Lignin in Adhesives - ACS Symposium Series (ACS Publications)

Jul 23, 2009 - 2016 116 (4), pp 2275–2306. Abstract: The majority of commodity plastics and materials are derived from petroleum-based chemicals, il...
1 downloads 11 Views 1MB Size
Chapter 2 Lignin in Adhesives Introduction and Historical Perspective

Downloaded by UNIV LAVAL on June 18, 2014 | http://pubs.acs.org Publication Date: December 31, 1989 | doi: 10.1021/bk-1989-0385.ch002

Norman

G.

Lewis

and

Thomas

R.

Lantzy

W o o d Chemistry and Biochemistry Department of Forest Products V i r g i n i a Polytechnic Institute and State University Blacksburg, VA 24061

Lignins, complex organic polymers produced by all vascular terrestrial plants and second in abundance only to cellulose, are the substances holding plant fibers together. They are recovered mainly as byproducts from woodpulping operations with about 75 million tons produced annually worldwide. Over the last hundred years or so, there has been an enormous effort to develop lignin-based adhesives, but this has met with no real commercial success principally due to product variability, dark color, and lack of chemical reactivity. Lignin-based adhesives normally require excessively long curing times and high curing temperatures during composite board production. However, they can be employed as extenders in diverse wood-composite resins with no significant deterioration in the mechanical properties of the board products. This is particularly true if the lignins are activated chemically (e.g., by methylolation). Several recent reports have been directed toward improving even further the lignin chemical reactivity (e.g., in the synthesis of soda bagasse lignin-formaldehyde-resorcinol and lignin-isocyanate resins). Apparently, these developments surmount previous difficulties and allow for some cautious optimism for the future. T e r r e s t r i a l vascular p l a n t s have evolved w i t h a u n i q u e c a p a c i t y t o synthesize l i g n i n , whose m a i n p h y s i o l o g i c a l functions are t o p r o v i d e r i g i d i t y a n d s t r e n g t h to p l a n t cell w a l l s a n d t o act as a b a r r i e r t o i n f e c t i o n (1). N e x t t o cellulose, l i g n i n i s n a t u r e ' s second most a b u n d a n t o r g a n i c m a t e r i a l a n d is often described as the m a t e r i a l b i n d i n g p l a n t fibers together (#). 0097-6156/89/0385-0013$06.00/0 * 1989 American Chemical Society

In Adhesives from Renewable Resources; Hemingway, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

Downloaded by UNIV LAVAL on June 18, 2014 | http://pubs.acs.org Publication Date: December 31, 1989 | doi: 10.1021/bk-1989-0385.ch002

14

ADHESIVES F R O M RENEWABLE RESOURCES

I n g y m n o s p e r m s , l i g n i n is f o r m e d f r o m j>-coumaryl (1) a n d c o n i f e r y l (2) a l cohols, whereas, i n angiosperme, s i n a p y l a l c o h o l (3) is also i n v o l v e d (3). L i g n i f i c a t i o n is generally viewed t o occur e x c l u s i v e l y v i a the r a n d o m , d e h y d r o g e n a t i v e p o l y m e r i z a t i o n o f m o n o l i g n o l s (1) - (3) (^), a r e a c t i o n r e q u i r i n g b o t h H2O2 a n d peroxidase (5) ( F i g u r e 1). It is also w e l l k n o w n t h a t the r a t i o of m o n o l i g n o l s (1) - (3) i n v o l v e d i n the l i g n i f i c a t i o n process is species (6), t i m e (7), l i g h t (8) a n d m o r p h o l o g i c a l o r i g i n (9,10) dependent. L i g n i f i c a t i o n c a n a p p a r e n t l y also be influenced b y g r a v i t a t i o n a l forces experienced b y p l a n t s d u r i n g g r o w t h (11-19). T h e f o l l o w i n g conclusions c a n be m a d e w i t h regard t o current knowledge of the l i g n i f i c a t i o n process: 1) s t r i c t e n z y m a t i c c o n t r o l l e a d i n g t o the f i n a l p r o d u c t a p p a r e n t l y does n o t o c c u r a n d 2) b o t h r e g u l a t o r y processes c o n t r o l l i n g i t s d e p o s i t i o n a n d s t r u c t u r e in situ are p o o r l y u n d e r s t o o d . L i g n i n f o r m a t i o n i n p l a n t s of m a n y f a m i l i e s of A n g i o s p e r m a e , p a r t i c u l a r l y those i n C o m m e l i n i d a e of C r o n q u i s t (SO) (i.e., grasses), suffers f r o m a n a d d i t i o n a l c o m p l i c a t i o n due t o the presence of c e l l - w a l l - b o u n d h y d r o x y c i n n a m i c acids, s u c h as p - c o u m a r i c (4) (21), ferulic (5) (22,23), 5 - h y d r o x y f e r u l i c (6) (24), d i f e r u l i c (7) (23,25,26), a n d 4 , 4 / - d i h y d r o x y t r u x i l l i c (8) acids (27) ( F i g u r e 2). T h e s e acids have l o n g been s p e c u l a t e d t o b e i n v o l v e d d i r e c t l y i n l i g n i f i c a t i o n , a n d t h i s is o n l y n o w b e i n g c l a r i f i e d . T h i s c l a r i f i c a t i o n was achieved b y a d m i n i s t e r i n g specifically C - l a b e l l e d forms of ferulic a c i d (5) t o wheat ( Triiicum aestivum L . ) . Subsequent a n a l y s i s of the p l a n t tissue (28) a n d i s o l a t e d l i g n i n s (29) b y s o l i d a n d s o l u t i o n state C - N M R , respectively, revealed t h a t these acids were c o v a l e n t l y b o n d e d t o l i g n i n . 1 3

1 3

Lignin and Papermaking T h e discovery of l i g n i n a n d i t s subsequent use i n adhesive f o r m u l a t i o n s are i n t e r t w i n e d w i t h t e c h n o l o g i c a l developments i n the p u l p a n d p a p e r i n d u s t r y . S u r p r i s i n g l y , i t is not generally a p p r e c i a t e d t h a t the massive w o r l d w i d e p r o d u c t i o n of p u l p a n d p a p e r , u s i n g w o o d as a resource, o n l y b e g a n a b o u t 1850 or so. T h i s is i n spite of the fact t h a t f o r m a t i o n of p a p e r f r o m w o o d (e.g., b y t r e a t m e n t o f m u l b e r r y b a r k w i t h lye) h a d been developed b y T s ' a i L u n i n 105 A . D . i n C h i n a (SO) a n d perhaps even earlier b y others (31). However, b y the t i m e t h i s t e c h n o l o g y reached the W e s t e r n H e m i s p h e r e v i a the M i d d l e E a s t , w o o d h a d l o n g been replaced b y other p l a n t m a t e r i a l s o f higher cellulosic c o n tent (e.g., c o t t o n , l i n e n , flax). W o o d r e m a i n e d forgotten as a source of p a p e r u n t i l R e n e A . F . de R e a m u r (1683-1757) n o t e d t h a t wasps p r o d u c e d a p a p e r l i k e nest f r o m w o o d (30). I n 1839, P a y e n discovered t h a t w o o d was n o t homogeneous b u t c o n t a i n e d cellulose a n d a n " i n c r u s t i n g m a t e r i a F (32-34) for w h i c h S c h u l t z e coined the t e r m l i g n i n i n 1865 (35). A s s h o w n i n T a b l e I, c h e m i c a l w o o d p u l p i n g processes were developed t o dissolve away l i g n i n , hemicelluloses, a n d extractives (30). T h e s e represent the m a j o r w o o d p u l p i n g processes i n o p e r a t i o n today.

In Adhesives from Renewable Resources; Hemingway, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

LEWIS AND LANTZY

Lignins in Adhesives: Introduction

-Η©· OH

free-radical coupling

1, R R «H r

2

2, R «OCH ,R aH 1

3

2

3, R .R «OCH

Downloaded by UNIV LAVAL on June 18, 2014 | http://pubs.acs.org Publication Date: December 31, 1989 | doi: 10.1021/bk-1989-0385.ch002

t

2

Lignin

3

F i g u r e 1. L i g n i n f o r m a t i o n f r o m m o n o l i g n o l s (1) - (3).

In Adhesives from Renewable Resources; Hemingway, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

16

ADHESIVES F R O M RENEWABLE RESOURCES

T a b l e I. M a j o r C h e m i c a l P u l p i n g Processes Type

Developer(s)

Soda Sulphite Kraft

T i l g h m a n (1857) D a h l (1884)

Burgess a n d W a t t (1854)

Downloaded by UNIV LAVAL on June 18, 2014 | http://pubs.acs.org Publication Date: December 31, 1989 | doi: 10.1021/bk-1989-0385.ch002

Sources of Lignin E s s e n t i a l l y a l l of the l i g n i n c o m m e r c i a l l y a v a i l a b l e is i s o l a t e d as b y p r o d u c t s f r o m either the s u l p h i t e or the k r a f t process. T a b l e II gives a very conservative i d e a of a n n u a l l i g n i n p r o d u c t i o n i n the U n i t e d States (2) a n d w o r l d w i d e (36). T a b l e I I . E s t i m a t e d A n n u a l P r o d u c t i o n of L i g n i n ( m i l l i o n s of tons) U n i t e d States

Worldwide

Kraft lignin

Type

20

Lignosulphonates (Sulphite pulping)

1.5

75 15

I n a d d i t i o n t o k r a f t or s u l p h i t e l i g n i n s , there are a n u m b e r of other p r o cesses w h e r e b y l i g n i n c o u l d p o t e n t i a l l y be recovered (e.g., b y a c i d o l y s i s , s t e a m e x p l o s i o n , organosolv, b i o l o g i c a l t r e a t m e n t , etc). T h e e x i s t i n g a n d p o t e n t i a l processes for l i g n i n recovery are described briefly i n the f o l l o w i n g sections. Kraft Pulping. T h i s is the m a j o r w o o d p u l p i n g process a n d p o t e n t i a l l y represents the p r i m a r y source of t e c h n i c a l l i g n i n . D u r i n g p u l p i n g , cellulosic fibers are o b t a i n e d f r o m w o o d b y t r e a t m e n t w i t h solutions of s o d i u m h y d r o x i d e a n d s u l p h i d e at elevated t e m p e r a t u r e s , pressure a n d h i g h p H . T h e hemicelluloses ( a n d some cellulose) are degraded t o give m a i n l y isosaccharinic acids, the c h e m i s t r y of w h i c h has been adequately described elsewhere (37). O n the other h a n d , the l i g n i n released f r o m the cell w a l l d u r i n g p u l p i n g increases i n m o l e c u l a r size as d e l i g n i f i c a t i o n proceeds (38) a n d is h i g h l y p o l y disperse (39). K r a f t spent p u l p i n g l i q u o r s thus consist of l i g n i n ( « 4 7 % ) , h y d r o x y acids ( « 2 8 % , e.g., i s o s a c c h a r i n i c a c i d ) , i n o r g a n i c s , a n d s m a l l q u a n t i t i e s of other organics (37). L i g n i n c a n be i s o l a t e d f r o m these spent p u l p i n g l i q u o r s as a p r e c i p i t a t e b y a c i d i f i c a t i o n . A l m o s t a l l k r a f t l i g n i n is b u r n e d for energy recovery; however, a b o u t 35,000 tons are p r o d u c e d a n n u a l l y i n the U n i t e d States for v a r i o u s c h e m i c a l b y p r o d u c t s (2). Sulphite Pulping. T h i s is a generic t e r m used t o describe various s u l p h i t e c h e m i c a l w o o d p u l p i n g processes c a r r i e d out at different pH's a n d p u l p y i e l d s (37). ( T h e t e r m y i e l d refers t o the q u a n t i t y o f fiber recovered f r o m the o r i g i n a l wood.)

In Adhesives from Renewable Resources; Hemingway, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

2.

LEWIS AND LANTZY

17

Lignins in Adhesives: Introduction

I n the a c i d s u l p h i t e l o w - y i e l d p u l p i n g process, w o o d is t r e a t e d w i t h s o l u t i o n s of a m m o n i u m , s o d i u m , calcium, or magnesium s u l p h i t e / b i s u l p h i t e at low p H ( « 1-2) a n d a t elevated t e m p e r a t u r e s a n d pressures. D u r i n g t h i s t r e a t m e n t , ess e n t i a l l y a l l o f the l i g n i n s , hemicelluloses, a n d e x t r a c t i v e s are " d i s s o l v e d " away, l e a v i n g b e h i n d a fiber o f very h i g h cellulosic content. T h e hemicelluloses u n d e r g o severe h y d r o l y s i s , affording m a i n l y w a t e r - s o l u b l e monosaccharides i n t h e spent s u l p h i t e l i q u o r ( S S L ) . T h e s u l p h o n a t e d l i g n i n fragments released i n i t i a l l y d u r i n g d e l i g n i f i c a t i o n ( « 3 0 - 4 0 % l i g n i n removal) are m a i n l y m o n o m e r i c

compounds

c o n t a i n i n g either m o n o - , d i - , o r t r i - s u l p h o n i c acids (3,40). H o w e v e r , as d e l i g n i f i c a t i o n proceeds, t h e l i g n i n released f r o m t h e c e l l w a l l i s o f i n c r e a s i n g m o l e c u l a r

Downloaded by UNIV LAVAL on June 18, 2014 | http://pubs.acs.org Publication Date: December 31, 1989 | doi: 10.1021/bk-1989-0385.ch002

size a n d h i g h l y p o l y disperse (40). C o n s e q u e n t l y , l o w - y i e l d spent s u l p h i t e l i q u o r s ( S S L ) recovered after w o o d p u l p i n g l a r g e l y consist o f l i g n o s u l p h o n a t e s ( « 5 5 % ) , w o o d sugars ( « 2 5 - 3 0 % , e.g., glucose, m a n n o s e , etc.), i n o r g a n i c s , a n d other o r ganics i n s m a l l e r a m o u n t s (37). D e p e n d i n g u p o n the p u l p i n g process e m p l o y e d , l i g n o s u l p h o n a t e s c a n b e recovered as either a m m o n i u m , c a l c i u m , s o d i u m , o r m a g n e s i u m salts (35).

Currently, only about 2 0 % of a l l S S L materials pro-

d u c e d are used as c h e m i c a l p r o d u c t s (e.g., as i n e x p e n s i v e b i n d e r s f o r a n i m a l feed a n d d i r t r o a d s , a n d as dispersants i n o i l - w e l l d r i l l i n g a n d

cement/concrete

admixtures). Acidolysis. A c i d o l y s i s l i g n i n s are recovered f r o m processes w h e r e b y p l a n t m a t e r i a l (e.g., w o o d ) is saccharified b y t r e a t m e n t w i t h m i n e r a l acids, s u c h as s u l p h u r i c o r h y d r o c h l o r i c acids (41)· T h e l i g n i n is recovered p r i m a r i l y as a n i n s o l u b l e residue. T h i s process h a s been used i n E u r o p e i n t h e p a s t , b u t is n o t commercially important i n the Western Hemisphere. Steam Explosion. S t e a m - e x p l o s i o n l i g n i n s are o b t a i n e d f r o m w o o d (or some other p l a n t m a t e r i a l ) t h a t h a s been s u b j e c t e d briefly t o h i g h t e m p e r a t u r e s a n d pressures followed b y r a p i d decompression (42). T h i s process i s used t o a l i m i t e d extent t o d a y p a r t i c u l a r l y for t h e processing o f l o w - q u a l i t y h a r d w o o d s .

The

l i g n i n s recovered are o f r e l a t i v e l y l o w m o l e c u l a r weight ( M « 700) a n d soluble n

i n either a l k a l i o r c e r t a i n o r g a n i c solvents (42,43). Organosolv. O r g a n o s o l v l i g n i n s are o b t a i n e d as r e l a t i v e l y l o w - m o l e c u l a r - w e i g h t entities b y t r e a t m e n t o f p l a n t tissue w i t h aqueous s o l u t i o n s o f o r g a n i c solvents, n o r m a l l y c o n t a i n i n g trace a m o u n t s o f m i n e r a l acids (44)-

Solvents i n c l u d e

e t h a n o l , m e t h a n o l , b u t a n o l , acetic a c i d , e t h y l acetate, p h e n o l , e t c . T o d a t e , t h i s a p p r o a c h h a s n o t been c o m m e r c i a l i z e d d u e t o t h e q u a n t i t i e s o f o r g a n i c solvents c o n s u m e d a n d t h e l o w q u a l i t y o f the p u l p fiber o b t a i n e d . Enzymatic Liberation. T h i s is a process w h e r e b y l i g n i n - r i c h residues are o b tained b y treatment of plant material w i t h cellulases/hemicellulases/pectinases, etc.

T h e s e l i g n i n p r e p a r a t i o n s m a y m o r e closely resemble " n a t i v e " l i g n i n d u e

to t h e v e r y m i l d processing c o n d i t i o n s e m p l o y e d .

In Adhesives from Renewable Resources; Hemingway, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

18

ADHESIVES F R O M RENEWABLE RESOURCES

Lignin in Wood-Composite Adhesives

Downloaded by UNIV LAVAL on June 18, 2014 | http://pubs.acs.org Publication Date: December 31, 1989 | doi: 10.1021/bk-1989-0385.ch002

It is w o r t h w h i l e t o review the U . S . m a r k e t size for the four p r i n c i p a l resins c u r ­ r e n t l y used i n w o o d - p a n e l p r o d u c t s t o d a y (^5). T h e s e are p h e n o l - f o r m a l d e h y d e ( P F ) , urea-formaldehyde ( U F ) , melamine-formaldehyde ( M F ) , and resorcinolf o r m a l d e h y d e ( R F ) ( T a b l e I I I ) . W h e n these p r o d u c t i o n figures are c o m p a r e d t o the q u a n t i t i e s o f l i g n i n p o t e n t i a l l y a v a i l a b l e ( T a b l e I I ) , i t is i m m e d i a t e l y o b v i o u s t h a t a l l w o o d adhesives c o u l d be replaced b y o n l y a very s m a l l f r a c t i o n o f the l i g n i n p r o d u c e d a n n u a l l y d u r i n g c h e m i c a l w o o d p u l p i n g processes.

T a b l e I I I . U . S . P r o d u c t i o n of T h e r m o s e t t i n g R e s i n s (1983) i n M e t r i c T o n s (χ 1 0 ) 3

Resin

1

RF UF MF PF Totals

Total

Wood Products

15.5 586.0 90.0 660.0

1.5 440.0 5.0 297.0

1,351.5

743.5

* R F = resorcinol-formaldehyde U F = urea-formaldehyde M F = melamine-formaldehyde P F = phenol-formaldehyde

T h e r e have been m a n y a t t e m p t s t o replace these resins w i t h l i g n i n d e r i v a ­ tives for w o o d c o m p o s i t e adhesives s u i t a b l e for p l y w o o d , p a r t i c l e b o a r d a n d w a f e r b o a r d . M o s t of these studies have been e m p i r i c a l i n n a t u r e , a n d few have achieved f u r t h e r c o n s i d e r a t i o n for i n d u s t r i a l a p p l i c a t i o n . A s w o o d b i n d e r s , t e c h ­ n i c a l l i g n i n s are v a r i a b l e i n q u a l i t y a n d p o o r l y reactive i n c o m p a r i s o n t o c o n ­ v e n t i o n a l resin systems s u c h as p h e n o l - f o r m a l d e h y d e ( P F ) resins. C o n s e q u e n t l y , t h e y are n o t u t i l i z e d o n t h e i r o w n . Indeed, i f t h e y were, t h i s w o u l d adversely affect p r o d u c t i o n q u a l i t y a n d t i m e s , a n d necessitate e q u i p m e n t changes. I n the w o o d c o m p o s i t e i n d u s t r y , resins h a v i n g s u c h deleterious effects are n o t l i k e l y t o be used even if savings could be made in terms of material costs. Progress t o w a r d p r o d u c i n g i n d u s t r i a l l y acceptable l i g n i n adhesives c a n be b r o k e n d o w n i n t o t w o m a i n categories as either 1) l i g n i n - b a s e d b i n d e r s (by themselves as s u c h or i n c h e m i c a l l y m o d i f i e d f o r m ) , or 2) as c o p o l y m e r s ( w i t h other r e a c t a n t adhesives). Lignosulphonates. C r u d e S S L c a n be o b t a i n e d as a b r o w n i s h , s p r a y - d r i e d powder or as a viscous, hygroscopic, d a r k - c o l o r e d l i q u i d . S S L a n d the l i g n o ­ s u l p h o n a t e s present i n i t have been the focus o f n u m e r o u s efforts to p r o d u c e a n

In Adhesives from Renewable Resources; Hemingway, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

2.

LEWIS AND LANTZY

19

Lignins in Adhesives: Introduction

i n d u s t r i a l l y useful adhesive. E s s e n t i a l l y , there are t w o m e t h o d s o f c u r i n g S S L based adhesives, n a m e l y , b y t h e r m o s e t t i n g o r b y free-radical p o l y m e r i z a t i o n .

Downloaded by UNIV LAVAL on June 18, 2014 | http://pubs.acs.org Publication Date: December 31, 1989 | doi: 10.1021/bk-1989-0385.ch002

W i t h respect t o t h e r m o s e t t i n g , i t h a s been w e l l d o c u m e n t e d t h a t crude C a based S S L c a n be used as a p a r t i c l e b o a r d adhesive (46)- T h i s a p p l i c a t i o n h a s been e v a l u a t e d o n a m i l l - s c a l e basis i n D e n m a r k , F i n l a n d , a n d S w i t z e r l a n d , b u t h a s n o t been a d o p t e d o n a c o m m e r c i a l scale. T h i s is because resin c u r i n g r e q u i r e d b o t h h i g h press a n d autoclave temperatures as w e l l as l o n g h e a t i n g t i m e s . W h i l e t h i s development was a " t e c h n i c a l " success, i t was - a c c o r d i n g to N i m z (36) - never c o m m e r c i a l i z e d due t o t h e frequency o f fires experienced during mill-scale trials. Subsequent a t t e m p t s t o i m p r o v e the properties (i.e., r e a c t i v i t y ) o f S S L adhesives have essentially e m p l o y e d either a c i d i f i c a t i o n o f C a - b a s e d S S L o r m e m b r a n e filtration o f the crude p u l p i n g l i q u o r s . A c i d i f i c a t i o n o f C a - S S L w i t h concentrated H2SO4 gave a n adhesive s u i t a b l e for p a r t i c l e b o a r d a p p l i c a t i o n s (47). However, processing parameters s t i l l required h i g h press t e m p e r a t u r e ( « 204 ° C ) , press t i m e s (5-7 m i n ) , a n d pressure (400 p s i ) . T h e very l o w p H ( < 1) o f t h e resin used m a y also have a l o n g t e r m corrosive effect o n n a i l s , staples, etc., a n d engender w o o d d e t e r i o r a t i o n . M e m b r a n e filtration o f S S L shows s o m e w h a t greater p r o m i s e . T h i s a p p r o a c h was first r e p o r t e d b y Forss et a l . (48,49) * t h e development o f K A R A T E X , a P F / l i g n i n adhesive b i n d e r c o n t a i n i n g either l i g n o sulphonates o r k r a f t l i g n i n s o f n o m i n a l m o l e c u l a r weight > 5000 as d e t e r m i n e d by passage t h r o u g h a m e m b r a n e . A p p l y i n g t h i s a p p r o a c h , S h e n a n d C a l v e (50) e x a m i n e d t h e w a f e r b o a r d b i n d i n g properties o f a n a m m o n i u m - b a s e d S S L t h a t h a d been subjected t o m e m b r a n e filtration. B o a r d pressing c o n d i t i o n s were s t i l l excessive (e.g., 8 m i n at 210 ° C for 1 1 - m m - t h i c k w a f e r b o a r d ) . Best b o a r d properties were o b t a i n e d w i t h t h e l o w - m o l e c u l a r weight permeate ostensibly o f < 5,000 m o l e c u l a r weight a n d c o n t a i n i n g s u l p h o n a t e d l i g n i n s a n d m o n o s a c c h a rides. O n t h e other h a n d , t h e l i g n o s u l p h o n a t e retentate ( > 5,000 m o l w t ) gave b o a r d s o f unacceptable m e c h a n i c a l properties. n

It s h o u l d be recognized at t h i s p o i n t t h a t 1) t h e l i g n o s u l p h o n a t e s ( < 5,000 m o l w t ) l a r g e l y consist o f the m o n o m e r s c o n t a i n i n g m o n o - , d i - o r t r i - s u l p h o n i c acids as p r e v i o u s l y described (3,40), a n d 2) t h e m e c h a n i c a l properties o f t h e waferboards were d e t e r m i n e d largely b y monosaccharide, r a t h e r t h a n l i g n o s u l p h o n a t e , content (51). It was subsequently proven, under c o n t r o l l e d l a b o r a t o r y c o n d i t i o n s , t h a t the rate o f t h e r m o s e t t i n g o f b o t h h i g h a n d l o w m o l e c u l a r weight l i g n o s u l p h o n a t e s can be i m p r o v e d b y increasing the m o n o s a c c h a r i d e c o n tent o f t h e adhesive (52). I n a n analogous m a n n e r , f o r m a l d e h y d e was s h o w n to b e capable o f s l i g h t l y i n c r e a s i n g t h e rate o f t h e r m o s e t t i n g , p r e s u m a b l y b y increasing the rate of crosslinking. However, w h i l e t h e use o f f r a c t i o n a t e d NH4-SSL r e m a i n s a " t e c h n i c a l success," t h e t h e r m o s e t t i n g rates are s t i l l very l o w i n c o m p a r i s o n t o P F resins. Therefore, t h e l i k e l i h o o d o f p r o d u c i n g a c o m m e r c i a l l y acceptable t h e r m o s e t t i n g l i g n o s u l p h o n a t e - b a s e d resin is s t i l l very f a r f r o m reality.

In Adhesives from Renewable Resources; Hemingway, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

20

ADHESIVES F R O M RENEWABLE RESOURCES

Downloaded by UNIV LAVAL on June 18, 2014 | http://pubs.acs.org Publication Date: December 31, 1989 | doi: 10.1021/bk-1989-0385.ch002

L i g n o s u l p h o n a t e s i n crude S S L c a n also be o x i d a t i v e l y p o l y m e r i z e d b y either c h e m i c a l (36,53) or b i o c h e m i c a l (54) means. I n the f o r m e r process, o x i d a n t s such as h y d r o g e n p e r o x i d e , c a t a l y z e d b y s u l p h u r d i o x i d e (or p o t a s s i u m f e r r i c y a n i d e ) , c a n b e used t o cure fermented C a - b a s e d S S L . T h i s was f o u n d t o be s u i t a b l e as a n adhesive for m e d i u m - d e n s i t y i n t e r i o r - g r a d e p a r t i c l e b o a r d (36,53). O p t i m u m b o n d i n g c o n d i t i o n s used 2 0 % o f a t e c h n i c a l S S L ( 5 4 % ) , 9 % o f a 3 5 % H2O2 s o l u t i o n , 4 % a m m o n i u m c h l o r i d e a n d 0.6% SO2 for b o n d i n g p a r t i c l e b o a r d at 120 ° C w i t h a press t i m e o f 5 m i n . D i f f i c u l t i e s experienced p r e v i o u s l y i n c o n t r o l l i n g the e x o t h e r m i c n a t u r e o f t h i s c u r i n g r e a c t i o n have a p p a r e n t l y been resolved. W h e t h e r t h i s development w i l l receive c o m m e r c i a l endorsement r e m a i n s t o be seen. A n o t h e r a p p r o a c h t o c u r i n g S S L b y o x i d a t i v e p o l y m e r i z a t i o n e m p l o y s the use o f e n z y m e s (54)- I n t h a t s t u d y , S S L was t r e a t e d w i t h the w h i t e - r o t fungus Fomes annosus a n d a l a c c a s e - i n d u c i n g phenoloxidase u n t i l the s o l u t i o n reached a " h o n e y l i k e " consistency. T h i s viscous l i q u i d was t h e n s u b s e q u e n t l y used t o b o n d w o o d p a r t i c l e s together at a pressure o f 0.03 k g c m " . It now needs t o be e s t a b l i s h e d w h e t h e r the m e c h a n i c a l properties o f these b o a r d s s u r v i v e accelerated a g i n g tests. T h e a p p l i c a t i o n o f l i g n o s u l p h o n a t e s as a n extender or co-reactant i n P F or U F resins has been w e l l s t u d i e d , i n d u s t r i a l l y a p p l i e d , a n d e x t e n s i v e l y d o c u m e n t e d i n a recent comprehensive review (36). Since t h a t s t u d y , waferboards have been p r o d u c e d w i t h excellent m e c h a n i c a l properties after b e i n g b o n d e d at 204 ° C , 4 t o 5 m i n , 3375 k P a w i t h a l i g n o s u l p h o n a t e - P F resin (55). T h e p h e n o l i c r e s i n was m o d i f i e d b y use o f K 3 F e ( C N ) e s t a b i l i z e d l i g n o s u l p h o n a t e s ; b o t h p h e n o l a n d the l i g n o s u l p h o n a t e s were used i n a p p r o x i m a t e l y e q u a l p r o p o r t i o n s . W i t h r e g a r d t o p o t e n t i a l l i g n i n u t i l i z a t i o n , p e r h a p s some of the best rep o r t e d results have been e n u n c i a t e d by Forss et a l . (48,49). A s described p r e v i o u s l y , spent s u l p h i t e l i q u o r ( S S L ) was s u b j e c t e d t o m e m b r a n e filtration, a n d the l i g n o s u l p h o n a t e retentate ( > 5,000 n o m i n a l m o l e c u l a r weight cutoff) was used t o replace f r o m 40 t o 7 0 % o f P F resin w i t h no significant d e t e r i o r a t i o n i n m e c h a n i c a l b o a r d p r o p e r t i e s . P a r t i c l e b o a r d , p l y w o o d , a n d fiberboard were t h e n p r o d u c e d i n F i n l a n d u s i n g resins c o n t a i n i n g h i g h m o l e c u l a r weight l i g n o s u l p h o n a t e s a n d P F i n m i l l - s c a l e t r i a l s under n o r m a l processing c o n d i t i o n s , a n d t h i s use was a p p a r e n t l y successful (48,49). A w i d e l y s t a t e d advantage o f t h i s u l t r a f i l t r a t i o n a p p r o a c h is t h a t l i g n i n derivatives can be c o m m e r c i a l l y p r o d u c e d w i t h less p r o d u c t v a r i a b i l i t y . H o w e v e r , i t does not a p p e a r t h a t t h i s m e t h o d o l o g y is c u r r e n t l y b e i n g used c o m m e r c i a l l y t o p r o d u c e l i g n i n - b a s e d adhesives. 2

T h e use o f S S L or l i g n o s u l p h o n a t e s i n other p o l y m e r i c adhesive systems has also been e x a m i n e d [e.g., w i t h p o l y a c r y l a m i d e , p r o t e i n s / a l d e h y d e s , p o l y e t h y l e n e o x i d e , p o l y e t h y l e n e i m i n e , epoxides, m e l a m i n e , styrene o x i d e , p o l y i s o c y a n a t e s (36)]. S o f a r , these procedures, for different reasons, have n o t led t o a n y m a j o r p r a c t i c a l a p p l i c a t i o n (36). It w o u l d , however, be i n t e r e s t i n g t o r e e x a m i n e some o f these processes u s i n g n o t crude spent s u l p h i t e l i q u o r s , b u t i n s t e a d those purified by membrane filtration.

In Adhesives from Renewable Resources; Hemingway, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

2.

LEWIS AND LANTZY

21

Lignins in Adhesives: Introduction

Kraft Lignins. K r a f t l i g n i n s are n o r m a l l y o b t a i n e d as b r o w n p o w d e r s h a v i n g very b r o a d m o l e c u l a r weight d i s t r i b u t i o n s a n d v a r i a b l e p r o p e r t i e s . B o t h color a n d p r o d u c t v a r i a b i l i t y are disadvantages t h a t do n o t l e n d themselves t o easy acceptance b y resin m a n u f a c t u r e r s . T h e y are m a i n l y u n s u i t a b l e as t h e r m o s e t ­ t i n g adhesives since press t i m e s r e q u i r e d are t o o l o n g , press t e m p e r a t u r e s t o o h i g h , a n d b o a r d / p a n e l m e c h a n i c a l properties p o o r .

T h i s p o o r resin r e a c t i v ­

i t y is r e a d i l y e x p l a i n a b l e ; the p h e n o l i c content o f k r a f t l i g n i n is l o w , there are n o r m a l l y s u b s t i t u e n t s ortho a n d para t o a n y p h e n o l i c h y d r o x y l f u n c t i o n a l i t i e s , a n d i t s m o l e c u l a r size m a y prevent efficient c r o s s l i n k i n g reactions due t o steric constraints.

Downloaded by UNIV LAVAL on June 18, 2014 | http://pubs.acs.org Publication Date: December 31, 1989 | doi: 10.1021/bk-1989-0385.ch002

K r a f t l i g n i n s are e s s e n t i a l l y a c i d - i n s o l u b l e , b u t u p t o 3 5 % b y weight of l i g n i n i n s o l u t i o n c a n be achieved u n d e r a l k a l i n e c o n d i t i o n s . H o w e v e r , as s u c h , these so­ l u t i o n s are t o o viscous t o be of a n y p r a c t i c a l use i n l i q u i d adhesive f o r m u l a t i o n s . O n e m e a n s t o reduce v i s c o s i t y difficulties has been t o o b t a i n h i g h solids ( « 4 0 % ) , l o w - v i s c o s i t y l i g n i n s o l u t i o n s b y e m p l o y i n g p h e n o l - H 2 0 or p h e n o l : H 2 Ο : N a O H (or NH3) as solvents (56).

T h i s a p p r o a c h was used t o give a p l y w o o d adhesive

w i t h excellent b o a r d p r o p e r t i e s (57).

T h e adhesive was p r e p a r e d i n a t w o -

step process b y p a r t i a l l y c o n d e n s i n g p h e n o l a n d f o r m a l d e h y d e together u n d e r alkaline conditions.

T h e r e s u l t i n g condensate was t h e n reacted w i t h a l i g n i n

concentrate a n d f o r m a l d e h y d e i n the presence o f a l k a l i t o p r o d u c e a resin o f 3 7 . 2 % s o l i d s content, p H 11.4, a n d a v i s c o s i t y o f 460 c P . L i k e l i g n o s u l p h o n a t e s , the use o f k r a f t l i g n i n as extenders or co-react a n t s i n P F a n d U F resins has been w e l l e x p l o r e d a n d o c c a s i o n a l l y i m p l e m e n t e d (36,58-60).

R e f e r r i n g a g a i n t o the w o r k by Forss (48,49),

some o f the best

results c l a i m e d , as regards P F r e p l a c e m e n t , were o b t a i n e d u s i n g h i g h m o l e c ­ u l a r weight k r a f t l i g n i n s . Indeed, p r o p e r t i e s a p p e a r e d s u p e r i o r t o those u s i n g lignosulphonates. I n r e a l t e r m s , t h o u g h , the p r o b l e m s t h a t k r a f t ( a n d o t h e r l i g n i n s ) face are those o f p o o r r e a c t i v i t y , p r o d u c t v a r i a b i l i t y , a n d d i s c o l o r a t i o n . I n order for m o r e reactive k r a f t l i g n i n adhesives t o be m a d e , t h e y m u s t be c h e m i c a l l y m o d i f i e d i n some m a n n e r . T h i s c a n be done b y a v a r i e t y o f means (e.g., i n t r o d u c t i o n o f reactive c r o s s l i n k i n g sites o n t o the l i g n i n molecules b y means o f h y d r o x y m e t h y l a t i o n , e p o x i d a t i o n , i s o c y a n a t i o n , a n d the l i k e ) . H y d r o x y m e t h y l a t i o n ( m e t h y l o l a t i o n ) was first r e p o r t e d as a means o f a c t i ­ v a t i n g k r a f t l i g n i n s for c r o s s l i n k i n g reactions w i t h P F resins (61-63).

I n these

studies, i t was d e m o n s t r a t e d t h a t b a s e - c a t a l y z e d c o n d e n s a t i o n o f f o r m a l d e h y d e w i t h s o f t w o o d k r a f t l i g n i n i n t r o d u c e d C H O H groups m a i n l y at C - 5 of the a r o ­ 2

m a t i c r i n g a n d , t o a lesser extent at Cp ( F i g u r e 3).

These authors

(61-63)

i n d i c a t e d t h a t o f a l l the C - 5 a n d C/j p o s i t i o n s i n softwood l i g n i n , o n l y 0.33 a n d 0.03, respectively, were a v a i l a b l e for c o n d e n s a t i o n w i t h f o r m a l d e h y d e . T h e Cp p o s i t i o n s require a c t i v a t i o n for c o n d e n s a t i o n b y either a n adjacent C - c a r b o n y l a

or b y the presence o f a C , / ? - d o u b l e b o n d . T h e s e findings were u n a m b i g u o u s l y a

c o n f i r m e d i n a recent i n v e s t i g a t i o n by C h e n a n d G r a t z l (64).

H o w e v e r , even

w i t h the i n t r o d u c t i o n o f these a d d i t i o n a l c r o s s l i n k i n g sites, the r a t e o f c o n -

In Adhesives from Renewable Resources; Hemingway, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

Downloaded by UNIV LAVAL on June 18, 2014 | http://pubs.acs.org Publication Date: December 31, 1989 | doi: 10.1021/bk-1989-0385.ch002

ADHESIVES F R O M RENEWABLE RESOURCES

F i g u r e 3. P r o p o s e d h y d r o x y m e t h y l a t i o n reactions of l i g n i n

(61-64)-

In Adhesives from Renewable Resources; Hemingway, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

2.

Lignins in Adhesives: Introduction

LEWIS AND LANTZY

23

d e n s a t i o n o f m e t h y l o l a t e d k r a f t l i g n i n s is s t i l l far less t h a n t h a t for P F resins C o n s e q u e n t l y , t h e y are n o t used o n t h e i r o w n a n d need t o be a p p l i e d i n

(65).

c o m b i n a t i o n w i t h P F resins

(65-71).

Interestingly, s o d a bagasse l i g n i n is m u c h m o r e reactive t o w a r d f o r m a l d e h y d e t h a n other l i g n i n s , a feature a t t r i b u t a b l e t o fewer s u b s t i t u e n t s at C - 3 a n d C - 5 T h i s m a t e r i a l , after m e t h y l o l a t i o n , r e s o r c i n o l g r a f t i n g , a n d m i x i n g w i t h

(72).

p h e n o l i c r e s i n , p r o d u c e s c o l d - s e t t i n g w o o d adhesives s u i t a b l e for s t r u c t u r a l f i n gerjoints a n d g l u l a m . Epoxy Resins.

T h e use o f l i g n i n i n o r g a n i c p o l y i s o c y a n a t e - l i q u i d a r o m a t i c

Downloaded by UNIV LAVAL on June 18, 2014 | http://pubs.acs.org Publication Date: December 31, 1989 | doi: 10.1021/bk-1989-0385.ch002

e p o x i d e b i n d e r s has also been e v a l u a t e d ( 7 5 ) .

A c c o r d i n g t o t h e a u t h o r s , the

l i g n i n served o n l y as a d i l u e n t , a l t h o u g h f a i r l y h i g h levels o f s u b s t i t u t i o n ( «

35%)

b y l i g n i n were achieved. Lignin Isocyanates. I n the v e r y near f u t u r e , i s o c y a n a t e adhesives are l i k e l y t o grow i n i m p o r t a n c e i n the w o o d p a n e l i n d u s t r y . I n t h i s r e g a r d , a n u m b e r of i n v e s t i g a t i o n s have a t t e m p t e d t o i m p r o v e t h e w o o d - b o n d i n g p r o p e r t i e s of l i g n i n b y r e a c t i o n w i t h isocyanates, or b y i n c l u s i o n o f i s o c y a n a t e f u n c t i o n a l ities i n t o t h e l i g n i n p o l y m e r .

F o r e x a m p l e , G a m o (74)

was able t o prepare

a n adhesive s u i t a b l e for p r o d u c i n g 3-ply p l y w o o d w i t h acceptable cal p r o p e r t i e s .

mechani-

T h i s was achieved by r e a c t i n g 20 p a r t s o f i s o c y a n a t e s o l u t i o n

( m e t h y l e n e d i i s o c y a n a t e : t o l u e n e , 3:1) w i t h 100 p a r t s k r a f t l i g n i n - f o r m a l d e h y d e resin.

O t h e r approaches involve r e a c t i o n o f k r a f t l i g n i n w i t h p r o p y l e n e

oxide

t o afford h y d r o x y p r o p y l l i g n i n s t h a t c a n t h e n be reacted w i t h p o l y m e t h y l e n e p o l y p h e n y l e n e i s o c y a n a t e or h e x a m e t h y l e n e d i i s o c y a n a t e ( 7 5 ) .

In a somewhat

s i m i l a r m a n n e r , l i g n i n - m o d i f i e d p o l y u r e t h a n e adhesives have been p r e p a r e d from 4,4/-diphenylmethane-diisocyante-lignin-maleic anhydride-propylene oxide c o p o l y m e r s ( 76,77). T h e use o f l i g n i n , essentially as a d i l u e n t (extender), t i g a t e d (78).

has also been inves-

I n t h i s case, d i - or p o l y i s o c y a n a t e s were reacted w i t h ethylene

or p r o p y l e n e carbonates i n a s o l u t i o n c o n t a i n i n g l i g n i n . T h e s e m i x e d ethylene and

p r o p y l e n e c a r b o n a t e - c o n t a i n i n g o r g a n i c p o l y i s o c y a n a t e s were s u i t a b l e as

p a r t i c l e b o a r d adhesives.

S team-Explosion,

Acidolysis, Organosolv,

and Cellulase Lignins.

S t e a m - e x p l o s i o n l i g n i n s have received some a t t e n t i o n as adhesives m a i n l y because t h i s process offers some p o t e n t i a l for u t i l i z i n g l o w - q u a l i t y h a r d w o o d s .

Like

k r a f t l i g n i n , these p r e p a r a t i o n s also require a c t i v a t i o n [e.g., b y h y d r o x y m e t h y l a t i o n (79),

i s o c y a n a t i o n (75,80)]

to achieve any t y p e o f acceptable w o o d c o m -

p o s i t e adhesive p r o p e r t i e s . A c i d o l y s i s l i g n i n s , o r g a n o s o l v , a n d cellulase l i g n i n s are p r e s e n t l y l a b o r a t o r y curiosities due t o a lack of c o m m e r c i a l i z a t i o n . W h e t h e r these l i g n i n s w i l l offer any advantages at a l l w i t h respect t o resin adhesives c u r r e n t l y used r e m a i n s t o be e s t a b l i s h e d . P r e l i m i n a r y e x p e r i m e n t s [e.g., w i t h a c i d o l y s i s l i g n i n s (81)] not d e m o n s t r a t e d a n y s u p e r i o r q u a l i t i e s t o date.

In Adhesives from Renewable Resources; Hemingway, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

have

24

ADHESIVES F R O M RENEWABLE RESOURCES

Downloaded by UNIV LAVAL on June 18, 2014 | http://pubs.acs.org Publication Date: December 31, 1989 | doi: 10.1021/bk-1989-0385.ch002

Conclusions C o n s i d e r a b l e research a c t i v i t y has been directed t o w a r d p r o d u c i n g w o o d c o m ­ posite adhesives f r o m l i g n i n , a n d t h i s has been a c c o m p a n i e d b y very l i t t l e p r a c ­ t i c a l success i n t e r m s o f c o m m e r c i a l i m p l e m e n t a t i o n . B y themselves, a n d r e ­ gardless o f source, l i g n i n s offer n o advantages i n t e r m s o f c h e m i c a l r e a c t i v i t y , p r o d u c t q u a l i t y , o r color w h e n c o m p a r e d t o c o n v e n t i o n a l w o o d c o m p o s i t e adhe­ sives. A t l o w replacement levels (10 t o 3 0 % ) , l i g n i n s c a n a n d w i l l continue t o be e m p l o y e d as extenders for U F a n d P F resins. W h e n t h e y are used as extenders, best results are o b t a i n e d w h e n c h e m i c a l l y a c t i v a t e d (e.g., b y m e t h y l o l a t i o n ) . H o w e v e r , l i g n i n m a y f i n d a p p l i c a t i o n as a s u i t a b l e w o o d - c o m p o s i t e adhesive i n adhesive f o r m u l a t i o n s i f c h e m i c a l l y m o d i f i e d i n some m a n n e r . I n t h i s respect, the recent developments w i t h s o d a bagasse l i g n i n - r e s o r c i n o l - f o r m a l d e h y d e a n d l i g n i n - i s o c y a n a t e adhesives a l l o w for some c a u t i o u s o p t i m i s m for the f u t u r e .

Literature Cited 1. Higuchi, T. "Biosynthesis of Lignin" In Biosynthesis and Biodegradation of Wood Com­ ponents; Higuchi, T. Ed., Academic Press, Inc.: Orlando, 1985; Chapter 7, p. 141. 2. Lin, S. Y. "Lignin Utilization: Potential and Challenge" In Progress in Biomass Con­ version, Academic Press, Inc.: Orlando, 1983; Vol. 4, 31-78. 3. Luthe, C. E.; Lewis, N. G. Holzforschung 1986, 4 0 (Suppl.), 153-157. 4. Freudenberg, K.; Neish, A. C. In Constitution and Biosynthesis of Lignin; SpringerVerlag: Berlin, 1968. 5. Harkin, J. M.; Obst, J. R. Science 1973, 1 8 0 , 296-298. 6. Gross, G. G. "Recent Advances in the Chemistry and Biochemistry of Lignins," Recent Adv. Phytochem. 1979, 12, 177-220 (Plenum Press). 7. Nakamuri, Y.; Fushiki, H.; Higuchi, Τ. Ρhytοchemistry 1974, 1 3 , 1777-84. 8. Tomimura, T.; Sasoa, Y.; Yokoi, T.; Tereshima, N. Mokuzai Gakkaishi 1980, 2 6 , 55863.

9. Musha, Y.; Goring, D.A.I. J. Wood Sci. Technol. 1979,9, 45-48. 10. Whiting, P.; Goring, D.A.I. J. Wood Sci. Technol. 1983, 16, 261-267. 11. Siegel, S. M.; Siegel, Β. Z.; Chen, J. "Gravity, Lignification and Plant Evolution" In. Life in the Universe Billingham, J. Ed., M I T Press: Cambridge, MA, 1981; pp. 307-316.

12. Chen, N.; Siegel, S. M.; Siegel, Β. Z. Life Sciences and Space Research 1980, 18, 193-98. 13. Siegel, S. M. Life Sciences and Space Research; Holmquist, R., Ed., 1979, 17, 147-160. 14. Siegel, S. M.; Carrol, P.; Umeno, I.; Corn, C. Recent Advances in Ρhytοchemistry 1972, 4, 223-238.

15. a.Cowles, J.; Jahns, G.; LeMay, R.; Omran, R. Plant Physiol. 1986, 8 0 (Suppl. 4): 9 (Abstract). b. Cowles, J.; LeMay, R.; Omran, R.; Jahns, G. Plant Physiol. 1986, 8 0 (Suppl. 4): 9 (Abstract). 16. Cowles, J. R.; Scheld, H.; LeMay, R.; Peterson, C. Ann.

Bot. 1984, 54 (Suppl. 3 0 ) :

33-48.

In Adhesives from Renewable Resources; Hemingway, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

2.

LEWIS AND LANTZY

Lignins in Adhesives: Introduction

17. Siegel, S. M.; Siegel, Β. Z. Adv.

25

Space Res. 1983, 3, 241-5.

18. Siegel, S.; Speitel, T.; Shiraki, D.; Fukumoto, J. In COSPAR,Life Sciences and Space Research; Holmquist, R., Ed.; Pergamon Press; 1977, XVI, 105-109. 19. Waber, J.; Williams, B. J.; Dubin, J.; Siegel, S. M. Physiol Planta. 1975, 34, 18-21. 20. Cronquist, A. In The Evolution and Classification of Flowering Plants, London: Nelson 1968.

21. Mueller-Harvey, I.; Hartley, R. D.; Harris, P. J.; Curzon,Ε.H. Carbohydrate Res. 1986, 148,

71-85.

22. Harris, P. J.; Hartley, R. D. Nature 1976, 2 5 9 , 508-10.

Downloaded by UNIV LAVAL on June 18, 2014 | http://pubs.acs.org Publication Date: December 31, 1989 | doi: 10.1021/bk-1989-0385.ch002

23. Yamamoto, E.; Towers, G.H.N. J. Plant Physiol. 1985, 1 1 7 , 441-49. 24. Ohashi, H.; Yamamoto, E.; Lewis, N. G.; Towers, G.H.N. Phytochemistry 1987, 26, 1915-16.

25. Hartley, R. D.; Jones, E. C. Phytochemistry 1976, 15, 1157-60. 26. Fry, S. C. Ann. Rev. Plant Physiol. 1986, 37, 105-86. 27. Hartley, R. D.; Whatley, F. R.; Harris, P. J. Phytochemistry. 1988, 2 7 , 349-351. 28. Lewis, N. G.; Yamamoto, E.; Wooten, J. B.; Just, G.; Towers, G.H.N. Science 1987, 237,

1344-46.

29. Eberhardt, T. L. M.S. Thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA, 1988. 30. Hunter, D. Papermaking. The History and Technique of an Ancient Craft. Dover Publications Inc.: New York, 1978. 31. McGovern, J. Tappi 1982, 6 5 , 12, 57-58. 32. Payen, A. Compt. rend. 1838, 7, 1052. 33. Payen, A. Compt. rend. 1839, 8, 51, 169. 34. Payen, A. Compt. rend. 1940, 10, 941. 35. Sjostrom, E. Wood Chemistry: Fundamentals and Applications, Academic Press: New York, 1981; Chapter 4, 68. 36. Nimz, H. "Lignin-Based Wood Adhesives" In Wood Adhes. Chem. Technol., Pizzi, Α., Ed.; Dekker, New York, 1983; Chapter 5, 247-88. 37. Sjostrom, E. Wood Chemistry: Fundamentals and Applications, Academic Press: New York, 1981; Chapter 7, 104-44. 38. Procter, A. R., Yean, W. Q.; Goring, D.A.I. Pulp. Pap. Mag. Canada 1967, T 4 4 5 - 5 3 . 39. Sarkanen, S.; Teller, D.C.;Abramowski, E.; McCarthy, J. L. Macromolecules 1982, 15,

1098-1104.

40. Bialski, A. M.; Luthe, C. E.; Fong, J. L.; Lewis, N. G. Can. J. Chem. 1986, 64, 7, 1336-44.

41. Fengel, D.; Wegener, G. In Wood: Chemistry, Ultrastructure, Reactions, W. de Gruyter, Berlin, 1984. 42. Lora, J. H.; Wayman, M. Tappi 1978, 6 1 , 6, 47-50. 43. Marchessault, R. H.; St. Pierre, J. In Future Sources of Organic Raw MaterialsCHEMRAWN; St. Pierre, L. E.; Brown, G. R., Eds.; Pergamon Press, 1978, 613. 44. Glasser, W. G. "Lignin" In Encyclopedia of Polymer Science and Engineering, John Wiley and Sons, Inc., 1987, 8, 795-851.

In Adhesives from Renewable Resources; Hemingway, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

26

ADHESIVES F R O M RENEWABLE RESOURCES

45. Adhesives for the Composite Wood Panel Industry (Final Report January 13, 1986). Office of Scientific and Technical Information, U.S. Dep. of Energy DOC/CE/40646-T5 ( D E 86010847), 140 pp. 46. Pedersen, A.H.F.; Rasmussen, J. (Danske Splaanplade Ko) D A S 1 303 355, 1963. 47. Shen, K. C. "Binding Lignocellulosic Materials," U.S. Patent 4 193 814, 1980. 48. Forss, K.; Fuhrmann, A. Papper och Tra 1976, No. 11, 817-824. 49. Forss, K. G.; Fuhrmann, A. For. Prod. J. 1979, 2 9 , 7, 39-43. 50. Shen, K.C.;Calve, L. Adhes. Age 1980, 25-29 (August). 51. Calve, L.; Frechet, J. M. J. Appl. Polym. Sci. 1983, 2 8 , 1969-80.

Downloaded by UNIV LAVAL on June 18, 2014 | http://pubs.acs.org Publication Date: December 31, 1989 | doi: 10.1021/bk-1989-0385.ch002

52. Bialski, A. M.; Bradford, H.; Lewis, N. G.; Luthe, C. E. J. Appl. Polym Sci. 1986, 3 1 , 1363-72. 53. Nimz, H. H.; Hitze, G. Cell. Chem. Tech. 1980, 14, 371-82. 54. Haars, Α.; Huttermann, A. U.S. Patent 4 532 921, 1984. 55. Kambanis, S. M.; Berchem, Α.; Gregoire, D.; Rybricky, J. U.S. Patent 4 537 941, 1985. 56. Adams, J. W.; Schoenherr, M. W. U.S. Patent 4 303 562, 1981. 57. Hollis, J. W., Jr.; Schoenherr, M. W. U.S. Patent 4 306 999, 1981. 58. Sehgal, V. K.; Gupta, R.C.;Madan, R. N. Ind. J. For. 1978, 1, 4, 299-301. 59. Campbell, A. G.; Walsh, A. R. J. Adhes. 1985, 18, 4, 301-14. 60. Muller, P.C.;Kelley, S. S.; Glasser, W. G. J. Adhes. 1984, 17, 3, 185-206. 61. Ball, F. J. "Chemistry of Lignin and Its Applications," paper presented at TAPPI Res. Conf., October, Tarrytown, New York, 1965. 62. Falkehag, S. I.; Marton, J.; Adler, E. Adv. Chem. Ser. 1966, 5 9 , 75-88. 63. Marton, J.; Marton, T.; Falkehag, S. I.; Adler, E. Adv. Chem. Ser. 1966, 5 9 , 125-144. 64. Chen, C. L.; Gratzl, J. S. "Utilization of Kraft Lignin as Adhesive for the Manufacture of Reconstituted Wood," U.S. Forest Service, So. For. Exp. Sta., Final Report 19 83 084, 1985. 65. Dolenko, A. J.; Clarke, M. R. For. Prod. J. 1978, 2 8 , 8, 41-6. 66. Clarke, M. R.; Dolenko, A. J. U.S. Patent 4 113 675, 1978. 67. Enkvist, T.E.E. U.S. Patent 3 864 291, 1975. 68. Sudan, Κ . K.; Berchen, A. U.S. Patent 4 324 747, 1982. 69. Rosenberg, G. N. Canadian Patent 1 136 693, 1982. 70. Kryzsik, Α.; Young, R. A. For. Prod. J. 1986, 3 6 , 11-12, 39-44. 71. Chow, S. J. Wood Sci. Technol. 1983, 1 7 , 1-11. 72. V a n der Klashorst, G. H.; Cameron, F. Α.; Pizzi, A. Holz Roh-Werkst. 1985, 4 3 , 11, 477-81. 73. Gaul, J. M.; Nguyen T. U.S. Patent 4 486 557, 1984. 74. Gamo, M. J. Appl. Polym. Sci.: Appl. Polym. Symp. 1984, 40 (Wood Adhesives), 101-26. 75. Glasser, W. G.; Saraf, V. P.; Newman, W. H. J. Adhes. 1982, 14, 3-4, 233-55. 76. Hsu, O.H.H.; Glasser, W. G. Wood Sci. 1976, 9, 2, 97-103. 77. Glasser, W. G.; Hsu, Ο. H.-H. U.S. Patent 4 017 474, 1977. 78. Gaul, J. M.; Nguyen, T. U.S. Patent 4 359 507, 1982. 79. Gardner, D. J.; Sellers, T. J. For. Prod. J. 1986, 3 6 , 5, 61-7. 80. Newman, W. H.; Glasser, W. G. Holzforschung 1985, 3 9 , 6, 345-53. 81. Santana, M.A.E.; Winston, M. H.; Kelley, M. W.; Goldstein, I. S. International Sym­ posium on Wood and Pulping Chemistry, April 27-30, 1987, Paris, France, pp. 49-54. R E C E I V E D May 27, 1988

In Adhesives from Renewable Resources; Hemingway, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.