Lithium Permeability Increase in Nanosized Amorphous Silicon Layers

Nov 27, 2018 - The 6Li isotope fraction in the middle layer is less affected by the Li .... The activation enthalpy of the latter is then the sum of t...
0 downloads 0 Views 860KB Size
Subscriber access provided by YORK UNIV

C: Energy Conversion and Storage; Energy and Charge Transport

Li Permeability Increase in Nano-Sized Amorphous Silicon Layers Erwin Hüger, and Harald Schmidt J. Phys. Chem. C, Just Accepted Manuscript • DOI: 10.1021/acs.jpcc.8b09719 • Publication Date (Web): 27 Nov 2018 Downloaded from http://pubs.acs.org on December 2, 2018

Just Accepted “Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.

is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Page 1 of 11 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Physical Chemistry

Lithium Permeability Increase in Nano-Sized Amorphous Silicon Layers Erwin Hüger*,a, and Harald Schmidta,b a. Institut für Metallurgie, Abteilung Mikrokinetik, Technische Universität Clausthal, Robert-Koch-Str. 42, 38678 Clausthal Zellerfeld, Germany b. Clausthaler Zentrum für Materialtechnik (CZM), Technische Universität Clausthal, Leibnizstraße 9, 38678 Clausthal-Zellerfeld, Germany Abstract. Li permeation through nano-sized amorphous Si layers is investigated for temperatures up to 500°C (773 K) as a function of layer thickness between 12 and 95 nm. For the experiments the Si layers are embedded between 6Li and 7Li isotope enriched oxide based Li reservoirs and the thermally induced isotope exchange (through silicon layers and interfaces) is analyzed by Secondary Ion Mass Spectrometry in order to calculate Li permeabilities. The experiments reveal that the interface between silicon and the Li metal oxide does not hinder Li permeation and Li diffusion in silicon controls the overall process. The determined Li permeability increases drastically by orders of magnitude with decreasing silicon layer thickness, accompanied by a decrease in the activation enthalpy of Li permeation. These results can be explained by a gradual transition of trap-limited slow Li diffusion at high silicon thicknesses to interstitial fast Li diffusion at low Si thicknesses.

Introduction Ionic transport of lithium through thin layers and interfaces is an important topic of current academic and industrial research, especially in the field of Li-ion batteries (LIB).1-8 Interfaces as well as slow diffusion in layers can limit Li transport and consequently influence drastically the overall device performance. Consequently, it is of high interest to get fundamental insight into the nature of the limiting process. Recently, we introduced a new method which enables the measurement of Li permeation through nanosized layers.9-12 Reference 11 describes in detail how Li transport parameters can be determined using silicon as a model system. The aim of the present work is to study the influence of size reduction (layer thickness) and of interfaces on Li transport in amorphous silicon as a function of temperature. Figure 1 presents the basic principle of our method. Two isotope enriched 6LiNbO3 and 7LiNbO3 layers, as tracer reservoirs, are adjacent to a Si layer. Annealing leads to a dissolution of Li into silicon up to the maximum solubility limit ( 1.7) found an average activation enthalpy for Li diffusion of about 0.6 eV. This value is similar to that found in this work for Li diffusion in the thinnest amorphous Si layer (Figure 8(b)). Tracer diffusion investigations on amorphous LixSi with a lower Li content of x = 0.02 and 0.06 in 180 nm thick films gave a higher enthalpy of Li diffusion of 1.42 eV.93 This value is similar to that found in this work for the thickest amorphous Si layers (Figure 8(b)). The change of the activation enthalpy for Li diffusion in LixSi material for a different Li content can be attributed to a change in the diffusion mechanism.93 Trap-limited Li diffusion is present in low Li content material (H ~ 1.4 eV) and direct interstitial Li diffusion is present in high Li content material (H ~ 0.6 eV). These results from the literature confirm the findings

Figure 10: Sketch of Li permeation in Si layers. Li diffusion paths are indicated by curved lines. Black lines show diffusion paths where traps (black dotes) are touched and red lines represent trap-free fast Li diffusion paths which becomes predominant in thinner Si layer.

6 ACS Paragon Plus Environment

Page 7 of 11 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Physical Chemistry a decrease of the dimension of the material (here: silicon layer thickness) has an additional benefit for transport properties: It increases also the Li permeability, P.

of the present paper that diffusion takes place via a traplimited diffusion mechanism in thick amorphous silicon or LixSi layers with low x. The transition to a fast interstitial diffusion mechanism seems to be not only possible by reducing the film thickness but also by an increase in Li concentration.

In contrast to the experiments described here, during lithiation of silicon electrodes in LIBs an electrochemical driving force is present. This changes the Li content of the Si layer well above the Li solubility limit by alloy formation. Microscopy experiments as given in literature indicate that the electrochemical lithiation mechanism of crystalline101 and amorphous102,103 silicon electrodes may proceed by the movement of a reaction interface. The reaction front delimits a highly lithiated phase (LixSi, x>2) situated next to the electrolyte, from a (nearly) nonlithiated phase (silicon), situated next to the current collector (see Figure 12 of ref 11). As described in ref 11, it was found that the Li permeability in the non-lithiated phase is 23 orders of magnitude lower than that in the highly lithiated LixSi phase. This means that non-lithiated silicon actually blocks Li transport and reduces lithiation rates. Therefore, the higher Li permeability measured in this work for thin layers may contribute to a better and faster distribution of Li in nanosized silicon electrodes. This will give an additional benefit to the items discussed above.

Notice that although the described trap-free Li diffusion scenario is a very plausible explanation of the observed size effect, a layer thickness dependence of the Li solubility (content) in silicon would also explain the experimental findings. According to eq 1, the Li permeability increases also if the Li solubility increases in thinner Si layers for a constant diffusivity. An example of Li solid solubility enhancement by size reduction is given in literature for FePO4 (Li0.05FePO4). The Li solubility limit increases in FePO4 particles with sizes below 35 nm.94,95 The relevance of a dependence of Li solubility on Si layer thickness for the present results has to be further investigated in future. An increase of Li solubility may also imply accelerated Li diffusion. Li diffusion in amorphous LixSi material (for low Li concentration) becomes faster if Li concentration increases.93 Traps can be saturated by Li atoms, at least partly. The higher Li concentration has the consequence that the number of unsaturated traps is reduced and Li diffusion is accelerated.93 Hence both effects, i.e., an increase of Li solubility and of Li diffusivity, might contribute to the observed increased Li permeability in thinner Si layers. Theoretical work (calculations) for a fundamental understanding and support of the Li permeation size effect found in this experimental work would be highly desirable.

Experimental section ML films as sketched in Figure 2(a,f) were deposited using an ion-beam coater. The depositions were performed at room temperature. The MLs were stored in air also at room temperature. Annealing was performed in a commercial rapid thermal annealing setup in argon gas. SIMS was applied to determine the element and isotope resolved depth profiles of the ML species. Further investigations were done with X-ray reflectometry and Xray diffractometry. All measurements were performed at room temperature. More details are given in SI and ref 11.

Implication of the results for LIB design Silicon as a negative electrode material could play an important role for an increased Li storage capacity in LIBs. It can theoretically store 20 times more Li atoms per active host atom (Li21Si6) than graphite (LiC6), the active material of commercial negative electrodes.8,54-65

Conclusion

In comparison to bulky Si materials, nano-sized Si electrodes in LIBs composed of nanoparticles, thin layers or nanotubes possess a better electrochemical performance such as a higher capacity and better capacity retention during battery cycling.1-8,54-65,96-100 This can be traced back to a better mechanical stress tolerance and to shorter diffusion lengths and times for smaller sized materials.1-8,54-65,96-100 Materials with a shorter size (l) demand also shorter diffusion/permeation times (t) than larger sized materials for a given diffusivity according to t

l2 . 2D

Li permeation in amorphous silicon layers was experimentally determined at temperatures up to 500°C (773 K) of dependence on silicon layer thickness ranging from 12 to 95 nm. Silicon was embedded between 10 nm thin 6Li and 7Li enriched LiNbO3 layers and the exchange of the isotopes was monitored by secondary ion mass spectrometry. The LiNbO3 layers serve solely as solidstate Li reservoirs. The silicon layers effectively block Li permeation for more than four years at room temperature. At higher temperatures 6Li and 7Li isotope exchange through the silicon layer takes place. The overall process is not limited by the silicon / LiNbO3 interface but controlled by the diffusion in silicon. Thinner silicon layers behave differently compared to thicker silicon layers regarding Li permeation. Li

(6)

Consequently, the active material can be equilibrated with Li in shorter time periods. This work has shown that

7 ACS Paragon Plus Environment

The Journal of Physical Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

state lithium batteries. ACS Appl. Mater. Interfaces, 2017, 9, 17835−17845. (4) Koerver, R.; Aygün, I.; Leichtweiß, T.; Dietrich, C.; Zhang, W.; Binder, J. O.; Hartmann, P.; Zeier, W. G.; Janek, J. Capacity fade in solid-state batteries: interphase formation and chemomechanical processes in nickel-rich layered oxide cathodes and lithium thiophosphate solid electrolytes. Chem. Mater. 2017, 29, 5574−5582. (5) Koerver, R.; Walther, F.; Aygün, I.; Sann, J.; Dietrich, C.; Zeier, W. G.; Janek, J. Redox-active cathode interphases in solidstate batteries. J. Mater. Chem. A 2017, 5, 22750–22760. (6) Sang, L.; Haasch, R.; Gewirth, A. A.; Nuzzo, R. G. Evolution at the solid electrolyte/gold electrode interface during lithium deposition and stripping. Chem. Mater. 2017, 29, 3029−3037. (7) Wu, B.; Wang, S.; Evans IV, W. G.; Deng D. Z.; Yang, J.; Xiao, J. Interfacial behaviours between lithium ion conductors and electrode materials in various battery systems. J. Mater. Chem. A 2016, 4, 15266–15280. (8) Santhanagopalan, D.; Qian, D.; McGilvray, Th.; Wang, Z.; Wang, F.; Camino, F.; Graetz, J.; Dudney, N.; Meng, Y. S. Interface limited lithium transport in solid-state batteries. J. Phys. Chem. Lett. 2014, 5, 298–303. (9) Hüger, E.; Dörrer, L.; Rahn, J.; Panzner, T.; Stahn, J.; Lilienkamp, G.; Schmidt, H. Lithium transport through nanosized amorphous silicon layers. Nano Lett. 2013, 13, 1237– 1244. (10) Hüger, E.; Stahn, J.; Schmidt, H. Neutron reflectometry to measure in situ Li permeation through ultrathin silicon layers and interfaces. J. Electrochem. Soc. 2015, 162, A7104-A7109. (11) Hüger, E.; Dörrer, L.; Schmidt, H. Permeation, solubility, diffusion and segregation of lithium in amorphous silicon layers. Chem. Mater. 2018, 30, 3254−3264. (12) Hüger, E.; Dörrer, L.; Yimnirun, R.; Jutimoosik, J.; Stahn, J.; Paul, A. Lithium permeation within lithium niobate multilayers with ultrathin chromium, silicon and carbon spacer layers. Phys. Chem. Chem. Phys. 2018, 20, 23233-23243. (13) Kirchheim, R. Diffusion of hydrogen and other interstitials in disordered and amorphous materials. Defect Diffus. Forum 1997, 143-147, 911-926. (14) Glass, A. M.; Nassau, K.; Negran, T. J. Ionic conductivity of quenched alkali niobate and tantalate glasses. J. Appl. Phys. 1978, 49, 4808-4811. (15) Heitjans, P.; Masoud, M.; Feldhoff, A.; Wilkening, M. NMR and impedance studies of nanocrystalline and amorphous ion conductors: lithium niobate as a model system. Faraday Discuss. 2007, 134, 67-82. (16) Rahn, J.; Hüger, E.; Dörrer, L.; Ruprecht, B.; Heitjans, P.; Schmidt, H. Self-Diffusion of lithium in amorphous lithium niobate layers. Z. Phys. Chem. 2012, 226, 439–448. (17) Rahn, J.; Hüger, E.; Dörrer, L.; Ruprecht, B.; Heitjans, P.; Schmidt, H. A SIMS study on Li diffusion in single crystalline and amorphous LiNbO3. Defect and Diffusion Forum 2012, 323325, 69-74. (18) Chadwick, A. V.; Savin, S. L. P. Structure and dynamics in nanoionic materials. Solid State Ionics 2006, 177, 3001-3008. (19) Oudenhoven, J. F. M.; Baggetto, L.; Notten, P. All-solidstate lithium-ion micro-batteries: a review of various threedimensional concepts. Adv. Energy Mater. 2011, 1, 10-33. (20) Kamaya, N.; Homma, K.; Yamakawa, Y.; Hirayama, M.; Kanno, R.; Yonemura, M.; Kamiyama, T.; Kato, Y.; Hama, S.; Kawamoto, K.; et al; A lithium superionic conductor. Nature materials 2011, 10, 682-686. (21) Ogawa, M.; Kanda, R.; Yoshida, K.; Uemura, T.; Harada, K.

permeation through silicon and Li permeability of silicon is enhanced by orders of magnitude by reducing the silicon layer thickness. The activation enthalpy for Li permeation is also dependent on the silicon layer thickness. It increases from (1 ± 0.2) eV for the thinner silicon layers to (2 ± 0.2) eV for the thicker silicon layers. This can be explained by a gradual change of the associated Li diffusion behaviour from trap-free fast interstitial migration in thinner silicon layers to trapcontrolled slow diffusion in thicker silicon layers.

ASSOCIATED CONTENT Supporting Information. It contains details on layer thickness determination, Li solubility determination, additional SIMS data and details on error analysis. The Supporting Information is available free of charge on the ACS Publications website.

AUTHOR INFORMATION Corresponding Author * e-mail: [email protected]

Author Contributions The manuscript was written through contributions of all authors. / All authors have given approval to the final version of the manuscript.

COI Statement The authors declare no competing financial interest. Funding Sources Deutsche Forschungsgemeinschaft (DFG) under the contract HU 2170/2-1.

ACKNOWLEDGMENT Financial support from the Forschungsgemeinschaft (DFG) under the 2170/2-1 is gratefully acknowledged. Thanks Dörrer (TU Clausthal) for his assistance analyses and to E. Witt and P. Heitjans (U preparing the LiNbO3 sputter targets.

Page 8 of 11

Deutsche contract HU are due to L. during SIMS Hannover) for

REFERENCES (1) Takada, K.; Ohno, T.; Ohta, N.; Ohnishi, T.; Tanaka, Y. Positive and negative aspects of interfaces in solid-state batteries. ACS Energy Lett. 2018, 3, 98-103. (2) Gittleson, F. S.; El Gabaly, F. Non-Faradaic Li+ migration and chemical coordination across solid-state battery interfaces. Nano Lett. 2017, 17, 6974-6982. (3) Zhang, W.; Weber, D. A.; Weigand, H.; Arlt, T.; Manke, I.; Schröder, D.; Koerver, R.; Leichtweiss, T.; Hartmann, P.; Zeier, W. G.; et al; Interfacial processes and influence of composite cathode microstructure controlling the performance of all-solid-

8 ACS Paragon Plus Environment

Page 9 of 11 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Physical Chemistry (42) Augustyn, V.; Come, J.; Lowe, M. A.; Kim, J. W.; Taberna, P.-L.; Tolbert, S. H.; Abruna, H. D.; Simon, P.; Dunn, B. Highrate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nature Materials 2013, 12, 518-522. (43) Augustyn, V.; Simon, P.; Dunn, B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci. 2014, 7, 1597-1614. (44) Augustyn, V.; Come, J.; Lowe, M.; Kim, J.; Taberna, P.; Tolbert, S.; Abruna, H.; Simon, P.; Dunn, B. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nature materials 2013, 12, 518-522. (45) Simon, P.; Gogotski, Y.; Dunn, B. Where do batteries end and supercapacitors begin?. Science 2014, 343, 1210-1211. (46) Wagner, S. Thin-film semiconductors—From exploration to application. MRS Bulletin 2018, 43, 617-624. (47) Staude, I.; Schilling J. Metamaterial-inspired silicon nanophotonics. Nature Photonics 2017, 11, 274-284. (48) Thomson, D.; Zilkie, A.; Bowers, J.; Komljenovic, T.; Reed, G.; Vivien, L.; Marris-Morini, D.; Cassan, E.; Virot, L.; Fedeli, J.; et al; Roadmap on silicon photonics. Journal of Optics 2016, 18, 073003. (49) Yoshikawa, K.; Kawasaki, H.; Yoshida, W.; Irie, T.; Konishi, K.; Nakano, K.; Uto, T.; Adachi, D.; Kanematsu, M.; Uzu, H.; et al; Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. Nature Energy 2017, 2, 17032. (50) Bush, K.; Palmstrom, A.; Yu, Z.; Boccard, M.; Cheacharoen, R.; Mailoa, J.; McMeekin, D.; Hoye, R.; Bailie, C.; Leijtens, T.; et al; 23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability. Nature Energy 2017, 2, 17009. (51) Zuo, X.; Zhu, J.; Muller-Buschbaum, P.; Cheng, Y. Silicon based lithium-ion battery anodes: A chronicle perspective review. Nano Energy 2017, 31, 113-143. (52) Fiakas, D. The Race for Silicon Anodes. Small Cap Strategist, 2018, August 28, 2018. http://www.altenergystocks.com/archives/2018/08/the-race-forsilicon-anodes/ (accessed November 11, 2018). (53) Fiakas, D. Better Battery. Small Cap Strategist, 2018, Crystal Equity Research, August 10, 2018. http://crystalequityresearch.blogspot.com/2018/08/betterbattery.html (accessed November 11, 2018). (54) Rehnlund, D.; Lindgren, F.; Bohme, S.; Nordh, T; Zou, Y.; Pettersson, J; Bexell, U.; Boman, M; Edstrom, K.; Nyholm, L. Lithium trapping in alloy forming electrodes and current collectors for lithium based batteries. Energy Environ. Sci. 2017, 10, 1350-1357. (55) Wang, M.; Xiao, X.; Huang, X. Study of lithium diffusivity in amorphous silicon via finite element analysis. J. Power Sources 2016, 307, 77-85. (56) Wang, M.; Xiao, X.; Huang, X. A multiphysics microstructure-resolved model for silicon anode lithium-ion batteries. J. Power Sources 2017, 348, 66-79. (57) McDowell, M. T.; Lee, S. W.; Nix, W. D.; Cui, Y. 25th Anniversary Article: Understanding the lithiation of silicon and other alloying anodes for lithium-ion batteries. Adv. Mater. 2013, 25, 4966–4985. (58) Nguyen, B. P. N.; Chazelle, S.; Cerbelaud, M.; Porcher, W.; Lestriez, B. Manufacturing of industry-relevant silicon negative composite electrodes for lithium ion-cells. J. Power Sources 2014, 262, 112-122. (59) Obravac, M. N.; Chevrier, V. L. Alloy negative electrodes for Li-ion batteries. Chemical Reviews 2014, 114, 11444–11502.

High-capacity thin film lithium batteries with sulfide solid electrolytes. J. Power Sources 2012, 205, 487-490. (22) Ohta, N.; Takada, K.; Sakaguchi, I.; Zhang, L.; Ma, R.; Fukuda, K.; Osada, M.; Sasaki, T. LiNbO3-coated LiCoO2 as cathode material for all solid-state lithium secondary batteries. Electrochem. Commun. 2007, 9, 1486-1490. (23) Goldner, R. B.; Haas, T. E.; Seward, G.; Wong, K. K.; Norton, P.; Foley, G.; Berera, G.; Wei, G.; Schulz, S.; Chapman, R. Thin film solid state ionic materials for electrochromic smart window TM glass. Solid State Ionics 1988, 28-30, 1715-1721. (24) Wang, B.; Zhao, Y.; Banis, M. N.; Sun, Q.; Adair, K. R.; Li, R.; Sham, T.-K.; Sun, X. Atomic layer deposition of lithium niobium oxides as potential solid-state electrolytes for lithiumion batteries. ACS Appl. Mater. Interfaces 2018, 10, 1654-1661. (25) Volk, T.; Wöhlecke, M. Lithium niobate; Springer: Berlin, Germany, 2010. (26) Hüger, E.; Wormeester, H.; Osuch, K. Subsurface miscibility of metal overlayers with V, Nb and Ta substrates. Surf. Sci. 2005, 580, 173-194. (27) Kato, M.; Hayashi, Hasegawa, G.; Lu, X.; Miyazaki, T.; Matsuda, Y.; Kuwata, N.; Kurihara, K.; Kawamura, T. Electrochemical properties of LiCoO2 thin film surface modified by lithium tantalate and lithium niobate coatings. Solid State Ionics 2017, 308, 54-60. (28) Boes, A.; Corcoran, B.; Chang, L.; Bowers, J.; Mitchell, A. Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits. Laser and Photonic Reviews 2018, 12, 1700256. (29) Paillard, C.; Bai, X.; Infante, I.; Guennou, M.; Geneste, G.; Alexe, M.; Kreisel, J.; Dkhil, B. Photovoltaics with ferroelectrics: current status and beyond. Adv. Mater. 2016, 28, 5153-5168. (30) Bazzan, M.; Sada, C. Optical waveguides in lithium niobate: Recent developments and applications. Appl. Phys. Rev. 2015, 2, 040603. (31) Properties of lithium niobate; Wong K. K., Ed.; INSPEC Institution of Electrical Engineers: London, 2002. (32) The handbook of photonics; Gupta, M. C., Ballato J., Eds.; CRC Press Taylor & Francis Group: Boca Raton, 2007. (33) Toney J. E. Lithium niobate photonics; Artech House: Boston, London, 2015. (34) Kuz’minov Y. Lithium niobate crystals; Cambridge International Science Publishing Ltd: Cambridge, U.K., 1999. (35) Peng, Q.; Cohen, R. E. Origin of pyroelectricity in LiNbO3. Phys. Rev. B 2011, 83, 220103. (36) Bazzan, M.; Fontana, M. Preface to special topic: Lithium niobate: Properties and applications: Review of emerging trends. Appl. Phys. Rev. 2015, 2, 040501. (37) Chiles, J.; Fathpour, S. Silicon photonics beyond siliconon-insulator. Journal of Optics 2017, 19, 053001. (38) Griffith, K.; Wiaderek, K.; Cibin, G.; Marbella, L.; Grey, C. Niobium tungsten oxides for high-rate lithium-ion energy storage. Nature 2018, 559, 556–563. (39) Griffith, K.; Forse, A.; Griffin, J.; Grey, C. High-rate intercalation without nanostructuring in metastable Nb2O5 bronze phases. J. Am. Chem. Soc. 2016, 138, 8888-8899. (40) Griffith, K.; Senyshyn, A.; Grey, C. Structural stability from crystallographic shear in TiO2–Nb2O5 phases: cation ordering and lithiation behavior of TiNb24O62. Inorg. Chem. 2017, 56, 4002-4010. (41) Sun, H.; Mei, L.; Liang, J.; Zhao, Z.; Lee, C.; Fei, H.; Ding, M.; Lau, J.; Li, M.; Wang, C.; et al; Three-dimensional holeygraphene/niobia composite architectures for ultrahigh-rate energy storage. Science 2017, 356, 599-604.

9 ACS Paragon Plus Environment

The Journal of Physical Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 10 of 11

(78) Fink, D.; Biersack, J. P.; Schoelch, H. P.; Weiser, M.; Kalbitzer, S.; Behar, M.; De Souza, J.; Zawislak, F.; Mazzone, A. M.; Kranz, H. 5 keV to 2 MeV lithium implantation and diffusion in amorphous silicon. Radiat. Eff. Defects Solids 1989, 108, 185203. (79) Fink, D.; Kie, T.; Biersack, J. P.; Lihang, W. Lithium implantation profiles in metals and semiconductors. Radiat. Eff. Defects Solids 1989, 108, 27-44. (80) Fink, D.; Kie, T.; Lihang, W. On the thermal mobility of lithium in metals and semiconductors. Radiat. Eff. Defects Solids 1990, 114, 21-50. (81) Beyer, W. Diffusion and evolution of hydrogen in hydrogenated amorphous and microcrystalline silicon. Sol. Energ. Mat. Sol. C 2003, 78, 235-267. (82) Street, R. A. Hydrogenated amorphous silicon (Cambridge Solid State Sciences Series); Cambridge University Press: Cambridge, U.K., 1991. (83) Kirchheim, R.; Stolz, U. Modelling tracer diffusion and mobility of interstitials in disordered materials. J. Non-Cryst. Solids 1985, 70, 323-341. (84) Herrero, C. P.; Stutzmann, M.; Breitschwerdt, A.; Santos, P. V. Trap-limited hydrogen diffusion in doped silicon. Phys. Rev. B 1990, 41, 1054-1058. (85) Reinelt, M.; Kalbitzer, S. The diffusion of heavy alkali atoms in amorphous silicon. Journ. d. Phys. C 1981, 4, 843 -847. (86) Schmidt, H.; Gruber, W.; Borchardt, G.; Bruns, M.; Rudolphi, M.; Baumann, H. The diffusion of ion implanted hydrogen in amorphous Si3N4:H films. J. Phys.: Condens. Matter 2004, 16, 4233–4244. (87) Schmidt, H.; Borchardt, G.; Geckle, U.; Bruns, M.; Baumann, H. Comparative study of trap-limited hydrogen diffusion in amorphous SiC, Si0.66C0.33N1.33, and SiN1.33 films. J. Phys.: Condens. Matter 2006, 18, 5363–5370. (88) Schmidt, H. Diffusion controlled processes in amorphous Si-C-N and related materials. venia legendi thesis (Habilitationsschrift), TU Clausthal, Germany, 2005. (89) Pell, E. M. Diffusion of Li in Si at high T and the isotope effect. Phys. Rev. 1960, 119, 1014-1021. (90) Yan, X.; Gouissem, A.; Sharma, P. Atomistic insights into Li-ion diffusion in amorphous silicon. Mechanics of Materials 2015, 91, 306-312. (91) Tritsaris, G.A.; Zhao, K.; Okeke, O. U.; Kaxiras, E. Diffusion of lithium in bulk amorphous silicon: A theoretical study. J. Phys. Chem. C 2012, 116, 22212–22216. (92) Dunst, A.; Sternad, M.; Epp, V.; Wilkening, M. Fast Li self-diffusion in amorphous Li−Si electrochemically prepared from semiconductor grade, monocrystalline silicon: Insights from spin-locking nuclear magnetic relaxometry. J. Phys. Chem. C 2015, 119, 12183-12192. (93) Strauß, F.; Dörrer L.; Bruns, M.; Schmidt, H. Lithium tracer diffusion in amorphous LixSi for low Li concentrations. J. Phys. Chem. C, 2018, 122, 6508−6513. (94) Wagemaker, M.; Singh, D.P.; Borghols, W.J.H.; Lafont, U.; Haverkate, L.; Peterson, V.K.; Mulder, F.K. Dynamic solubility limits in nanosized olivine LiFePO4. J. Am. Chem. Soc. 2011, 133, 10222–10228. (95) Li, Z.; Yang, J.; Li, C.; Wang, S.; Zhang, L.; Zhu, K.; Wang, X. Orientation-dependent lithium miscibility gap in LiFePO4. Chem. Mater. 2018, 30, 874−878. (96) Jimenez, A. R.; Klöpsch, R.; Wagner, R.; Rodehorst, U.; Kolek, M.; Nölle, R.; Winter M.; Placke, T. A Step Toward highenergy silicon-based thin film lithium ion batteries. ACS Nano 2017, 11, 4731-4744.

(60) Kasavajjula, U.; Wang, C.; Appleby, A. J. Nano- and bulksilicon-based insertion anodes for lithium-ion secondary cells. J. Power Sources 2004, 163, 1003-1039. (61) Aifantis, K. E.; Hackney, S. A.; Kumar, R. V. High energy density lithium batteries. Materials, engineering, applications; Wiley –VCH Verlag GmbH & Co. KGaA: Weinheim, 2010. (62) Ferraresi, G.; Czornomaz, L.; Villevieille, C.; Novak, P.; Kazzi, M. E. ACS Appl. Mater. Elucidating the surface reactions of an amorphous Si thin film as a model electrode for Li-ion batteries. ACS Appl. Mater. Interfaces 2016, 8, 29791–29798. (63) Bordes, A.; Vito, E. D.; Haon, C.; Secouard, C.; Montani A.; Marcus, P. Multiscale investigation of silicon anode Li insertion mechanisms by time-of-flight secondary ion mass spectrometer imaging performed on an in situ focused ion beam cross section. Chem. Mater. 2016, 28, 1566–1573. (64) Stournara, M. E.; Kumar, R.; Qi Y.; Sheldon, B. W. Ab initio diffuse-interface model for lithiated electrode interface evolution. Phys. Rev. E 2016, 94, 012802. (65) Stournara, M. E.; Xiao, X.; Qi, Y.; Johari, P.; Lu, P.; Sheldon, B. W.; Gao H.; Shenoy, V. B. Li Segregation induces structure and strength changes at the amorphous Si/Cu interface. Nano Lett. 2013, 13, 4759–4768. (66) Wang, Z.; Li, Z.; Fu, Y. Q. Composites of piezoelectric materials and silicon as anodes for lithium-ion batteries. ChemElectroChem 2017, 4, 1523–1527. (67) Wang, Z. Modeling and simulation of piezoelectrically driven self-charging lithium ion batteries. ACS Appl. Mater. Interfaces 2017, 9, 15893-15897. (68) Haruyama, J.; Sodeyama, K.; Han, L.; Takada, K.; Tateyama, Y. Space–charge layer effect at interface between oxide cathode and sulfide electrolyte in all-solid-state lithiumion battery. Chem. Mater. 2014, 26, 4248-4255. (69) Takada, K.; Ohno, T.; Ohta, N.; Ohnishi T.; Tanaka, Y. Positive and negative aspects of interfaces in solid-state batteries. ACS Energy Lett. 2018, 3, 98-103. (70) Teranishi, T.; Inohara, M.; Kano, J.; Hayashi, H.; Kishimoto, A.; Yoda, K.; Motobayashi, H.; Tasaki, Y. Synthesis of nano-crystalline LiNbO3-decorated LiCoO2 and resulting highrate capabilities. Solid State Ionics 2018, 314, 57-60. (71) Xin, S.; You, Y.; Wang, S.; Gao, H.; Yin, Y.-X.; Guo, Y.-G. Solid-state lithium metal batteries promoted by nanotechnology: Progress and prospects. ACS Energy Lett. 2017, 2, 1385-1394. (72) Gao, Z.; Sun, H.; Fu, L.; Ye, F.; Zhang, Y.; Luo, W.; Huang, Y. Promises, challenges, and recent progress of inorganic solidstate electrolytes for all-solid-state lithium batteries. Adv. Mater. 2018, 30, 1705702. (73) Kim, H.; Byun, D.; Chang, W.; Jung, H.-G.; Choi, W. A nano-LiNbO3 coating layer and diffusion-induced surface control towards high-performance 5 V spinel cathodes for rechargeable batteries. J. Mater. Chem. A 2017, 5, 25077-25089. (74) Shenoy, V.B.; Johari, P.; Qi, Y. Elastic softening of amorphous and crystalline Li–Si phases with increasing Li concentration: A first-principles study. J. Power Sources 2010, 195, 6825-6830. (75) Peng, B.; Cheng, F.; Tao, Z.; and Chen, J. Lithium transport at silicon thin film: barrier for high-rate capability anode. J. Chem. Phys. 2010, 133, 034701. (76) Munoz, R. C.; Arenas C. Size effects and charge transport in metals: Quantum theory of the resistivity of nanometric metallic structures arising from electron scattering by grain boundaries and by rough surfaces. Appl. Phys. Rev. 2017, 4, 011102. (77) Schoelch, H. P. PhD Thesis, Ruprecht-Karls-University, Heidelberg, Germany, 1986.

10 ACS Paragon Plus Environment

Page 11 of 11 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Physical Chemistry (101) Liu X. H.; Wang, J. W.; Huang, S.; Fan, F.; Huang, X.; Liu, Y.; Krylyuk, S.; Yoo, J.; Dayeh, S. A.; Davydov, A.V.; et al; In situ atomic-scale imaging of electrochemical lithiation in silicon. Nature Nanotechnology 2012, 7, 748-756. (102) McDowell, M. T.; Lee S. W.; Harris C. Th.; Korgel B. A.; Wang C.; Nix, W. D.; Cui, Y. In situ TEM of two-phase lithiation of amorphous silicon nanospheres. 2013, Nano Lett. 13, 758-764. (103) Wang, J. W.; He Y.; Fan, F.; Liu, X. H.; Xia, S.; Liu, Y.; Harris, C. Th.; Li, H.; Huang, J. Y.; Mao, S. X.; et al; Two-phase electrochemical lithiation in amorphous silicon. Nano Lett. 2013, 13, 709-715.

(97) Fister, T. T.; Esbenshade, J.; Chen, X.; Long, B. R.; Shi, B.; Schlepütz, Ch. M.; Gewirth, A. A.; Bedzyk M. J.; Fenter, P. Lithium intercalation behavior in multilayer silicon electrodes. Adv. Energy Mater. 2014, 4, 1301494. (98) Ozanam, F.; Rosso, M. Silicon as anode material for Liion batteries. Materials Science and Engineering B, 2016, 213, 2–11. (99) Phan, V. P.; Pecquenard B.; Le Cras, F. High-performance all-solid-state cells fabricated with silicon electrodes. Adv. Funct. Mater. 2012, 22, 2580–2584. (100) Wei, W.; Valvo, M.; Edström, K.; Nyholm, L. Sizedependent electrochemical performance of monolithic anatase TiO2 nanotube anodes for sodium-ion batteries. ChemElectroChem 2018, 5, 1-12, DOI: 10.1002/celc.201701267.

TOC Figure:

11 ACS Paragon Plus Environment