Chapter 14
Kinetics of Damage Generation on Single-Crystal Silicon Surfaces The Influence of Lubricant Adsorption 1
2
2
Yuheng Li1, Steven Danyluk , Selda Gunsel , and Frances Lockwood
Downloaded by COLUMBIA UNIV on August 1, 2012 | http://pubs.acs.org Publication Date: March 23, 1992 | doi: 10.1021/bk-1992-0485.ch014
1
Department of Civil Engineering, Mechanics, and Metallurgy, University of Illinois at Chicago, Chicago, IL 60680 Pennzoil Products Company, The Woodlands, TX 77387 2
Single crystal s i l i c o n surfaces ((111) n-type with resistivity of approximately 30-Ωcm) were scratched at room temperature by a dead-loaded spherical diamond indenter (0.49-1.96 N) that was translated in the [110] direction at a speed of 5cm/sec. The scratches were placed between four e l e c t r i c a l pads through which the r e s i s t i v i t y of the damage region can be recorded. The surface of the s i l i c o n was covered with a commercial lubricant additive and the concentration of the additive and the load on the diamond were systematically varied. The change in voltage as a function of time was dependent on the concentration of the lubricant additive. This suggested that the adsorption and e l e c t r o l y t i c properties of the lubricant additive are related to the extent of the subsurface damage produced by the diamond.
The c h e m i s o r p t i o n o f l u b r i c a n t s on s i l i c o n s u r f a c e s h a s a good d e a l o f i n f l u e n c e on t h e m e c h a n i c a l p r o c e s s i n g o f s i l i c o n i n t o complex s h a p e s . F o r example, m e c h a n i c a l damage can occur a result of abrasion during semiconductor p r o c e s s i n g , such as sawing, l a p p i n g , d i c i n g and p o l i s h i n g . T h i s m e c h a n i c a l p r o c e s s i n g i s u s u a l l y done i n t h e p r e s e n c e of a l u b r i c a n t t h a t i s supposed t o reduce b l a d e v i b r a t i o n and a i d i n removing the f r i c t i o n a l heat. L u b r i c a n t s can however r e a c t c h e m i c a l l y w i t h s i l i c o n s u r f a c e s a n d i t h a s been f o u n d t h a t t h e c h e m i c a l r e a c t i o n s a t s i l i c o n s u r f a c e s i n f l u e n c e t h e m e c h a n i c a l damage g e n e r a t i o n a n d p r o p a g a t i o n [l]-[3]. T h e r e have been a number o f e x p e r i m e n t a l methods, s u c h a s e t c h i n g , x - r a y t o p o g r a p h y and e l e c t r o n m i c r o s c o p y t o
0097-6156/92/0485-0231$06.00/0 © 1992 American Chemical Society In Surface Science Investigations in Tribology; Chung, Y., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1992.
Downloaded by COLUMBIA UNIV on August 1, 2012 | http://pubs.acs.org Publication Date: March 23, 1992 | doi: 10.1021/bk-1992-0485.ch014
232
SURFACE SCIENCE INVESTIGATIONS IN TRIBOLOGY
d e t e r m i n e t h e amount o f t h e damage g e n e r a t e d due to the m e c h a n i c a l p r o c e s s i n g of s i l i c o n [ 4 ] - [ 6 ] . These s t u d i e s have shown that the damage consists of dislocations and microcracks, and t h e d e n s i t y o f t h e s e d e f e c t s d e p e n d s on doping level, crystallographic orientation and the e n v i r o n m e n t . T h e r e i s not yet a q u a n t i t a t i v e theory to explain or predict the influence of the semiconductor p r o p e r t i e s and e n v i r o n m e n t s on t h e t y p e o r e x t e n t o f damage. D a n y l u k e t . a l . [ 7 ] d e v e l o p e d an e l e c t r i c a l resistivity measurement t e c h n i q u e t o q u a n t i f y the m e c h a n i c a l damage produced in linear scratches and dicing grooves of i n s t r u m e n t e d s p h e r i c a l and V i c k e r s diamonds and diamondi m p r e g n a t e d w h e e l s . The t e c h n i q u e i n v o l v e s fabricating a s p e c i a l l y d e s i g n e d p r i n t e d c i r c u i t on a s i l i c o n w a f e r . The c i r c u i t s i m u l a t e s a f o u r p o i n t p r o b e measurement t h a t i s used in the semiconductor industry to measure sheet r e s i s t a n c e o f w a f e r s . The c i r c u i t can be u s e d t o m e a s u r e changes i n r e s i s t i v i t y o f the s i l i c o n as a d e a d - l o a d e d diamond i n d e n t e r s c r a t c h e s the s i l i c o n s u r f a c e between t h e probes. The p r e s e n t p a p e r d e s c r i b e s a r e a l - t i m e measurement o f t h e change i n r e s i s t i v i t y w h i c h i s r e l a t e d t o t h e k i n e t i c s o f t h e damage g e n e r a t i o n . L u b r i c a n t a d d i t i v e s on t h e s u r f a c e o f t h e s i l i c o n m o d i f y the k i n e t i c b e h a v i o r . We r e p o r t the results of a dynamic measurement of the change in r e s i s t i v i t y d u r i n g the s c r a t c h i n g o f s i n g l e c r y s t a l s i l i c o n as a f u n c t i o n o f l u b r i c a t i n g e n v i r o n m e n t a l c o n d i t i o n s and dead l o a d s . An a d s o r p t i o n model o f d e f o r m a t i o n i s p r o p o s e d . EXPERIMENTAL PROCEDURE Single crystal s i l i c o n w a f e r s (50 mm d i a m e t e r , 0.33 mm t h i c k , (111) n - t y p e ) , s u p p l i e d by t h e Monsanto E l e c t r o n i c M a t e r i a l s Company, were u s e d f o r t h i s s t u d y . The wafer s u r f a c e s a r e p o l i s h e d on one s i d e and l a p p e d on t h e o t h e r s i d e . The r e s i s t i v i t y was a p p r o x i m a t e l y 30 fi-cm. The w a f e r s were p r o c e s s e d as d e s c r i b e d p r e v i o u s l y [8] i n order to produce a s i m u l a t i o n of a four p o i n t probe measurement. F i g u r e 1 shows a s c h e m a t i c d i a g r a m o f the circuit. A constant DC current i s s u p p l i e d at the two o u t s i d e pads and t h e change o f the v o l t a g e was m e a s u r e d a t t h e i n s i d e pads as a f u n c t i o n o f t i m e f o r v a r i o u s s c r a t c h i n g conditions and environmental v a r i a b l e s . The experiment i n v o l v e s d e a d - l o a d i n g a s p h e r i c a l diamond ( n o m i n a l r a d i u s o f 0.33 mm) and s e t t i n g t h e diamond i n m o t i o n a t a s p e e d o f 50 mm/sec i n t h e [110] d i r e c t i o n . The diamond p r o d u c e s a s i n g l e s c r a t c h t h a t i s p o s i t i o n e d midway between t h e two inner m e t a l l i z a t i o n p a d s . The e x p e r i m e n t s a r e c a r r i e d o u t i n a clean room e n v i r o n m e n t where the r e l a t i v e humidity and t e m p e r a t u r e a r e 20% and 78° F r e s p e c t i v e l y . D e - i o n i z e d water and a c o m m e r c i a l l u b r i c a n t were p l a c e d on t h e s i l i c o n s u r f a c e p r i o r t o t h e s c r a t c h f o r m a t i o n , and t h e s e r e s u l t s were compared t o the c a s e w i t h t h e surface
In Surface Science Investigations in Tribology; Chung, Y., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1992.
Downloaded by COLUMBIA UNIV on August 1, 2012 | http://pubs.acs.org Publication Date: March 23, 1992 | doi: 10.1021/bk-1992-0485.ch014
14.
LI ET AL.
Damage Generation on Single-Crystal Silicon Surfaces 233
free of lubricants. The commercial lubricant was an alkylated surfactant dissolved in de-ionized water to p r o d u c e c o n c e n t r a t i o n s o f 0.015, 0.029, 0.053, 0.076 and 0.100 wt%. The c o n d u c t i v i t i e s o f t h e s e s o l u t i o n s r a n g e d f r o m 9 t o 150 p.mho/cm and was measured by C o l e - P a r m e r M o d e l 148410 c o n d u c t i v i t y meter. F i g u r e 2 shows t h e results of c o n d u c t i v i t y v e r s u s t h e wt% o f t h e l u b r i c a n t a d d i t i v e . The voltage-time measurements are recorded by a computer system at a sampling rate of 100,000 Hz per c h a n n e l . The v o l t a g e r e s o l u t i o n o f t h e A/D c o n v e r t e r i s 0.01 mV. A s c h e m a t i c d i a g r a m o f the s y s t e m i s shown i n F i g u r e 3. F i g u r e 4 shows a s c h e m a t i c d i a g r a m o f t h e b a l l - o n - f l a t g e o m e t r y and t h e a n t i c i p a t e d change i n r e s i s t i v i t y a s a f u n c t i o n o f p o s i t i o n . The c o m p r e s s i v e s t r e s s e s ahead o f t h e diamond and t h e t e n s i l e s t r e s s e s b e h i n d t h e diamond p r o d u c e damage so t h a t t h e r e s i s t i v i t y i n c r e a s e s as a f u n c t i o n o f t i m e as t h e diamond a p p r o c h e s t h e p r o b e p o s i t i o n s , and a s t e a d y s t a t e change i s p r o d u c e d a f t e r the diamond has p a s s e d the probe p o s i t i o n s . RESULTS F i g u r e 5 shows examples o f CRT d i s p l a y s of the voltage v e r s u s time f o r these d i f f e r e n t s u r f a c e environments ( a i r , DI w a t e r and a l u b r i c a n t a t a c o n c e n t r a t i o n o f 0.100 wt%) and a d e a d - l o a d o f 0.98 N (100 g f ) . In e a c h c a s e , t h e r e i s a rise in voltage when the diamond passes by the m e t a l l i z a t i o n p a d s , and t h e i n c r e a s e i n v o l t a g e r e l a t i v e t o when t h e r e i s no damage. The s l o p e o f t h e v o l t a g e v e r s u s t i m e v a r i e s w i t h e n v i r o n m e n t a l c o n d i t i o n s . F o r example, t h e r e l a t i v e c h a n g e s i n v o l t a g e a r e 3.42, 6.17 and 3.75 % and w i t h s l o p e s o f 106 mv/sec, 93 mv/sec and 70 mv/sec f o r t h e u n l u b r i c a t e d s u r f a c e , d e - i o n i z e d and 0.100 wt% lubricant additive respectively. Other lubricant additive c o n c e n t r a t i o n s gave s i m i l a r r e s u l t s . The r e l a t i v e v o l t a g e change (%) v e r s u s t i m e (ms) f o r a l l the l u b r i c a n t a d d i t i v e c o n c e n t r a t i o n s at a dead-load of 0.49 N (50 g f ) i s shown i n F i g u r e 6. The change i n v o l t a g e shows an i n c r e a s e o f 3.27 % i n a i r e n v i r o n m e n t and 6.07 % i n DI water. As the lubricant additive concentration is i n c r e a s e d f r o m 0 t o 0.100 wt%, t h e v o l t a g e v a r i e s f r o m 6.07 % t o 2.45 %. The s l o p e o f t h e v o l t a g e - t i m e p l o t s f o r e a c h o f t h e l u b r i c a n t a d d i t i v e c o n c e n t r a t i o n s v a r i e d and F i g u r e 7 shows t h e s l o p e o f t h e v o l t a g e change as a f u n c t i o n o f l u b r i c a n t a d d i t i v e c o n c e n t r a t i o n . The d a t a show t h a t t h e slope d e c r e a s e s from 97.4 t o 50.8 mv/sec as t h e l u b r i c a n t a d d i t i v e c o n c e n t r a t i o n i n c r e a s e s f r o m 0 t o 0.100 wt%. F i g u r e 8 shows t h e r e l a t i v e change i n v o l t a g e (%) a s a f u n c t i o n o f t h e l u b r i c a n t a d d i t i v e c o n c e n t r a t i o n (wt%) and l o a d ( N ) . The f i q u r e shows t h a t as t h e l o a d i n c r e a s e s , t h e r e l a t i v e change i n v o l t a g e a l s o i n c r e a s e s but t h e e f f e c t o f lubricant i s smaller.
In Surface Science Investigations in Tribology; Chung, Y., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1992.
Downloaded by COLUMBIA UNIV on August 1, 2012 | http://pubs.acs.org Publication Date: March 23, 1992 | doi: 10.1021/bk-1992-0485.ch014
234
SURFACE SCIENCE INVESTIGATIONS IN TRIBOLOGY
Silicon Figure
Wafer
Ohmic
Contact
1. S c h e m a t i c Diagram o f the R e s i s t i v i t y Measurement.
Sample
for
Dynamic
160.0
120.0
80.0
40.0
-
0.0 0.000
0.020
Alkylated Figure
0.040
0.060
Surfactant
0.080
0.100
Concentration
0.120
(wt %)
2. The C o n d u c t i v i t y o f t h e S o l u t i o n a s a F u n c t i o n o f Additive Concentration.
In Surface Science Investigations in Tribology; Chung, Y., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1992.
14. LI ET AL.
Damage Generation on Single-Crystal Silicon Surfaces 235 DATA ACQUISITION SYSTEM DAS-20 BOARD CLOCK
_ |
_ J
MOTOR CONTROL
Downloaded by COLUMBIA UNIV on August 1, 2012 | http://pubs.acs.org Publication Date: March 23, 1992 | doi: 10.1021/bk-1992-0485.ch014
COMPUTER SYSTEM
SOFTWARE PACKAGE
CRT dynamic resistivity profile
Figure
3 . S c h e m a t i c Diagram o f t h e S c r a t c h i n g A p p a r a t u s D a t a A c q u i s i t i o n System.
and
I Force . 5cm/s
damage zone
/
undamage zone
AP «, retistirity of damaged surface
~Z—
/o
Po
resistivity of undamaged surface
Position
Figure
4.
S c h e m a t i c D i a g r a m o f t h e B a l l - o n - F l a t G e o m e t r y and E x p e c t e d Change i n R e s i s t i v i t y a s a F u n c t i o n o f Time.
In Surface Science Investigations in Tribology; Chung, Y., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1992.
SURFACE SCIENCE INVESTIGATIONS IN TRIBOLOGY
Downloaded by COLUMBIA UNIV on August 1, 2012 | http://pubs.acs.org Publication Date: March 23, 1992 | doi: 10.1021/bk-1992-0485.ch014
236
Figure 5. CRT Displays of Surface Environments Effect on Dynamic Voltage. Continued on next page.
In Surface Science Investigations in Tribology; Chung, Y., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1992.
14.
LI ET AL.
Damage Generation on Single-Crystal Silicon Surfaces 237
Downloaded by COLUMBIA UNIV on August 1, 2012 | http://pubs.acs.org Publication Date: March 23, 1992 | doi: 10.1021/bk-1992-0485.ch014
I0.100 wt%
LubricantLoad=100
gm|
a v = 1 . 4 mv At=2 0 ms
slope=70 mv/secI
Figure 5. Continued.
8.0 DI Water
~
6.0
cr>
5
4.0
> 0)
O
2.0
0.053
0.100
0.0
c
-2.0 -40.0
-20.0
0.0 Time
20.0
40.0
60.0
(ms)
Figure 6. The Relative Change in Voltage versus Time.
In Surface Science Investigations in Tribology; Chung, Y., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1992.
238
SURFACE SCIENCE INVESTIGATIONS IN TRIBOLOGY
100.0
Downloaded by COLUMBIA UNIV on August 1, 2012 | http://pubs.acs.org Publication Date: March 23, 1992 | doi: 10.1021/bk-1992-0485.ch014
80.0
60.0
40.0 -0.2 Alkylated
0.02
0.06
0.10
Surfactant Concentration
F i g u r e 7. The S l o p e o f t h e V o l t a g e Change Surfactant Concentration.
(wt%)
versus A l k y l a t e d
In Surface Science Investigations in Tribology; Chung, Y., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1992.
14. LI ET AL.
Damage Generation on Single-Crystal Silicon Surfaces 239
Downloaded by COLUMBIA UNIV on August 1, 2012 | http://pubs.acs.org Publication Date: March 23, 1992 | doi: 10.1021/bk-1992-0485.ch014
DISCUSSION I t i s w e l l known t h a t t h e s c r a t c h i n g damage i n s i l i c o n i s composed of microcracks and dislocations [9]-[10]. D i s l o c a t i o n s a r e formed a s a r e s u l t o f c o m p r e s s i v e s t r e s s e s and m i c r o c r a c k s a r e formed a s a r e s u l t o f t e n s i l e s t r e s s e s [ 1 1 ] . D i s l o c a t i o n s and m i c r o c r a c k s s c a t t e r e l e c t r o n s so t h a t r e s i s t i v i t y i n c r e a s e s a s t h e number o f m i c r o c r a c k s a n d d i s l o c a t i o n s i n c r e a s e s [ 1 2 ] - [ 1 4 ] . T h i s means t h a t e l e c t r i c a l r e s i s t i v i t y i s r e l a t e d t o t h e amount o f m e c h a n i c a l damage. Environmental effects are also known t o have an i n f l u e n c e on t h e t r i b o l o g i c a l b e h a v i o r o f s e m i c o n d u c t i n g m a t e r i a l s and a number o f r e s e a r c h e r s have i n v e s t i g a t e d t h e a d s o r p t i o n e f f e c t s on s u r f a c e m e c h a n i c a l p r o p e r t i e s [ 1 5 ] [ 1 6 ] . I t h a s been p r o p o s e d t h a t a d s o r p t i o n o f g a s e s a n d f l u i d s e i t h e r p i n d i s l o c a t i o n cores to the surface or modify the s u r f a c e energy so t h a t crack p r o p a g a t i o n i s f a v o r a b l e . T h e r e i s a l s o some e v i d e n c e t h a t s p a c e c h a r g e e f f e c t s c a n i n f l u e n c e t h e s u r f a c e d e f o r m a t i o n i f t h e e x t e r n a l l y imposed l o a d s g e n e r a t e s t r e s s e s t h a t have a s p a t i a l e x t e n t o f t h e same s i z e a s t h e s p a c e c h a r g e r e g i o n [ 1 7 ] . S u r f a c e c h a r g e s affect t h e d i s l o c a t i o n m o t i o n and damage f o r m a t i o n and g e n e r a t i o n [ 1 8 ] - [ 1 9 ] b e c a u s e t h e s i z e and m a g n i t u d e o f t h e s u r f a c e c h a r g e d e t e r m i n e s t h e s p a c e c h a r g e f i e l d s . The m a g n i t u d e and e x t e n t o f t h e s p a c e c h a r g e d e p e n d s on t h e s u r f a c e c h a r g e , b u l k d o p i n g and t e m p e r a t u r e , and f o r s i l i c o n a t room t e m p e r a t u r e i t c a n range f r o m 0.5 t o 10 um b e l o w t h e surface [ 2 0 ] . These depths of the space charge a r e comparable to that of the y i e l d stress surfaces f o r spherical indenters contacting silicon. Lubricating e n v i r o n m e n t s c a n m o d i f y t h e s u r f a c e c h a r g e and c o n s e q u e n t l y t h e d e f o r m a t i o n mode. The e x p e r i m e n t a l r e s u l t s p r e s e n t e d i n t h i s p a p e r show t h a t t h e v o l t a g e v e r s u s t i m e i s c o r r e l a t e d w i t h t h e movement o f t h e diamond and e x h i b i t s a t i m e d e p e n d e n t and s t e a d y s t a t e v a l u e . The f o r m e r depends on t h e a d s o r p t i o n k i n e t i c s and damage p r o p a g a t i o n a s t h e s t r e s s e s v a r y , a n d t h e l a t t e r i s r e l a t e d t o t h e t o t a l damage. The model f o r t h e s t e a d y state change i n voltage has been previously e x a m i n e d and f o u n d t o be r e l a t t h e damage s i z e a n d t h e c o n d u c t i v i t y o f t h e damage zone f o r a l i n e a r s c r a t c h made by a diamond i n d e n t e r [ 7 ] :
(1)
where V and V a r e t h e measured v o l t a g e w i t h and w i t h o u t damage, b i s t h e s u b s u r f a c e damage c r o s s s e c t i o n a l r a d i u s , d i s t h e i n n e r p r o b e s p a c i n g , and a and «^ a r e t h e c o n d u c t i v i t i e s o f t h e s u b s u r f a c e damage zone and t n e s i l i c o n s u b s t r a t e , r e s p e c t i v e l y . E q u a t i o n (1) e x p r e s s e s t h e v o l t a g e Q
2
In Surface Science Investigations in Tribology; Chung, Y., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1992.
240
SURFACE SCIENCE INVESTIGATIONS IN TRIBOLOGY
i n t e r m s o f measured q u a n t i t i e s and i t i s e x p e c t e d t h a t v o l t a g e w i l l change a s t h e damage s i z e i n c r e a s e s o r t h e c o n d u c t i v i t y decreases. The e f f e c t i v e s i z e o f t h e damage z o n e , b, c a n be m o d i f i e d by a d s o r p t i o n i f t h e y i e l d s u r f a c e i s w i t h i n t h e space charge fields. The space charge fields in semiconductors i n contact with electrolytic fluids i s d e s c r i b e d by a Debye l e n g t h , w h i c h h a s been f o u n d t o v a r y a s [21]:
e.kT
Downloaded by COLUMBIA UNIV on August 1, 2012 | http://pubs.acs.org Publication Date: March 23, 1992 | doi: 10.1021/bk-1992-0485.ch014
2e
a n (
e
a
r
e
t
h
1
V
/
o
x
e
where ^ * ? d i e l e c t r i c constants of semiconductor and e l e c t r o l y t e , q and a r e t h e e l e c t r o n c h a r g e and d o p i n g density, V , V and U are the surface p o t e n t i a l o f the semiconductor, the a p p l i e d p o t e n t i a l across the d i f f u s i o n l a y e r o f e l e c t r o l y t e and s p a c e c h a r g e p o t e n t i a l a t t h e interface and k and T a r e B o l t z m a n n ' s constant and temperature r e s p e c t i v e l y . The above e q u a t i o n s u g g e s t s t h a t t h e t h i c k n e s s o f t h e space charge region v a r i e s with ^ d i e l e c t r i c constant o f t h e e l e c t r o l y t e , t e m p e r a t u r e and d o p i n g l e v e l o f t h e s e m i c o n d u c t o r . As a r e s u l t , m e c h a n i c a l damage w i l l depend on the l u b r i c a n t a d d i t i v e c o n c e n t r a t i o n because the d i e l e c t r i c constant w i l l vary with c o n c e n t r a t i o n . A d s o r p t i o n w i l l i n f l u e n c e damage i f b^x. I n t h i s c a s e : s
e
Q
t
n
e
so t h a t t h e r e s i s t i v i t y o f t h e damage r e g i o n i s r e l a t e d t o t h e t e r m s i n t h e c u r l y b r a c k e t s . S i n c e t h e Debye l e n g t h i s proportional to the resistivity of the electrolytic s o l u t i o n , t h e r e l a t i v e change i n v o l t a g e w i l l d e c r e a s e a s the concentration of the l u b r i c a n t a d d i t i v e increases. F i g u r e 2 shows t h a t t h i s c o r r e l a t i o n h o l d s t r u e w i t h i n t h e concentration ranges used f o r the experiments i f the temperature and d o p i n g level are held constant. The c o r r e l a t i o n between t h e s e v a r i a b l e s and t h e s i z e o f t h e damage zone h a s r e c e n t l y been r e p o r t e d [ 1 7 ] . The kinetics of the voltage change i s r e l a t e d t o a d s o r p t i o n and t h e v a r i a b i l i t y w i t h t i m e o f t h e c o n d u c t i v i t y o f t h e damage r e g i o n . The v o l t a g e v a r i e s w i t h t i m e a s c r a c k s p r o p a g a t e and e x p o s e new s u r f a c e t o t h e e l e c t r o l y t e . The mechanisms f o r t h e k i n e t i c b e h a v i o r a r e t h e r e f o r e t i e d t o t h e i n c r e a s e o f b and a w i t h t i m e . T h e s e mechanisms w i l l be t h e s u b j e c t o f upcoming p u b l i c a t i o n s . 2
In Surface Science Investigations in Tribology; Chung, Y., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1992.
14. LI ET AL.
Damage Generation on Single-Crystal Silicon Surfaces 241
Downloaded by COLUMBIA UNIV on August 1, 2012 | http://pubs.acs.org Publication Date: March 23, 1992 | doi: 10.1021/bk-1992-0485.ch014
CONCLUSIONS 1.
The i n - s i t u e l e c t r i c a l measurement t e c h n i q u e p r o v i d e s i n f o r m a t i o n on t h e time d e p e n d e n t a n d s t e a d y state generation o f mechanical damage i n s i l i c o n during s c r a t c h i n g by a d e a d - l o a d e d s p h e r i c a l diamond. The r e l a t i v e changes i n v o l t a g e (0.98 N) a r e 3.42, 6.17, and 3.75 % and t h e s l o p e s a r e 106, 93 a n d 70 f o r t h e u n l u b r i c a t e d s u r f a c e , d e - i o n i z e d water a n d 0.100 wt% lubricant additive respectively.
2.
The change o f v o l t a g e w i t h t i m e a l s o depends on t h e dead-load on t h e diamond. The s t e a d y s t a t e v o l t a g e change increases as the l o a d increases but the i n f l u e n c e of l u b r i c a n t i s decreased.
3.
The s l o p e o f t h e v o l t a g e v e r s u s t i m e c u r v e versus alkylated surfactant concentration i s negative. This d a t a i s c o n s i s t e n t w i t h t h e model t h a t t h e d i e l e c t r i c c o n s t a n t o f t h e l u b r i c a n t d o m i n a t e s t h e Debye l e n g t h i n the s i l i c o n .
4.
The s t e a d y s t a t e v a r i a t i o n i n t h e v o l t a g e - t i m e p l o t h a s been modeled a s a damage region whose s i z e and c o n d u c t i v i t y determines the v o l t a g e .
ACKNOWLEDGEMENTS T h i s work was s u p p o r t e d p a r t i a l l y by t h e N a t i o n a l S c i e n c e F o u n d a t i o n - T r i b o l o g y Program under g r a n t No. MSM-8714491. We thank Dr. Larsen-Basse f o r h i s s u p p o r t . Thanks a r e a l s o e x t e n d e d t o Dr. Jang Y u l Park o f Argonne N a t i o n a l L a b o r a t o r y for the conductivity measurements of the alkylated surfactants. REFERENCES
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12.
A.R.C.Westwood, P h i l . Mag., 17, p633, (1962) S.Danyluk, LSA proc., JPL82-9, p89, (1981) H . F o l l , Appl. Phys. A53, p8, (1991) S.Schaffer, Phys. Status Solidica, 19, p297, (1967) M.Imai and K.Sumino, P h i l . Mag., A47, p599, (1983) D.J.H.Cockayne and A.Hons, J . de Physique, C6, p11, (1978) S.Danyluk, S.W.Lee and J.Ahn, J . Appl. Phys., 63(9), p4568, (1988) J.Ahn and S.Danyluk, Mat. Res. Soc. Symp. Proc., 140, p319, (1989) R.Mouginot, J . of Mat. S c i . , 22, p989, (1987) A.Badrick and K.Puttick, J . Phys. D, 12, p909, (1979) G.M.Hamilton, Proc. Instn. Mech. Engrs., 197C, p53, (1983) W.T.Read, P h i l . Mag., p12, (1955)
In Surface Science Investigations in Tribology; Chung, Y., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1992.
242
SURFACE SCIENCE INVESTIGATIONS IN TRIBOLOGY
13. 14.
E.Gerlach, J . Phys. C, 19, p4585, (1986) R.A.Vardanian and G.G.Kirakosian, Phys. Stat. S o l . B, 126, pK83, (1984) S.Jahanmir and M.Beltzer, ASLE Transactions, 29, p423, (1986) C.N.Rowe, Lubricated Wear, ASCE Trans., pl43, (1987) S.Danyluk and S.W.Lee, J . Appl.Phys., 64(8), p4075, (1989) V . C e l l i and M.Kabler, Phys. Rev., 131, p58, (1963) F.Louchet and D.Cochet, P h i l . Mag., A57, p327, (1988) P.J.Holmes, The Electrochemistry of Semiconductors, Academic Press, New York, (1967) M.Maeda, Structure and Properties of Metal Surfaces, Maruzen, Tokyo, (1973)
15. 16. 17. 18. 19. 20.
Downloaded by COLUMBIA UNIV on August 1, 2012 | http://pubs.acs.org Publication Date: March 23, 1992 | doi: 10.1021/bk-1992-0485.ch014
21.
RECEIVED November 27, 1991
In Surface Science Investigations in Tribology; Chung, Y., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1992.