; Cohen, R. C., On rates and mechanisms of OH and O3 reactions with isoprene-derived hydroxy nitrates. J. Phys. Chem. A 2014, 118 (9), 1622-37; doi 10.1021/jp4107603.
772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802
Figures
26 ACS Paragon Plus Environment
Page 27 of 30
803 804 805 806
807
Environmental Science & Technology
Scheme 1. Isoprene photochemical oxidation mechanism for one isomer of ISOPOOH under low-NOx conditions. ϕ and 1-ϕ represent the branching ratio between IEPOX and the peroxy radical, respectively.
Scheme 2. Proposed mechanism for one isomer of C5H11O6, the peroxy radical formed from ISOPOOH + OH in scheme 1. The formation of the three isomerization products is shown in detail in Scheme 3.
27 ACS Paragon Plus Environment
Environmental Science & Technology
808 809 810
811
Page 28 of 30
Figure 1. Top: Model predicted (line) and measured (diamonds) isoprene remaining in the chamber at steady state. Bottom: Measured C5H12O6 (blue x’s) and SOA (black squares) mass concentration. Note the different y-axis scale.
Figure 2. Measured mass yield of C5H12O6 (black x’s) and several model results with varying isomerization rates of C5H11O6 peroxy radical precursor as a function of input H2O2 (ppm). Inset provides a zoomed-in view to better observe the behavior of the measurements and most representative model run. Measurement error bars reflect our uncertainty in the calibration factor. 28 ACS Paragon Plus Environment
Page 29 of 30
812 813 814 815 816 817
818
Environmental Science & Technology
Scheme 3. Proposed detailed mechanism and calculated rates of the isomerization of one isomer of C5H11O6, the peroxy radical formed from ISOPOOH + OH in scheme 1.
Figure 3. The ratio of the sum of C5H11O6• isomerization products relative to the product of reaction with HO2 for measurements (black x’s) and various model results (lines) at varying C5H11O6• isomerization rates. Measurement error bars reflect our uncertainty in calibration factors.
29 ACS Paragon Plus Environment
Environmental Science & Technology
Page 30 of 30
Figure 4. Top: model OA concentrations plotted versus -5 -1 measurements for model runs with 10 s wall loss, 11% -1
C5H11O6 yield, and varying isomerization rates (s ). Bottom: pie charts of the most prolific particle phase species modeled (left) for the data point in the above plot -3
819 820 821 822 823 824 825 826 827 828 829 830 831 832 833
circled in yellow, and measured (right) in µg m .
TOC Graphic
834
30 ACS Paragon Plus Environment