Lewis Acid-Mediated Room-Temperature Cascade ... - ACS Publications

School of Pharmaceutical Engineering & Life Sciences, Changzhou ... cascade reaction among 3-hydroxyisoindolin-1-one and phenylacetylene is achieved...
0 downloads 0 Views 2MB Size
Note Cite This: J. Org. Chem. 2018, 83, 4257−4263

pubs.acs.org/joc

Lewis Acid-Mediated Room-Temperature Cascade Reaction of 3‑Hydroxyisoindolin-1-one with Alkynes Jian Li,*,† Yang Li,† Zhengbing Wang,† Yujia Bian,† Shuhua Bai,† Li Liu,‡ and Jiangtao Sun*,‡ †

School of Pharmaceutical Engineering & Life Sciences, Changzhou University, Changzhou 213164, China School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China



S Supporting Information *

ABSTRACT: An efficient and mild synthesis of a variety of 3(2-oxopropyl)-isoindolinone derivatives via a BF3·Et2O catalyzed cascade reaction among 3-hydroxyisoindolin-1-one and phenylacetylene was achieved. Various isoindolinone derivatives were obtained in good to excellent yields. The process, which avoided several drawbacks such as the requirement of concentrated protic acids and metal catalysts, protecting group of nitrogen, high temperature, and multistep synthesis, includes C(sp3)−OH cleavage, C−C coupling, and hydration of alkyne.

I

Scheme 1. Synthetic Strategies of C3-Substituted Isoindolines

soindolin-1-ones are important structural motifs in many natural products and pharmaceuticals, exhibiting important biological activities.1 Among those, C3-substituted isoindolines are considered important due to their various medicinal properties such as antihypertensive,2 antipsychotic,3 antiulcer,4 and antiviral.5 In view of the importance of isoindolinones, numerous approaches toward synthesis of these coveted structures have been developed over the past few decades, including Heck cyclization,6 ring-closure of hydrazones,7 exploitation of carbanion methodology,8 and the Diels−Alder approach.9 Although a few routes to these compounds have been reported, there is still a need to develop a general, metalfree, mild, and environmentally benign synthesis of isoindolinones. Toward this end, we recently reported an efficient synthesis of a variety of 2,3-diarylisoindolin-1-one by using 2formylbenzonitrile and diaryliodonium salts; the reactions produced an activation of a nitrile group with a copper catalyst and generated N-aryl nitrilium cation in situ.10 To our known, N-acyliminium ions are an important intermediate in organic synthesis to provide various natural products via C−C and Cheteroatom bond formation.11 Generally, the C3-substituted isoindolinones can be synthesized from the reaction between N-acyliminium ion precursor 3-hydroxyisoindolin-1-one and nucleophiles, and the critical problem to be resolved is the generation of iminium ion (Scheme 1). Due to the poor leaving ability of the hydroxyl group, strong protic acids or metal Lewis acids have been employed to remove hydroxy from 3hydroxyisoindolin-1-one.12 On the other hand, nitrogen protecting group was also needed under the harsh reaction conditions, which was hard to remove without destroying the isoindolinone ring. Overall, there is a need to discover milder and more efficient reaction conditions for synthesis of C3-substituted isoindolinones. In a continuation of our study, we present herein Lewis acid© 2018 American Chemical Society

catalyzed room-temperature cascade reaction of iminium ions with alkynes to generate 3-(2-oxopropyl)-isoindolinones. Initially, we began our attempt by using 3-hydroxyisoindolin1-one 1a and ethynylbenzene 2a in the presence of Lewis acid to unearthing a suitable catalyst (Table 1). Ten mol % of CuI was employed as the catalyst to promote the reaction in untreated dichloromethane (DCM) at room temperature in 2 h, but the designed compound 3-(phenylethynyl)isoindolin-1one was not found, and 3-(2-oxo-2-phenylethyl)isoindolin-1one 3a was collected in 72% yield alternately. From literature we know that 3-(2-oxo-2-arylethyl)-isoindolinones are important structural components of many pharmaceutical agents such as Pazinaclone,13 Pagoclone,14 etc. Following the experience, optimization studies was carried out to ultimately identify the most efficient catalytic system to obtain 3-(2-oxo-2-arylethyl)isoindolin-1-one. The yield rose to 74% when CuBr was used. Alternate Cu(I) and Cu(II) catalysts Received: January 31, 2018 Published: March 14, 2018 4257

DOI: 10.1021/acs.joc.8b00283 J. Org. Chem. 2018, 83, 4257−4263

Note

The Journal of Organic Chemistry Table 1. Optimization of the Reaction Conditionsa

Table 2. Scope of Reaction with Various 3Hydroxyisoindolin-1-one 1 and Ethynylbenzene 2a

entry

Lewis acid

solvent

yield (%)b

1 2 3 4 5 6 7 8 9 10 11 12 13 14c

CuI (10 mol %) CuCl (10 mol %) CuBr (10 mol %) CuBr2 (10 mol %) Cu(OAc)2 (10 mol %) Cu(OTf)2 (10 mol %) [Cu(CH3CN)4]PF6 (10 mol %) BF3·Et2O (2 equiv) BF3·Et2O (2 equiv) BF3·Et2O (2 equiv) BF3·Et2O (2 equiv) BF3·Et2O (2 equiv) BF3·Et2O (2 equiv) BF3·Et2O (2 equiv)

DCM DCM DCM DCM DCM DCM DCM DCM DCE toluene THF 1,4-dioxane MeOH DCM

72 72 74 31 69 67 70 91 81 32 0 0 0 66

a

Reaction conditions: 1a (0.3 mmol), 2a (0.45 mmol), and Lewis acid (10 mol % or 2 equiv) in solvent (2 mL) without exclusion of air or moisture, rt, 2 h. bIsolated yield. c40 °C. Reaction condition: 1a (0.3 mmol), 2a (0.45 mmol), and BF3·Et2O (2 equiv) in DCM (2 mL) without exclusion of air or moisture, rt, 2 h. Isolated yield. a

such as CuCl, CuBr2, Cu(OAc)2, Cu(OTf)2, and [Cu(CH3CN)4]PF6 did not provide 3a in better yields. Gratifyingly, Lewis acid BF3·Et2O (2 equiv) was very efficient for the formation of 3a compared to other catalysts in DCM, which afforded the product in 91% yield (entry 8, Table 1). Finally, we screened some common solvents to decipher best conditions. Of the alternate solvents investigated such as 1,2dichloroethane (DCE, 81%), toluene (32%), tetrahydrofuran (THF, 0%), 1,4-dioxane (0%), and methanol (0%), none of them worked as well as DCM (91%). Thus, the optimum reaction conditions for the transformation were as follows: 2 equiv of BF3·Et2O and DCM (untreated) at room temperature for 2 h. With the optimized conditions in hand, we then studied various substituted phenylacetylene in the cascade reaction. To our delight, all phenylacetylene 2, including electron-donating and electron-deficient in the 4-position, afforded 3-(2-oxo-2phenylethyl)isoindolin-1-one 3a−3j in 65−91% isolated yields (Table 2). The results indicated that electron-donating substrates (3b−3f, 82−88%) were more suitable for this reaction than the electron-withdrawing substrates 3i (65%) and 3j (83%). Halogen-substituted phenylacetylene could also be applied in this methodology to give the products 3g, 3h, and 3k−3n in good yields (80−90%). Interestingly, meta- and ortho-substituted phenylacetylene afforded products 3k−3n in 80−87% yields. Heteroaromatics such as 2-ethynylthiophene were also found to be good substrates to furnish 3p in 59% yield. Later, the cascade reaction was carried out with differently substituted 3-hydroxyisoindolin-1-one 1 under the optimized conditions. It was found that the reaction took place smoothly over a range of 3-hydroxyisoindolin-1-one bearing electron-donating and halogen groups, furnishing the corresponding products in 72−90% yields (3q−3w). In addition, fluorine group at the 4-, 5-, and 6- positions of 1 also afforded products 3q−3s in synthetically useful yields (82−88%).

Because of the importance of aryl amides, next we carried out a N-arylation of 3-(2-oxo-2-arylethyl)isoindolin-1-one with diaryliodonium salts under mild and metal-free conditions.15 The reaction of compounds 3 were conducted in toluene in the presence of NaH at 40 °C to give 3-(2-oxopropyl)-2arylisoindolinones 5 in good yields (Table 3). To our delight, the reaction took place smoothly over a range of diaryliodonium salts bearing electron-donating (4e, 4f), -withdrawing (4g), and halogen groups (4b−4d), furnishing the corresponding products 5 in 68−87% yields. Substrates 3-(2oxo-2-phenylethyl)isoindolin-1-one containing various electronic natures at 4-positions underwent in good yields to afford final target compounds. In addition, as a key intermediate, 3-(2-oxopropyl)isoindolinone 3 could also be applied for synthesis of various medicinal compounds (Figure 1). For examples, Baeyer− Villiger oxidation of 3 with mCPBA generated 6 in good yield, which could be used for further synthesis of biologically active molecules PD 172938.16 Moreover, the Pd-catalyzed intramolecular condensation was allowed to afford isoindolo[2,1a]quinoline if the ortho substituent R2 is a halogen.17 In addition, N-arylated product 7 could be obtained with diaryliodonium salts under base conditions, and further transformation resulted the sedative agent JM1232.18 The central building blocks of biologically active products substituted dihydroisoindolo[2,1-a]quinolin-11(5H)-ones were synthesized from 7 following two steps in high yield.19 To gain insight into the reaction mechanism, several control experiments were carried out (Scheme 2). First, 1a was treated with 2a under standard reaction conditions at nitrogen atmosphere (Scheme 2a). After the reaction mixture was 4258

DOI: 10.1021/acs.joc.8b00283 J. Org. Chem. 2018, 83, 4257−4263

Note

The Journal of Organic Chemistry Table 3. N-Arylation of 3-(2-Oxo-2-phenylethyl)isoindolin1-onea

Scheme 2. Experiments for Mechanistic Understanding

a

the alkyne was hydrolyzed in the catalyzed system simultaneously. On the basis of the above control experimental results, a reasonable mechanism of reaction was proposed (Figure 2).

Reaction condition: 3 (0.3 mmol), 4 (0.6 mmol) and NaH (1.5 equiv) in Toluene (2 mL), 40 °C, 36 h. Isolated yield.

Figure 2. Proposed reaction mechanism.

Initially, the removal of hydroxyl group at the α-position of 3hydroxyisoindolin-1-one 1a generates N-acyliminium A with BF3·Et2O.20 Subsequently, the electron-deficient carbocation intermediate A was attacked by nucleophile phenylacetylene 2a, and 2a was attacked by water21 to produce intermediate B simultaneously, followed by the formation of oxygen ion intermediate C. Finally, removal of BF3·Et2O affords 3-(2oxopropyl)-isoindolinones 3a. In conclusion, a cascade reaction of 3-hydroxyisoindolin-1one and phenylacetylene was developed via BF3·Et2O catalyzed C(sp3)−OH cleavage, C−C coupling, and hydration of alkyne. The developed methodology provides mild access to 3-(2-oxo2-arylethyl)-isoindolinone derivatives at room temperature. This method is beleaguered with several drawbacks such as the requirement of concentrated protic acids and metal catalysts, protecting group of nitrogen, high temperature, and

Figure 1. Synthetic elaborations to the medicinal compounds.

stirred for 2 h, 85% yield of corresponding product 3a was observed, thus indicating that the oxygen atom of carbonyl group in compound 3a is not from air. Subsequently, the reaction was carried out in absolutely dry DCM (Scheme 2b). Only 12% of 3a was isolated. Addition of 0.2 mL of H218O in DCM resulted in 85% of 18O labeled compound 3a′. These results indicate that the oxygen atom of compound 3a is from water. The conclusion was further confirmed by reaction d in Scheme 2. When 18O labeled 1a′ was used in the reaction, unlabeled product 3a was collected in 80% yield. Thus, it is reasonable to hypothesize that 4259

DOI: 10.1021/acs.joc.8b00283 J. Org. Chem. 2018, 83, 4257−4263

Note

The Journal of Organic Chemistry

1H), 3.70 (dd, J = 18.0, 10.0 Hz, 1H), 3.10 (dd, J = 18.0, 10.0 Hz, 1H), 2.66 (t, J = 7.6 Hz, 2H), 1.67−1.68 (m, 2H), 1.34−1.30 (m, 4H), 0.89 (t, J = 6.7 Hz, 3H). 13C NMR (125 MHz, CDCl3) δ 197.6, 169.9, 149.8, 146.6, 133.8, 131.9, 128.8, 128.5, 128.3, 124.2, 122.4, 52.5, 43.9, 36.0, 31.4, 30.7, 22.5, 13.9. HRMS (ESI) calcd for C21H24NO2 ([M + H]+): 322.1802; found 322.1798. 3-[2-(4-Fluorophenyl)-2-oxoethyl]isoindolin-1-one (3g).23 White solid, 88% yield. 1H NMR (300 MHz, CDCl3) δ 8.02−7.97 (m, 2H), 7.88 (d, J = 7.4 Hz, 1H), 7.60 (dt, J = 7.4,1.2 Hz, 1H), 7.53−7.46 (m, 2H), 7.16 (t, J = 8.5 Hz, 2H), 6.95 (br, 1H), 5.14 (dd, J = 10.0, 3.0 Hz, 1H), 3.69 (d, J = 18.0 Hz, 1H), 3.08 (dd, J = 18.0, 10.0 Hz, 1H). 13C NMR (125 MHz, CDCl3) δ 196.3, 169.9, 166.2 (d, J = 256.2 Hz), 146.4, 132.0, 130.8 (d, J = 10.0 Hz), 128.6, 124.2, 122.3, 116.0 (d, J = 21.2 Hz), 52.4, 44.1. 3-[2-(4-Chlorophenyl)-2-oxoethyl]isoindolin-1-one (3h).23 White solid, 90% yield. 1H NMR (300 MHz, CDCl3) δ 7.91−7.87 (m, 3H), 7.63−7.57 (m, 1H), 7.53−7.47 (m, 4H), 7.05 (br, 1H), 5.12 (dd, J = 10.0, 3.0 Hz, 1H), 3.67 (dd, J = 10.0, 3.0 Hz, 1H), 3.10 (dd, J = 18.0, 10.0 Hz, 1H). 13C NMR (125 MHz, CDCl3) δ 196.7, 170.0, 146.4, 140.5, 034.3, 132.0, 131.9, 129.5, 129.2, 128.6, 124.2, 122.4, 52.3, 44.1. 3-{2-Oxo-2-[4-trifluoromethyl)phenyl]ethyl}isoindolin-1-one (3i). White solid, 65% yield, mp: 184−186 °C. 1H NMR (300 MHz, CDCl3) δ 8.07 (d, J = 8.1 Hz, 2H), 7.90 (d, J = 7.4 Hz, 1H), 7.77 (d, J = 8.2 Hz, 2H), 7.62 (dt, J = 7.4, 1.2 Hz, 1H), 7.55−7.47 (m, 2H), 6.84 (br, 1H), 5.15 (dd, J = 10.0, 3.0 Hz, 1H), 3.73 (dd, J = 18.0, 3.0 Hz, 1H), 3.13 (dd, J = 18.0, 10.0 Hz, 1H). 13C NMR (125 MHz, CDCl3) δ 197.1, 169.9, 146.1, 138.6, 135.3, 135.1, 132.1, 128.7, 128.5, 125.9, 124.3, 122.3, 52.5, 44.5. 19F NMR (282 MHz, CDCl3) δ −63.2. HRMS (ESI) calcd for C17H13F3NO2 ([M + H]+): 320.0893; found 320.0893. Methyl 4-[2-3-(Oxoisoindolin-1-yl)acetyl]benzoate (3j). White solid, 83% yield, mp: 225−227 °C. 1H NMR (300 MHz, CDCl3) δ 8.18−8.00 (m, 4H), 7.89 (d, J = 7.5 Hz, 1H), 7.62 (t, J = 6.9 Hz, 1H), 7.54−7.48 (m, 2H), 6.92 (br, 1H), 5.16 (d, J = 9.3 Hz, 1H), 3.96 (s, 3H), 3.79−3.73 (m, 1H), 3.13 (dd, J = 18.0, 10.0 Hz, 1H). 13C NMR (75 MHz, CDCl3) δ 197.5, 169.9, 165.9, 146.2, 139.1, 134.6, 132.1, 131.9, 130.1, 128.7, 128.0, 124.3, 122.3, 52.6, 52.3, 44.5. HRMS (ESI) calcd for C18H16NO4 ([M + H]+): 310.1074; found 310.1067. 3-[2-(3-Fluorophenyl)-2-oxoethyl]isoindolin-1-one (3k). White solid, 85% yield, mp: 151−153 °C. 1H NMR (300 MHz, CDCl3) δ 7.89 (d, J = 7.5 Hz, 1H), 7.73 (d, J = 7.5 Hz, 1H), 7.67−7.59 (m, 2H), 7.54−7.44 (m, 3H), 7.32 (t, J = 8.1 Hz, 1H), 6.94 (br, 1H), 5.14 (d, J = 8.1 Hz, 1H), 3.70 (d, J = 18.0 Hz, 1H), 3.10 (dd, J = 18.0, 10.0 Hz, 1H). 13C NMR (125 MHz, CDCl3) δ 196.7, 169.9, 162.9 (d, J = 247.5 Hz), 146.3, 138.0, 132.1, 131.9, 130.5 (d, J = 7.5 Hz), 128.7, 124.3, 123.9, 122.3, 121.0 (d, J = 21.4 Hz), 114.8 (d, J = 22.4 Hz), 52.3, 44.3. 19 F NMR (282 MHz, CDCl3) δ −111.1. HRMS (ESI) calcd for C16H13FNO2 ([M + H]+): 270.0925; found 270.0926. 3-[2-(3-Chlorophenyl)-2-oxoethyl]isoindolin-1-one (3l). White solid, 84% yield, mp: 151−152 °C. 1H NMR (300 MHz, CDCl3) δ 7.94−7.88 (m, 2H), 7.84 (dt, J = 7.8, 1.2 Hz, 1H), 7.64−7.56 (m, 2H), 7.52−7.41 (m, 3H), 6.87 (br, 1H), 5.14 (dd, J = 9.9, 2.5 Hz, 1H), 3.70 (dd, J = 18.0, 3.0 Hz, 1H), 3.08 (dd, J = 18.0, 10.0 Hz, 1H). 13C NMR (125 MHz, CDCl3) δ 196.7, 169.9, 146.3, 127.4, 135.3, 133.8, 132.1, 130.2, 129.5, 129.2, 128.7, 128.2, 126.2, 124.3, 122.3, 52.3, 44.3. HRMS (ESI) calcd for C16H13ClNO2 ([M + H]+): 286.0629; found 286.0624. 3-[2-(2-Fluorophenyl)-2-oxoethyl]isoindolin-1-one (3m). White solid, 80% yield, mp: 147−148 °C. 1H NMR (300 MHz, CDCl3) δ 7.97 (td, J = 7.7, 1.8 Hz, 1H), 7.88 (d, J = 7.4 Hz, 1H), 7.63−7.55 (m, 2H), 7.52−7.47 (m, 2H), 7.31−7.25 (m, 1H), 7.18−7.11 (m, 1H), 6.99 (br, 1H), 5.15−5.11 (m, 1H), 3.74 (dd, J = 18.0, 3.3 Hz, 1H), 3.16−3.05 (m, 1H). 13C NMR (125 MHz, CDCl3) δ 196.1, 170.0, 162.3 (d, J = 253.7 Hz), 146.4, 135.7 (d, J = 9.7 Hz), 132.0, 130.6, 128.6, 124.7, 124.1, 122.4, 116.8 (d, J = 23.7 Hz), 52.4, 48.9. 19F NMR (282 MHz, CDCl3) δ −108.3. HRMS (ESI) calcd for C16H13FNO2 ([M + H]+): 270.0925; found 270.0924. 3-[2-(2-Chlorophenyl)-2-oxoethyl]isoindolin-1-one (3n). White solid, 87% yield, mp: 149−151 °C. 1H NMR (300 MHz, CDCl3) δ 7.88 (d, J = 7.4 Hz, 1H), 7.59 (dt, J = 7.5, 1.2 Hz, 2H), 7.53−7.43 (m, 4H), 7.39−7.34 (m, 1H), 6.87 (br, 1H), 5.13 (dd, J = 10.0, 3.0 Hz,

multistep synthesis. Further studies to explore the possibility for synthesis of various isoindolinones and enantioselective processes are currently underway in our laboratory.



EXPERIMENTAL SECTION

General Information. All reactions were carried out under an air atmosphere conditions. Various reagents were purchased from Aldrich, Acros, or Alfa. The diaryliodonium salts 4 were prepared according literature. Flash column chromatography was performed using silica gel (200−300 mesh). Analytical thin-layer chromatography was performed using glass plates precoated with 200−300 mesh silica gel impregnated with a fluorescent indicator (254 nm). NMR spectra were recorded in CDCl3 on Bruker NMR-400 (400 MHz) and NMR-500 (500 MHz) with TMS as an internal reference. The model of HRMS is BrukermaXis UHR-TOF. General Procedure for Preparation of Compound 3. A solution of 3-hydroxyisoindolin-1-one 1 (0.3 mmol), terminal alkyne 2 (0.45 mmol), and BF3·Et2O (2 equiv) in dichloromethane (DCM) (2 mL) was stirred at room temperature for 2 h without exclusion of air or moisture. After completion of the reaction (observed on TLC), the solvent was evaporated under reduced pressure to obtain the crude mixture. The residues was purified by silica-gel column chromatography (ethyl acetate/petroleum ether = 1/4−1/2) to afford the pure product 3. The obtained product was analyzed by 1H NMR, 13C NMR, and HRMS. 3-(2-Oxo-2-phenylethyl)isoindolin-1-one (3a).22 White solid, 91% yield. 1H NMR (400 MHz, CDCl3) δ 7.97−7.95 (m, 2H), 7.99 (d, J = 7.5 Hz, 1H), 7.63−7.58 (m, 2H), 7.53−7.46 (m, 4H), 6.97 (s, 1H), 5.12 (dd, J = 10.0, 3.0 Hz, 1H), 3.75 (dd, J = 18.0, 3.0 Hz, 1H), 3.11 (dd, J = 18.0, 7.8 Hz, 1H). 13C NMR (125 MHz, CDCl3) δ 197.9, 169.9, 146.5, 136.0, 133.9, 132.0, 128.8, 128.6, 128.1, 124.2, 122.3, 52.4, 44.1. 3-(2-Oxo-2-p-tolylethyl)isoindolin-1-one (3b).23 White solid, 88% yield. 1H NMR (300 MHz, CDCl3) δ 7.86 (t, J = 8.2 Hz, 3H), 7.62− 7.59 (m, 1H), 7.50 (t, J = 7.8 Hz, 2H), 7.28−7.26 (m, 2H), 7.00 (br, 1H), 5.13 (dd, J = 10.0, 2.8 Hz, 1H), 3.69 (dd, J = 18.0, 3.3 Hz, 1H), 3.08 (dd, J = 18.0, 10.0 Hz, 1H), 2.42 (s, 3H). 13C NMR (125 MHz, CDCl3) δ 197.5, 170.0, 146.6, 144.9, 133.6, 132.3, 131.9, 129.5, 128.5, 128.2, 124.1, 122.4, 52.5, 43.9, 21.7. 3-[2-(4-Methoxyphenyl)-2-oxoethyl]isoindolin-1-one (3c). 23 White solid, 82% yield. 1H NMR (300 MHz, CDCl3) δ 7.95−7.88 (m, 3H), 7.63−7.58 (m, 1H), 7.53−7.47 (m, 2H), 6.96−6.94 (m, 2H), 6.83 (br, 1H), 5.15−5.12 (m, 1H), 3.88 (s, 3H), 3.67 (dd, J = 18.0, 3.0 Hz, 1H), 3.05 (dd, J = 18.0, 10.0 Hz, 1H). 13C NMR (125 MHz, CDCl3) δ 196.4, 169.8, 164.1, 146.6, 132.0, 131.9, 129.1, 128.5, 124.2, 122.3, 114.0, 55.6, 52.6, 43.7. 3-[2-(4-Ethylphenyl)-2-oxoethyl]isoindolin-1-one (3d). White solid, 86% yield, mp: 125−127 °C. 1H NMR (300 MHz, CDCl3) δ 7.87 (t, J = 8.2 Hz, 3H), 7.62−7.57 (m, 1H), 7.50 (t, J = 7.5 Hz, 2H), 7.29 (d, J = 8.3 Hz, 2H), 7.03 (br, 1H), 5.13 (dd, J = 10.0, 3.0 Hz, 1H), 3.70 (dd, J = 18.0, 3.0 Hz, 1H), 3.08 (dd, J = 18.0, 10.0 Hz, 1H), 2.71 (q, J = 7.6 Hz, 2H), 1.26 (t, J = 7.6 Hz, 3H). 13C NMR (125 MHz, CDCl3) δ 197.6, 170.0, 151.0, 146.6, 133.8, 132.0, 128.5, 124.1, 122.4, 52.5, 43.9, 28.9, 15.1. HRMS (ESI) calcd for C18H18NO2 ([M + H]+): 280.1332; found 280.1330. 3-[2-(4-Butylphenyl)-2-oxoethyl]isoindolin-1-one (3e). White solid, 85% yield, mp: 110−112 °C. 1H NMR (300 MHz, CDCl3) δ 7.89−7.86 (m, 3H), 7.59 (dt, J = 7.4, 1.2 Hz, 1H), 7.52−7.46 (m, 2H), 7.29−7.26 (m, 2H), 6.99 (br, 1H), 5.13 (dd, J = 10.0, 3.0 Hz, 1H), 3.70 (dd, J = 18.0, 3.0 Hz, 1H), 3.09 (dd, J = 18.0, 10.0 Hz, 1H), 2.67 (t, J = 7.6 Hz, 2H), 1.66−1.58 (m, 2H), 1.41−1.34 (m, 2H), 0.92 (t, J = 7.2 Hz, 3H). 13C NMR (125 MHz, CDCl3) δ 197.6, 169.9, 149.8, 146.6, 133.8, 132.0, 131.9, 128.9, 128.5, 128.3, 124.2, 122.4, 52.5, 43.9, 35.7. HRMS (ESI) calcd for C20H22NO2 ([M + H]+): 308.1645; found 308.1639. 3-[2-Oxo-2-(4-pentylphenyl)ethyl]isoindolin-1-one (3f). White solid, 83% yield, mp: 105−107 °C. 1H NMR (300 MHz, CDCl3) δ 7.89−7.86 (m, 3H), 7.60 (dt, J = 7.4, 1.2 Hz, 1H), 7.49 (t, J = 7.8 Hz, 2H), 7.29−7.26 (m, 2H), 7.00 (br, 1H), 5.13 (dd, J = 10.0, 3.0 Hz, 4260

DOI: 10.1021/acs.joc.8b00283 J. Org. Chem. 2018, 83, 4257−4263

Note

The Journal of Organic Chemistry

1H), 7.48 (t, J = 7.6 Hz, 2H), 7.02−7.00 (m, 1H), 6.96 (br, 1H), 5.11−5.08 (m, 1H), 3.89 (s, 3H), 3.67 (dd, J = 18.0, 3.3 Hz, 1H), 3.15 (dd, J = 18.0, 9.8 Hz, 1H). 13C NMR (125 MHz, CDCl3) δ 197.9, 170.1, 163.1, 148.9, 136.0, 133.9, 128.8, 128.1, 125.5, 124.5, 114.9, 107.4, 55.7, 52.2, 44.2. HRMS (ESI) calcd for C17H16NO3 ([M + H]+): 282.1125; found 282.1123. 3-(2-Oxo-2-phenylethyl)-5-phenoxyisoindolin-1-one (3w). White solid, 88% yield, mp: 168−170 °C. 1H NMR (300 MHz, CDCl3) δ 7.95−7.92 (m, 2H), 7.81 (d, J = 23.6 Hz, 1H), 7.63−7.58 (m, 1H), 7.50−7.38 (m, 4H), 7.23−7.18 (m, 1H), 7.10−7.07 (m, 3H), 7.02− 7.01 (m, 1H), 6.84 (br, 1H) 5.06 (dd, J = 10.2, 3.0 Hz, 1H), 3.64 (dd, J = 18.0, 3.3 Hz, 1H), 3.11 (dd, J = 18.0, 10.0 Hz, 1H). 13C NMR (125 MHz, CDCl3) δ 197.8, 169.5, 161.5, 155.8, 148.8, 135.9, 133.9, 130.1, 128.8, 128.1, 126.4, 125.8, 124.6, 120.0, 118.5, 111.4, 52.2, 44.1. HRMS (ESI) calcd for C22H18NO3 ([M + H]+): 344.1281; found 344.1283. General Procedure for Preparation of Compound 5. A solution of isoindolin-1-one 3 (0.3 mmol), diaryliodonium salts 4 (0.6 mmol), and NaH (1.5 equiv) in toluene (2 mL) was stirred at 40 °C for 36 h. After completion of the reaction (observed on TLC), the solvent was evaporated under reduced pressure to obtain the crude mixture. The residues was purified by silica-gel column chromatography (ethyl acetate/petroleum ether = 1/4−1/2) to afford the pure product 5. The obtained product was analyzed by 1H NMR, 13C NMR, and HRMS. 3-(2-Oxo-2-phenylethyl)-2-phenylisoindolin-1-one (5a).22 White solid, 72% yield, mp: 148−149 °C. 1H NMR (400 MHz, CDCl3) δ 7.97−7.96 (m, 1H), 7.88 (d, J = 7.6 Hz, 2H), 7.68−7.66 (m, 2H), 7.60−7.44 (m, 8H), 7.24 (d, J = 7.6 Hz, 1H), 6.03−6.00 (m, 1H), 3.57−3.53 (m, 1H), 3.27−3.20 (m, 1H). 13C NMR (125 MHz, CDCl3) δ 197.7, 166.9, 145.2, 136.6, 136.3, 133.8, 132.4, 131.8, 129.4, 128.1, 125.6, 124.2, 123.2, 56.8, 41.9. 2-(4-Fluorophenyl)-3-(2-oxo-2-phenylethyl)isoindolin-1-one (5b). White solid, 81% yield, mp: 160−162 °C. 1H NMR (400 MHz, CDCl3) δ 7.95 (d, J = 8.6 Hz, 1H), 7.85 (d, J = 7.7 Hz, 2H), 7.59−7.43 (m, 8H), 7.14 (t, J = 8.0 Hz, 2H), 5.96−5.94 (m, 1H), 3.52−3.48 (m, 1H), 3.27−3.20 (m, 1H). 13C NMR (125 MHz, CDCl3) δ 197.5, 166.9, 160.3 (d, J = 244.3 Hz), 145.1, 136.3, 133.8, 132.5, 131.6, 128.8, 128.7, 128.1, 125.2 (d, J = 8.2 Hz), 124.2, 123.2, 116.2 (d, J = 22.5 Hz), 57.3, 41.8. 19F NMR (470 MHz, CDCl3) δ −115.9. HRMS (ESI) calcd for C22H17FNO2 ([M + H]+): 346.1238 found 346.1234. 2-(4-Chlorophenyl)-3-(2-oxo-2-phenylethyl)isoindolin-1-one (5c).23 White solid, 87% yield. 1H NMR (400 MHz, CDCl3) δ 7.94− 7.92 (m, 1H), 7.87 (d, J = 7.6 Hz, 2H), 7.83−7.52 (m, 6H), 7.42 (t, J = 7.6 Hz, 2H), 7.40−7.38 (m, 2H), 5.96 (d, J = 7.2 Hz, 1H), 3.55−3.49 (m, 1H), 3.27−3.20 (m, 1H). 13C NMR (125 MHz, CDCl3) δ 197.5, 166.9, 145.1, 135.2, 133.9, 132.6, 131.5, 130.9, 129.4, 128.8, 128.1, 124.2, 123.2, 56.8, 41.8. 2-(4-Bromophenyl)-3-(2-oxo-2-phenylethyl)isoindolin-1-one (5d).22 White solid, 74% yield. 1H NMR (400 MHz, CDCl3) δ 7.95− 7.92 (m, 1H), 7.87−7.85 (m, 2H), 7.60−7.51 (m, 8H), 7.46−7.41 (m, 2H), 5.96 (dd, J = 9.4, 3.0 Hz, 1H), 3.52 (dd, J = 17.8, 3.0 Hz, 1H), 3.27−3.19 (m, 1H). 13C NMR (125 MHz, CDCl3) δ 197.5, 166.9, 145.0, 136.2, 135.7, 133.9, 132.6, 132.4, 131.5, 128.8, 128.1, 124.3, 123.2, 118.6, 56.7, 41.8. 2-(4-Methoxyphenyl)-3-(2-oxo-2-phenylethyl)isoindolin-1-one (5e).22 White solid, 68% yield. 1H NMR (400 MHz, CDCl3) δ 7.95− 7.93 (m, 1H), 7.86 (d, J = 7.9 Hz, 2H), 7.54−7.50 (m, 6H), 7.43 (t, J = 7.6 Hz, 2H), 6.97−6.95 (m, 2H), 5.90−5.98 (m, 1H), 3.82 (s, 3H), 3.53−3.48 (m, 1H), 3.23−3.16 (m, 1H). 13C NMR (125 MHz, CDCl3) δ 197.7, 166.9, 157.6, 145.2, 136.4, 133.7, 132.2, 131.9, 128.7, 128.1, 125.4, 124.0, 123.2, 114.6, 57.5, 55.5, 41.9. 3-(2-Oxo-2-phenylethyl)-2-p-tolylisoindolin-1-one (5f).23 White solid, 71% yield. 1H NMR (400 MHz, CDCl3) δ 7.95−7.94 (m, 1H), 7.87 (d, J = 7.7 Hz, 2H), 7.59−7.51 (m, 6H), 7.44 (t, J = 7.6 Hz, 2H), 7.26 (t, J = 6.5 Hz, 2H), 5.97−5.95 (m, 1H), 3.56−3.52 (m, 1H), 3.24−3.17 (m, 1H), 2.36 (s, 3H). 13C NMR (125 MHz, CDCl3) δ 197.7, 166.9, 145.2, 136.3, 135.6, 133.9, 133.7, 129.9, 128.7, 128.1, 123.4, 57.1, 41.9, 20.9.

1H), 3.75 (dd, J = 18.0, 3.0 Hz, 1H), 3.12 (dd, J = 18.0, 10.0 Hz, 1H). 13 C NMR (125 MHz, CDCl3) δ 200.7, 170.0, 146.2, 137.7, 132.7, 132.1, 131.9, 131.4, 130.9, 129.4, 128.6, 127.2, 124.2, 122.3, 52.5, 48.2. HRMS (ESI) calcd for C16H13ClNO2 ([M + H]+): 286.0629; found 286.0624. 3-[2-(Biphenyl-4-yl)-2-oxoethyl]isoindolin-1-one (3o). White solid, 62% yield, mp: 205−207 °C. 1H NMR (300 MHz, CDCl3) δ 8.03 (d, J = 8.4 Hz, 2H), 7.92 (d, J = 7.4 Hz, 1H), 7.70 (d, J = 8.4 Hz, 2H), 7.65−7.60 (m, 3H), 7.52−7.41 (m, 5H), 6.85 (br, 1H), 5.19−5.16 (m, 1H), 3.76 (dd, J = 18.0, 3.0 Hz, 1H), 3.13 (dd, J = 18.0, 10.0 Hz, 1H). 13 C NMR (125 MHz, CDCl3) δ 197.5, 169.9, 146.7, 146.5, 139.6, 134.7, 132.0, 129.1, 128.5, 127.5, 127.3, 124.3, 122.3, 52.5, 44.1. HRMS (ESI) calcd for C22H18NO2 ([M + H]+): 328.1332; found 328.1330. 3-[2-Oxo-2-(thiophen-2-yl)ethyl]isoindolin-1-one (3p).23 White solid, 59% yield. 1H NMR (300 MHz, CDCl3) δ 7.90 (d, J = 7.5 Hz, 1H), 7.71 (d, J = 4.5 Hz, 2H), 7.64−7.58 (m, 1H), 7.54−7.47 (m, 2H), 7.16 (t, J = 4.4 Hz, 1H), 6.79 (br, 1H), 5.14 (dd, J = 10.8, 2.8 Hz, 1H), 3.65 (dd, J = 17.6, 3.2 Hz, 1H), 3.06 (dd, J = 17.6, 3.3 Hz, 1H). 13 C NMR (125 MHz, CDCl3) δ 190.5, 169.9 146.2, 143.0, 134.7, 132.7, 132.0, 128.7, 128.4, 124.3, 122.3, 52.4, 44.5. 7-Fluoro-3-(2-oxo-2-phenylethyl)isoindolin-1-one (3q). White solid, 86% yield, mp: 173−175 °C. 1H NMR (300 MHz, CDCl3) δ 7.97−7.94 (m, 2H), 7.64−7.53 (m, 2H), 7.49 (t, J = 7.8 Hz, 2H), 7.28−7.25 (m, 1H), 7.13 (t, J = 8.8 Hz, 1H), 6.95 (br, 1H), 5.15 (dd, J = 9.9, 3.0 Hz, 1H), 3.70 (dd, J = 18.0, 10.0 Hz, 1H), 3.06 (dd, J = 17.6, 3.3 Hz, 1H). 13C NMR (125 MHz, CDCl3) δ 197.6, 166.9, 159.4 (d, J = 215.2 Hz), 149.4, 135.9, 134.1 (d, J = 7.8 Hz), 134.0, 128.9, 128.1, 119.2 (d, J = 12.5 Hz), 118.4, 115.8 (d, J = 18.7 Hz), 52.3, 44.1. 19F NMR (282 MHz, CDCl3) δ −117.5. HRMS (ESI) calcd for C16H13FNO2 ([M + H]+): 270.0925; found 270.0924. 6-Fluoro-3-(2-oxo-2-phenylethyl)isoindolin-1-one (3r). White solid, 88% yield, mp: 174−175 °C. 1H NMR (300 MHz, CDCl3) δ 7.96 (d, J = 7.8 Hz, 2H), 7.88−7.86 (m, 1H), 7.62 (t, J = 7.2 Hz, 1H), 7.49 (t, J = 7.5 Hz, 2H), 7.22−7.17 (m, 2H), 7.01 (br, 1H), 5.15−5.12 (m, 1H), 3.67 (dd, J = 17.9, 3.0 Hz, 1H), 3.16 (dd, J = 9.9, 7.8 Hz, 1H). 13C NMR (125 MHz, CDCl3) δ 197.6, 168.9, 165.3 (d, J = 215.2 Hz), 149.1, 135.9, 134.0, 128.8, 128.1, 126.2 (d, J = 9.7 Hz), 116.3 (d, J = 23.4 Hz), 110.0 (d, J = 23.7 Hz), 52.2, 43.9. 19F NMR (282 MHz, CDCl3) δ −106.5. HRMS (ESI) calcd for C16H13FNO2 ([M + H]+): 270.0925; found 270.0925. 5-Fluoro-3-(2-oxo-2-phenylethyl)isoindolin-1-one (3s). White solid, 82% yield, mp: 188−189 °C. 1H NMR (300 MHz, CDCl3) δ 7.97−7.94 (m, 2H), 7.68−7.59 (m, 1H), 7.56−7.43 (m, 4H), 7.29 (dt, J = 8.7, 2.4 Hz, 1H), 7.05 (s, 1H), 5.15−5.11 (m, 1H), 3.70 (dd, J = 18.0, 3.0 Hz, 1H), 3.12 (dd, J = 18.0, 10.0 Hz, 1H). 13C NMR (125 MHz, CDCl3) δ 197.8, 168.8, 163.1 (d, J = 247.5 Hz), 141.8, 135.9, 134.0, 128.9, 128.1, 123.9 (d, J = 8.3 Hz), 119.5 (d, J = 23.6 Hz), 110.9 (d, J = 23.2 Hz), 52.2, 43.9. 19F NMR (282 MHz, CDCl3) δ −112.4. HRMS (ESI) calcd for C16H13FNO2 ([M + H]+): 270.0925; found 270.0925. 6-Chloro-3-(2-oxo-2-phenylethyl)isoindolin-1-one (3t). White solid, 75% yield, mp: 208−210 °C. 1H NMR (300 MHz, CDCl3) δ 7.98−7.95 (m, 2H), 7.82−7.80 (m, 1H), 7.65−7.60 (m, 1H), 7.52− 7.48 (m, 4H), 6.92 (br, 1H), 5.13 (dd, J = 10.2, 3.3 Hz, 1H), 3.69 (dd, J = 18.0, 3.3 Hz, 1H), 3.12 (dd, J = 18.0, 10.2 Hz, 1H). 13C NMR (125 MHz, CDCl3) δ 197.6, 168.8, 148.1, 138.4 135.8, 134.1, 129.2, 128.9, 128.1, 125.5, 122.9, 52.1, 43.9. HRMS (ESI) calcd for C16H13ClNO2 ([M + H]+): 286.0629; found 286.0624. 6-Bromo-3-(2-oxo-2-phenylethyl)isoindolin-1-one (3u). White solid, 72% yield, mp: 216−217 °C. 1H NMR (300 MHz, CDCl3) δ 7.97−7.95 (m, 2H), 7.76−7.73 (m, 1H), 7.66−7.60 (m, 3H), 7.50 (t, J = 7.8 Hz, 2H), 6.88 (br, 1H), 5.12 (dd, J = 10.0, 3.0 Hz, 1H), 3.72 (dd, J = 18.0, 3.0 Hz, 1H), 3.12 (dd, J = 18.0, 10.0 Hz, 1H). 13C NMR (125 MHz, CDCl3) δ 197.6, 168.8, 148.3, 135.8, 134.1, 132.9, 130.9, 128.1, 126.8, 125.9, 125.7, 52.1, 43.9. HRMS (ESI) calcd for C16H13BrNO2 ([M + H]+): 330.0124; found 330.0123. 5-Methoxy-3-(2-oxo-2-phenylethyl)isoindolin-1-one (3v). White solid, 90% yield, mp: 161−162 °C. 1H NMR (400 MHz, CDCl3) δ 7.96 (d, J = 7.8 Hz, 2H), 7.78 (d, J = 8.4 Hz, 1H), 7.61 (t, J = 7.3 Hz, 4261

DOI: 10.1021/acs.joc.8b00283 J. Org. Chem. 2018, 83, 4257−4263

Note

The Journal of Organic Chemistry 3-(2-Oxo-2-phenylethyl)-2-(4-trifluoromethylphenyl)isoindolin-1one (5g). White solid, 85% yield, mp: 151−153 °C. 1H NMR (400 MHz, CDCl3) δ 7.97−7.96 (m, 1H), 7.88−7.82 (m, 4H), 7.70−7.67 (m, 2H), 7.61−7.53 (m, 4H), 7.44 (t, J = 7.5 Hz, 2H), 6.06 (dd, J = 9.6, 3.0 Hz, 1H), 3.53 (dd, J = 18.0, 3.0 Hz, 1H), 3.25 (dd, J = 18.0, 10.0 Hz, 1H). 13C NMR (125 MHz, CDCl3) δ 197.4, 167.1, 145.1, 139.9, 136.1, 133.9, 132.9, 131.3, 128.9, 128.8, 128.1, 126.5, 124.4, 123.2, 122.1, 56.5, 41.8. 19F NMR (470 MHz, CDCl3) δ −62.3. HRMS (ESI) calcd for C23H17F3NO2 ([M + H]+): 396.1206 found 396.1199. 2-(4-Bromophenyl)-3-[2-(4-fluorophenyl)-2-oxoethyl]isoindolin1-one (5h). White solid, 81% yield, mp: 141−143 °C. 1H NMR (400 MHz, CDCl3) δ 7.95−7.88 (m, 3H), 7.55−7.52 (m, 7H), 7.12 (t, J = 8.2 Hz, 2H), 5.96−5.94 (m, 1H), 3.49 (dd, J = 10.0, 3.0 Hz, 1H), 3.23−3.17 (m, 1H). 13C NMR (125 MHz, CDCl3) δ 195.8, 167.2, 165.5 (d, J = 218.9 Hz), 144.9, 135.7, 132.6, 132.4, 131.5, 130.8 (d, J = 9.6 Hz), 128.9, 124.4 (d, J = 17.2 Hz), 123.1, 118.7, 115.9 (d, J = 21.9 Hz), 56.7, 41.7. 19F NMR (282 MHz, CDCl3) δ −103.4. HRMS (ESI) calcd for C22H16BrFNO2 ([M + H]+): 424.0343 found 424.0338. 2-(4-Bromophenyl)-3-[2-(4-chlorophenyl)-2-oxoethyl]isoindolin1-one (5i). White solid, 85% yield, mp: 152−154 °C. 1H NMR (400 MHz, CDCl3) δ 7.95 (d, J = 7.2 Hz, 1H), 7.81 (d, J = 8.2 Hz, 2H), 7.56−7.49 (m, 7H), 7.42 (d, J = 8.2 Hz, 2H), 5.96−5.94 (m, 1H), 3.52−3.47 (m, 1H), 3.23−3.17 (m, 1H). 13C NMR (125 MHz, CDCl3) δ 196.3, 166.8, 144.8, 140.5, 135.7, 134.5, 132.7, 132.4, 131.5, 129.1, 128.9, 123.1, 118.7, 56.6, 41.8. HRMS (ESI) calcd for C22H16BrClNO2 ([M + H]+): 440.0047 found 440.0039. 2-(4-Bromophenyl)-3-(2-oxo-2-p-tolylethyl)isoindolin-1-one (5j). White solid, 80% yield, mp: 141−143 °C. 1H NMR (400 MHz, CDCl3) δ 7.95−7.93 (m, 1H), 7.77 (d, J = 8.0 Hz, 2H), 7.59−7.52 (m, 7H), 7.25−7.24 (m, 2H), 5.98−5.95 (m, 1H), 3.49 (dd, J = 9.4, 3.0 Hz, 1H), 3.21 (dd, J = 18.0, 10.0 Hz, 1H), 2.41 (s, 3H). 13C NMR (125 MHz, CDCl3) δ 197.1, 166.9, 145.1, 144.9, 135.8, 133.7, 132.6, 132.4, 131.5, 129.5, 128.8, 128.2, 124.4, 124.2, 123.2, 118.6, 56.7, 41.7, 21.7. HRMS (ESI) calcd for C23H19BrNO2 ([M + H]+): 420.0594 found 420.0589. 2-(4-Bromophenyl)-3-[2-(4-methoxyphenyl)-2-oxoethyl]isoindolin-1-one (5k). White solid, 81% yield, mp: 138−140 °C. 1H NMR (400 MHz, CDCl3) δ 7.93 (d, J = 7.6 Hz, 1H), 7.85 (d, J = 8.0 Hz, 2H), 7.59−7.53 (m, 7H), 6.91 (d, J = 8.2 Hz, 2H), 5.96−5.95 (m, 1H), 3.87 (s, 3H), 3.48−3.44 (m, 1H), 3.21−3.15 (m, 1H). 13C NMR (125 MHz, CDCl3) δ 195.8, 168.9, 164.1, 145.2, 135.8, 132.6, 132.1, 131.5, 130.5, 129.4, 128.8, 124.4, 123.2, 118.6, 113.9, 56.8, 55.6, 41.4. HRMS (ESI) calcd for C23H19BrNO3 ([M + H]+): 436.0543 found 436.0537. 2-(4-Bromophenyl)-3-{2-oxo-2-[4-(trifluoromethyl)phenyl]ethyl}isoindolin-1-one (5l). White solid, 75% yield, mp: 131 °C. 1H NMR (400 MHz, CDCl3) δ 7.98−7.95 (m, 3H), 7.72 (d, J = 8.2 Hz, 2H), 7.60−7.50 (m, 7H), 5.98−5.95 (m, 1H), 3.58−3.53 (m, 1H), 3.30− 3.23 (m, 1H). 13C NMR (125 MHz, CDCl3) δ 196.6, 166.8, 144.7, 132.7, 132.4, 129.1, 128.4, 124.4, 122.9, 118.8, 56.6, 42.1. 19F NMR (470 MHz, CDCl3) δ −63.2. HRMS (ESI) calcd for C23H16BrF3NO2 ([M + H]+): 474.0311 found 474.0298.



Notes

The authors declare no competing financial interest.



ACKNOWLEDGMENTS We are grateful to National Natural Science Foundation of China (Grant 21402013), the Natural Science Foundation of Jiangsu Province (Grant BK20140259), the Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology (BM2012110), and the Advanced Catalysis and Green Manufacturing Collaborative Innovation Center in Changzhou University.



ASSOCIATED CONTENT

S Supporting Information *

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.joc.8b00283.



REFERENCES

(1) (a) Larock, R. C. Comprehensive Organic Transformations; VCH: New York, 1989; pp 819. (b) Lawson, E. C.; Luci, D. K.; Ghosh, S.; Kinney, W. A.; Reynolds, C. H.; Qi, J.; Smith, C. E.; Wang, Y.; Minor, L. K.; Haertlein, B. J.; Parry, T. J.; Damiano, B. P.; Maryanoff, B. J. Med. Chem. 2009, 52, 7432. (c) Fleming, F. F.; Yao, L.; Ravikumar, P. C.; Funk, L.; Shook, B. C. J. Med. Chem. 2010, 53, 7902. (d) Li, E.; Jiang, L.; Guo, L.; Zhang, H.; Che, Y. Bioorg. Med. Chem. 2008, 16, 7894. (2) Ferland, J.-M.; Demerson, C. A.; Humber, L. G. Can. J. Chem. 1985, 63, 361. (3) (a) Zhuang, Z.; Kung, M.; Mu, M.; Kung, H. F. J. Med. Chem. 1998, 41, 157. (b) Norman, M. H.; Minick, D. J.; Rigdon, G. C. J. Med. Chem. 1996, 39, 149. (4) Lippmann, W. U.S. Patent 4, 267, 189, 1981. Chem. Abstr. 1981, 95, 61988. (5) (a) Pendrak, I.; Barney, S.; Wittrock, R.; Lambert, D. M.; Kingsbury, W. D. J. Org. Chem. 1994, 59, 2623. (b) De Clercq, E. J. Med. Chem. 1995, 38, 2491. (6) Grigg, R.; Dorrity, M. J. R.; Malone, J. F.; MongkolausSavaratana, T.; Norbert, W. D. J. A.; Sridharan, V. Tetrahedron Lett. 1990, 31, 3075. (7) (a) Enders, D.; Braig, V.; Raabe, G. Can. J. Chem. 2001, 79, 1528. (b) Adachi, S.; Onozuka, M.; Yoshida, Y.; Ide, M.; Saikawa, Y.; Nakata, M. Org. Lett. 2014, 16, 358. (8) (a) Comins, D. L.; Schilling, S.; Zhang, Y. Org. Lett. 2005, 7, 95. (b) Pérard, J.; Prangé, T.; Tomas, A.; Royer, J. Tetrahedron 2002, 58, 5103. (9) McAlonan, H.; Murphy, J. P.; Nieuwenhuyzen, M.; Reynolds, K.; Sarma, P. K. S.; Stevenson, P. J.; Thompson, N. J. Chem. Soc., Perkin Trans. 1 2002, 33, 69. (10) (a) Liu, L.; Bai, S.; Li, Y.; Wang, L.-X.; Hu, Y.; Sung, H.-L.; Li, J. J. Org. Chem. 2017, 82, 11084. (b) Liu, L.; Qiang, J.; Bai, S.; Sung, H.L.; Miao, C.; Li, J. Adv. Synth. Catal. 2017, 359, 1283. (11) For reviews, see: (a) Yazici, A.; Pyne, S. G. Synthesis 2009, 2009, 339. (b) Martínez-Estibalez, U.; Gomez-SanJuan, A.; García-Calvo, O.; Aranzamendi, E.; Lete, E.; Sotomayor, N. Eur. J. Org. Chem. 2011, 2011, 3610. (c) Speckamp, W. N.; Moolenaar, M. J. Tetrahedron 2000, 56, 3817. Some detail examples: (d) Devineau, A.; Pousse, G.; Taillier, C.; Blanchet, J.; Rouden, J.; Dalla, V. Adv. Synth. Catal. 2010, 352, 2881. (e) Raheem, I. T.; Thiara, P. S.; Peterson, E. A.; Jacobsen, E. N. J. Am. Chem. Soc. 2007, 129, 13404. (f) Muratore, M. C.; Holloway, C. A.; Pilling, A. W.; Storer, R. I.; Trevitt, G.; Dixon, D. J. J. Am. Chem. Soc. 2009, 131, 10796. (g) Lu, N.; Wang, L.; Li, Z.; Zhang, W. Beilstein J. Org. Chem. 2012, 8, 192. (12) (a) Zhang, Y.; DeSchepper, D. J.; Gilbert, T. M.; Sai, K. K. S.; Klumpp, D. A. Chem. Commun. 2007, 4032. (b) Klumpp, D. A.; Zhang, Y.; O'Connor, M. J.; Esteves, P. M.; DeAlmeida, L. S. Org. Lett. 2007, 9, 3085. (c) Pin, F.; Comesse, S.; Garrigues, B.; Marchalıń, S.; Daïch, A. J. Org. Chem. 2007, 72, 1181. (d) Maity, A. K.; Roy, S. J. Org. Chem. 2012, 77, 2935. (e) Boiaryna, L.; El Mkaddem, M. K.; Taillier, C.; Dalla, V.; Othman, M. Chem. - Eur. J. 2012, 18, 14192. (13) (a) Hussein, Z.; Mulford, D. J.; Bopp, B. A.; Granneman, G. R. Br. J. Clin. Pharmacol. 1993, 36, 357. (b) Takahashi, I.; Kawakami, T.; Hirano, E.; Yokota, H.; Kitajima, H. Synlett 1996, 1996, 353.

Spectral data for all new compounds (PDF)

AUTHOR INFORMATION

Corresponding Authors

*E-mail: [email protected]. *E-mail: [email protected]. ORCID

Jian Li: 0000-0001-6713-1302 Jiangtao Sun: 0000-0003-2516-3466 4262

DOI: 10.1021/acs.joc.8b00283 J. Org. Chem. 2018, 83, 4257−4263

Note

The Journal of Organic Chemistry (14) (a) Sorbera, L. A.; Leeson, P. A.; Silvestre, J.; Castaner, J. Drugs Future 2001, 26, 651. (b) Stuk, T. L.; Assink, B. K.; Bates, R. C.; Erdman, D. T., Jr.; Fedij, V.; Jennings, S. M.; Lassig, J. A.; Smith, R. J.; Smith, T. L. Org. Process Res. Dev. 2003, 7, 851. (15) Tinnis, F.; Stridfeldt, E.; Lundberg, H.; Adolfsson, H.; Olofsson, B. Org. Lett. 2015, 17, 2688. (16) Belliotti, T. R.; Brink, W. A.; Kesten, S. R.; Rubin, J. R.; Wustrow, D. J.; Zoski, K. T.; Whetzel, S. Z.; Corbin, A. E.; Pugsley, T. A.; Heffner, T. G.; Wise, L. D. Bioorg. Med. Chem. Lett. 1998, 8, 1499. (17) (a) Wu, X.; Wang, B.; Zhou, Y.; Liu, H. Org. Lett. 2017, 19, 1294. (b) Wu, X.; Wang, B.; Zhou, S.; Zhou, Y.; Liu, H. ACS Catal. 2017, 7, 2494. (18) (a) Kanamitsu, N.; Osaki, T.; Itsuji, Y.; Yoshimura, M.; Tsujimoto, H.; Soga, M. Chem. Pharm. Bull. 2007, 55, 1682. (b) Uemura, S.; Fujita, T.; Sakaguchi, Y.; Kumamoto, E. Biochem. Biophys. Res. Commun. 2012, 418, 695. (19) Al-Jaroudi, Z.; Mohapatra, P. P.; Cameron, T. S.; Jha, A. Synthesis 2016, 48, 4477. (20) Kang, Z.; Zhang, D.; Shou, J.; Hu, W. Org. Lett. 2018, 20, 983. (21) (a) Beller, M.; Seayad, J.; Tillack, A.; Jiao, H. Angew. Chem., Int. Ed. 2004, 43, 3368; Angew. Chem. 2004, 116, 3448. (b) Hintermann, L.; Labonne, A. Synthesis 2007, 8, 1121. (c) Alonso, F.; Beletskaya, P. I.; Yus, M. Chem. Rev. 2004, 104, 3079. (22) Dhanasekaran, S.; Kayet, A.; Suneja, A.; Bisai, V.; Singh, V. K. Org. Lett. 2015, 17, 2780. (23) Han, F.-Z.; Su, B.-B.; Jia, L.-N.; Wang, P.-W.; Hu, X.-P. Adv. Synth. Catal. 2017, 359, 146.

4263

DOI: 10.1021/acs.joc.8b00283 J. Org. Chem. 2018, 83, 4257−4263