Lithography-Free Broadband Ultrathin-Film Absorbers with Gap

May 10, 2016 - Lithography-Free Broadband Ultrathin-Film Absorbers with Gap-Plasmon Resonance for Organic Photovoltaics ..... To clarify the field dis...
0 downloads 6 Views 3MB Size
Subscriber access provided by NORTHERN KENTUCKY UNIV STEELY

Article

Lithography-Free Broadband Ultrathin Film Absorbers with Gap Plasmon Resonance for Organic Photovoltaics Minjung Choi, Gumin Kang, Dongheok Shin, Nilesh Barange, Chang-Won Lee, Doo-Hyun Ko, and Kyoungsik Kim ACS Appl. Mater. Interfaces, Just Accepted Manuscript • DOI: 10.1021/acsami.6b02340 • Publication Date (Web): 10 May 2016 Downloaded from http://pubs.acs.org on May 13, 2016

Just Accepted “Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.

ACS Applied Materials & Interfaces is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Page 1 of 41

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Applied Materials & Interfaces

Lithography-Free Broadband Ultrathin Film Absorbers with Gap Plasmon Resonance for Organic Photovoltaics Minjung Choi1, Gumin Kang1, Dongheok Shin1, Nilesh Barange2, Chang-Won Lee3, Doo-Hyun Ko4*, and Kyoungsik Kim1* 1

School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea. 2

Korea Institute of Science and Technology, Hwarangno 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea.

3

Samsung Advanced Institute of Technology, Suwon-si, Gyeonggi-do 16678, Republic of Korea.

4

Department of Applied Chemistry, Kyung Hee University, Yongin, Gyeonggi 17104, Republic of Korea.

* email: [email protected], [email protected].

ACS Paragon Plus Environment

1

ACS Applied Materials & Interfaces

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 2 of 41

ABSTRACT Strategies to confine electromagnetic field within ultrathin film emerge as essential technologies for applications from thin-film solar cells to imaging and sensing devices. We demonstrate lithography-free, low-cost, large-scale method to realize broadband ultrathin film metal-dielectric-metal (MDM) absorbers, by exploiting gap-plasmon-resonances for strongly confined electromagnetic field. Two steps method, firstly organizing Au nanoparticles via thermal dewetting then transferring the nanoparticles to a spacer-reflector substrate, is used to achieve broader absorption bandwidth by manipulating geometric shapes of top metallic layer into hemiellipsoids. Fast-deposited nominal Au film, instead of conventional slow one, is employed in Ostwald ripening process to attain hemiellipsoidal nanoparticles. Polymer supported transferring step allows a wider range of dewetting temperature to manipulate the nanoparticles’ shape. By incorporating circularity with ImageJ software, the geometries of hemiellipsoidal nanoparticles are quantitatively characterized. Controlling the top geometry of MDM structure from hemisphere to hemiellipsoid increases the average absorption at 500-900 nm from 23.1% to 43.5% in the ultrathin film and full-width at half-maximum 132 nm to 324 nm, which is consistently explained by finite-difference time-domain simulation. The structural advantages of our scheme are easily applicable to thin-film photovoltaic devices because metal electrodes can act as metal reflectors and semiconductor layers as dielectric spacers.

KEYWORDS ultrathin film absorber, gap surface plasmons, broadband absorption, thermal dewetting, nanoparticles.

ACS Paragon Plus Environment

2

Page 3 of 41

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Applied Materials & Interfaces

1. INTRODUCTION Thin film light absorbers have been extensively researched for their versatile applications by strongly confining light into subwavelength dimension: thin-film solar cells,1 flammable gas sensing,2 biosensing,3,4 imaging,5 thermal emitters,6 and even future optical switch based on nonlinear bistability.7 In addition, thin film photovoltaic (PV) technologies attract us for the cost competitiveness and the feasibility of large-area deposition.8–11 There are various kinds of thin film active materials, including organic12 and inorganic semiconductors.13 The PV cells have very short carrier diffusion length of 1–20 nm12,14 for organic materials and =  {'$

results were paired: (1) ./0 , the referential reflectance from the spacer-reflector layer without Au NPs, and (2) 12./. , the reflectance of the absorber which consists of Au NP on top of spacer-reflector layer. Through the equation (  = 1   ) between simulated transmissions (T) and reflections (R) and zero transmission characteristic, we acquired normalized absorption by subtracting the absorption of the reference from the absorption of absorber according to 32.4  = ./0  12./.  . 4.2. Measurement of Total Reflectance and Normalized Absorption. We performed total reflectance measurements on absorber samples using UV-vis-NIR spectrophotometer (UV3600, Shimadzu Scientific Instruments, Inc., Kyoto, Japan) with an integrating sphere (MPC-3100 unit, equipped with an integrating sphere of 60 mm diameter). Through a monochromator coupled to a halogen lamp, unpolarized light source was illuminated onto the samples at an incidence angle of 8˚ from the surface normal. The beam spot size was about 25 mm2 which was sufficiently large

ACS Paragon Plus Environment

29

ACS Applied Materials & Interfaces

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 30 of 41

for measuring the ensemble results of nanoscale MDM absorber units. Two measurements were paired to normalize the absorption data: (1) ./0 , the referential total reflectance of the spacerreflector layer without transferring Au NPs, and (2) 12./. , the total reflectance of the absorber which consists of Au NPs-spacer-reflector substrate. Because the Au reflector was thick enough not to allow light transmission, the transmittance (T) of our samples did not need to be considered. We attribute normalized absorption spectra through background correction of the measured

absorption

by

subtracting

the

reference

spectrum

by

(32.4 λ = 61 12./.  7 81 ./0  9 = ./0 λ 12./.  ). In this way, we produce normalized absorption comparable among absorber samples with different spacer thicknesses independent of the interband transition property of Au reflector. 4.3. Material and OPV device fabrication. The blend with 1:1.5 ratio of poly[[4,8-bis[(2ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl][3-fluoro-2-[(2ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl]] (PTB7) (from 1-Material) and phenyl-C70butyric acid methyl ester (PC70BM) (1-Material) is dissolved in 1-2 dichlorobenzene. For the zinc oxide (ZnO) sol-gel synthesis, we followed the literature method,59 and the Zinc acetate (0.1g) was mixed with 5ml of 2-methoxyethanol, and 30 µl ethanolamine as a stabilizer was added. An ITO-coated glass was cleaned with acetone, isopropyl alcohol and deionized water, followed by treatment with UV ozone. For the OPV device with Au NPs, the PMMA-Au NPs film was simply transferred to the ITO-coated glass substrate. The prepared ZnO sol-gel was spin coated on ITO-coated glass substrate with and without Au NPs, and annealed at 150 ºC for 45 min (see Figure S11 in the supporting information for the SEM image of the prepared ZnO film). The blend solution is then spin coated, and subsequently molybdenum oxide (MoO3) was deposited using thermal evaporator. Finally, a 100 nm silver (Ag) was evaporated under high

ACS Paragon Plus Environment

30

Page 31 of 41

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Applied Materials & Interfaces

vacuum (10-6 Torr). The completed OPVs were sealed using an encapsulation glass prior to further characterization. The active area of the developed PV cells was 0.11 cm2.

ACS Paragon Plus Environment

31

ACS Applied Materials & Interfaces

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 32 of 41

AUTHOR INFORMATION Corresponding Author * Correspondence and requests for materials should be addressed to K.K. (email: [email protected]), and D.H.K. (email: [email protected]).

Author Contributions K.K. conceived the idea of this study. M.C. designed, fabricated the samples, performed experiments, and collected the data. M.C., and G.K. conducted numerical simulations. C.W.L. and D.H.K. made theoretical analysis. N.B fabricated the OPV devices, and performed experiments. M.C., G.K., D.S., and K.K. edited manuscript. K.K. supervised the project. ACKNOWLEDGMENT This research was supported by Basic Science Research Program and the Pioneer Research Center Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (NRF-2015R1A2A2A11001112, NRF2013M3C1A3065045) and the Low Observable Technology Research Center program of the Defense Acquisition Program Administration and Agency for Defense Development.

Supporting Information Available: SEM images before and after transferring process. Defined angle of orientation according to the major axis of the nanoparticles. Major and minor axes diameters of S-700. Circularity and particle diameter analysis results of F-500. Normalized absorption spectra of S-700 and F-600. Error bar included FWHM of measured absorption

ACS Paragon Plus Environment

32

Page 33 of 41

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Applied Materials & Interfaces

spectra of absorber samples. External quantum efficiency of reference and Au NPs OPV device for active layer thickness of ~80 nm. Characteristics of both bare and with Au NP OPV devices. Calculated solar photon flux-weighted absorption for HENP ans HSNP absorbers. Simulated Ezfield For the HENP and HSNP absorbers. SEM image of the ZnO film on the Au nanoparticles. This material is available free of charge via the Internet at http://pubs.acs.org.

REFERENCES (1)

Rand, B. P.; Peumans, P.; Forrest, S. R. Long-range Absorption Enhancement in Organic

Tandem Thin-film Solar Cells Containing Silver Nanoclusters. J. Appl. Phys. (Melville, NY, U. S.) 2004, 96, 7519–7526. (2)

Liu, N.; Tang, M. L.; Hentschel, M.; Giessen, H.; Alivisatos, A. P. Nanoantenna-

enhanced Gas Sensing in a Single Tailored Nanofocus. Nat. Mater. 2011, 10, 631–636. (3)

McFarland, A. D.; Van Duyne, R. P. Single Silver Nanoparticles as Real-Time Optical

Sensors with Zeptomole Sensitivity. Nano Lett. 2003, 3, 1057–1062. (4)

Halas, N. J. Plasmonics: An Emerging Field Fostered by Nano Letters. Nano Lett. 2010,

10, 3816–3822. (5)

Gartia, M. R.; Hsiao, A.; Sivaguru, M.; Chen, Y.; Liu, G. L. Enhanced 3D Fluorescence

Live Cell Imaging on Nanoplasmonic Substrate. Nanotechnology 2011, 22, 365203. (6)

Greffet, J.-J.; Carminati, R.; Joulain, K.; Mulet, J.-P.; Mainguy, S.; Chen, Y. Coherent

Emission of Light by Thermal Sources. Nature (London, U. K.) 2002, 416, 61–64.

ACS Paragon Plus Environment

33

ACS Applied Materials & Interfaces

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

(7)

Page 34 of 41

Argyropoulos, C.; Ciracì, C.; Smith, D. R. Enhanced Optical Bistability with Film-

coupled Plasmonic Nanocubes. Appl. Phys. Lett. 2014, 104, 063108. (8)

Chopra, K. L.; Paulson, P. D.; Dutta, V. Thin-film Solar Cells: an Overview. Prog.

Photovoltaics 2004, 12, 69–92. (9)

Kang, G.; Yoo, J.; Ahn, J.; Kim, K. Transparent Dielectric Nanostructures for Efficient

Light Management in Optoelectronic Applications. Nano Today 2015, 10, 22–47. (10) Kang, G.; Bae, K.; Nam, M.; Ko, D.-H.; Kim, K.; Padilla, W. J., Broadband and Ultrahigh Optical Haze Thin Films with Self-aggregated Alumina Nanowire Bundles for Photovoltaic Applications. Energy Environ. Sci. 2015, 8, 2650–2656. (11) Bae, K.; Kang, G.; Cho, S. K.; Park, W.; Kim, K.; Padilla, W. J., Flexible Thin-film Black Gold Membranes with Ultrabroadband Plasmonic Nanofocusing for Efficient Solar Vapour Generation. Nat. Commun. 2015, 6, 10103. (12) Günes, S.; Neugebauer, H.; Sariciftci, N. S. Conjugated Polymer-Based Organic Solar Cells. Chem. Rev. (Washington, DC, U. S.) 2007, 107, 1324–1338. (13) Shah, A.; Torres, P.; Tscharner, R.; Wyrsch, N.; Keppner, H. Photovoltaic Technology: The Case for Thin-Film Solar Cells. Science (Washington, DC, U. S.) 1999, 285, 692–698. (14) Gan, Q.; Bartoli, F. J.; Kafafi, Z. H., Plasmonic-Enhanced Organic Photovoltaics: Breaking the 10% Efficiency Barrier. Adv. Mater. (Weinheim, Ger.) 2013, 25, 2385–2396. (15) Derkacs, D.; Lim, S. H.; Matheu, P.; Mar, W.; Yu, E. T. Improved Performance of Amorphous Silicon Solar Cells via Scattering from Surface Plasmon Polaritons in Nearby Metallic Nanoparticles. Appl. Phys. Lett. 2006, 89, 093103.

ACS Paragon Plus Environment

34

Page 35 of 41

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Applied Materials & Interfaces

(16) Kang, G.; Park, H.; Shin, D.; Baek, S.; Choi, M.; Yu, D.-H.; Kim, K.; Padilla, W. J. Broadband Light-Trapping Enhancement in an Ultrathin Film a-Si Absorber Using Whispering Gallery Modes and Guided Wave Modes with Dielectric Surface-Textured Structures. Adv. Mater. (Weinheim, Ger.) 2013, 25, 2617–2623. (17) Sai, H.; Fujiwara, H.; Kondo, M. Back Surface Reflectors with Periodic Textures Fabricated by Self-ordering Process for Light Trapping in Thin-film Microcrystalline Silicon Solar Cells. Sol. Energy Mater. Sol. Cells 2009, 93, 1087–1090. (18) Atwater, H. A.; Polman, A. Plasmonics for Improved Photovoltaic Devices. Nat. Mater. 2010, 9, 205–213. (19) Zia, R.; Selker, M. D.; Catrysse, P. B.; Brongersma, M. L. Geometries and Materials for Subwavelength Surface Plasmon Modes. J. Opt. Soc. Am. A 2004, 21, 2442–2446. (20) Miyazaki, H. T.; Kurokawa, Y., Squeezing Visible Light Waves into a 3-nm-Thick and 55-nm-Long Plasmon Cavity. Phys. Rev. Lett. 2006, 96, 097401. (21) Bozhevolnyi, S. I.; Søndergaard, T. General Properties of Slow-plasmon Resonant Nanostructures: Nano-antennas and Resonators. Opt. Express 2007, 15, 10869–10877. (22) Christ, A.; Zentgraf, T.; Tikhodeev, S. G.; Gippius, N. A.; Kuhl, J.; Giessen, H. Controlling the Interaction between Localized and Delocalized Surface Plasmon Modes: Experiment and Numerical Calculations. Phys. Rev. B: Condens. Matter Mater. Phys. 2006, 74, 155435.

ACS Paragon Plus Environment

35

ACS Applied Materials & Interfaces

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 36 of 41

(23) Moreau, A.; Ciraci, C.; Mock, J. J.; Hill, R. T.; Wang, Q.; Wiley, B. J.; Chilkoti, A.; Smith, D. R. Controlled-reflectance Surfaces with Film-coupled Colloidal Nanoantennas. Nature (London, U. K.) 2012, 492, 86–89. (24) Hylton, N. P.; Li, X. F.; Giannini, V.; Lee, K. H.; Ekins-Daukes, N. J.; Loo, J.; Vercruysse, D.; Van Dorpe, P.; Sodabanlu, H.; Sugiyama, M.; Maier, S. A. Loss Mitigation in Plasmonic Solar Cells: Aluminium Nanoparticles for Broadband Photocurrent Enhancements in GaAs Photodiodes. Sci. Rep. 2013, 3, 2874. (25) Atay, T.; Song, J.-H.; Nurmikko, A. V. Strongly Interacting Plasmon Nanoparticle Pairs:  From Dipole−Dipole Interaction to Conductively Coupled Regime. Nano Lett. 2004, 4, 1627– 1631. (26) Zhang, N.; Liu, K.; Liu, Z.; Song, H.; Zeng, X.; Ji, D.; Cheney, A.; Jiang, S.; Gan, Q., Ultrabroadband Metasurface for Efficient Light Trapping and Localization: A Universal SurfaceEnhanced Raman Spectroscopy Substrate for “All” Excitation Wavelengths. Adv. Mater. Interfaces 2015, 2, 1500142. (27) Yan, M.; Dai, J.; Qiu, M. Lithography-free Broadband Visible Light Absorber Based on a Mono-layer of Gold Nanoparticles. J. Opt. (Bristol, U. K.) 2014, 16, 025002. (28) Li, X. D.; Chen, T. P.; Liu, Y.; Leong, K. C. Influence of Localized Surface Plasmon Resonance and Free Electrons on the Optical Properties of Ultrathin Au Films: A Study of the Aggregation Effect. Opt. Express 2014, 22, 5124–5132.

ACS Paragon Plus Environment

36

Page 37 of 41

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Applied Materials & Interfaces

(29) Liu, Z.; Liu, X.; Huang, S.; Pan, P.; Chen, J.; Liu, G.; Gu, G., Automatically Acquired Broadband Plasmonic-Metamaterial Black Absorber during the Metallic Film-Formation. ACS Appl. Mater. Interfaces 2015, 7, 4962–4968. (30) Liu, X.; Tyler, T.; Starr, T.; Starr, A. F.; Jokerst, N. M.; Padilla, W. J. Taming the Blackbody with Infrared Metamaterials as Selective Thermal Emitters. Phys. Rev. Lett. 2011, 107, 045901. (31) Nielsen, M. G.; Pors, A.; Albrektsen, O.; Bozhevolnyi, S. I. Efficient Absorption of Visible Radiation by Gap Plasmon Resonators. Opt. Express 2012, 20, 13311–13319. (32) Aydin, K.; Ferry, V. E.; Briggs, R. M.; Atwater, H. A. Broadband PolarizationIndependent Resonant Light Absorption using Ultrathin Plasmonic Super Absorbers. Nat. Commun. 2011, 2, 517. (33) Wang, F.; Chakrabarty, A.; Minkowski, F.; Sun, K.; Wei, Q.-H. Polarization Conversion with Elliptical Patch Nanoantennas. Appl. Phys. Lett. 2012, 101, 023101. (34) Tittl, A.; Harats, M. G.; Walter, R.; Yin, X.; Schäferling, M.; Liu, N.; Rapaport, R.; Giessen, H. Quantitative Angle-Resolved Small-Spot Reflectance Measurements on Plasmonic Perfect Absorbers: Impedance Matching and Disorder Effects. ACS Nano 2014, 8, 10885–10892. (35) Nishijima, Y.; Rosa, L.; Juodkazis, S. Surface Plasmon Resonances in Periodic and Random Patterns of Gold Nano-disks for Broadband Light Harvesting. Opt. Express 2012, 20, 11466–11477.

ACS Paragon Plus Environment

37

ACS Applied Materials & Interfaces

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 38 of 41

(36) Smith, A. J.; Wang, C.; Guo, D.; Sun, C.; Huang, J. Repurposing Blu-ray Movie Discs as Quasi-random Nanoimprinting Templates for Photon Management. Nat. Commun. 2014, 5, 5517. (37) Zhang, Y.; Wei, T.; Dong, W.; Zhang, K.; Sun, Y.; Chen, X.; Dai, N. Vapor-deposited Amorphous Metamaterials as Visible Near-perfect Absorbers with Random Non-prefabricated Metal Nanoparticles. Sci. Rep. 2014, 4, 4850. (38) Sun, H.; Yu, M.; Wang, G.; Sun, X.; Lian, J. Temperature-Dependent Morphology Evolution and Surface Plasmon Absorption of Ultrathin Gold Island Films. J. Phys. Chem. C 2012, 116, 9000–9008. (39) Liu, N.; Guo, H.; Fu, L.; Kaiser, S.; Schweizer, H.; Giessen, H., Plasmon Hybridization in Stacked Cut-Wire Metamaterials. Adv. Mater. (Weinheim, Ger.) 2007, 19, 3628–3632. (40) Akselrod, G. M.; Huang, J.; Hoang, T. B.; Bowen, P. T.; Su, L.; Smith, D. R.; Mikkelsen, M. H., Large-Area Metasurface Perfect Absorbers from Visible to Near-Infrared. Adv. Mater. (Weinheim, Ger.) 2015, 27, 8028–8034. (41) Landy, N. I.; Sajuyigbe, S.; Mock, J. J.; Smith, D. R.; Padilla, W. J. Perfect Metamaterial Absorber. Phys. Rev. Lett. 2008, 100, 207402. (42) Nishijima, Y.; Ueno, K.; Yokota, Y.; Murakoshi, K.; Misawa, H., Plasmon-Assisted Photocurrent Generation from Visible to Near-Infrared Wavelength Using a Au-Nanorods/TiO2 Electrode. J. Phys. Chem. Lett. 2010, 1, 2031–2036.

ACS Paragon Plus Environment

38

Page 39 of 41

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Applied Materials & Interfaces

(43) Link, S.; El-Sayed, M. A. Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods. J. Phys. Chem. B 1999, 103, 8410–8426. (44) Liu, K.; Zeng, X.; Jiang, S.; Ji, D.; Song, H.; Zhang, N.; Gan, Q. A large-scale Lithography-free Metasurface with Spectrally Tunable Super Absorption. Nanoscale 2014, 6, 5599–5605. (45) Leskelä, M.; Ritala, M. Atomic Layer Deposition Chemistry: Recent Developments and Future Challenges. Angew. Chem., Int. Ed. 2003, 42 (45), 5548–5554. (46) Vaskevich, A.; Rubinstein, I. Localized Surface Plasmon Resonance (LSPR) Transducers Based on Random Evaporated Gold Island Films: Properties and Sensing Applications. In Nanoplasmonic Sensors; Dmitriev, A., Eds.; Springer: New York, 2012; pp 333–368. (47) Schlegel, V. L.; Cotton, T. M. Silver-island Films as Substrates for Enhanced Raman Scattering: Effect of Deposition Rate on Intensity. Anal. Chem. (Washington, DC, U. S.)1991, 63, 241–247. (48) Liu, Y.; Cheng, R.; Liao, L.; Zhou, H.; Bai, J.; Liu, G.; Liu, L.; Huang, Y.; Duan, X. Plasmon Resonance Enhanced Multicolour Photodetection by Graphene. Nat. Commun. 2011, 2, 579. (49) Suk, J. W.; Kitt, A.; Magnuson, C. W.; Hao, Y.; Ahmed, S.; An, J.; Swan, A. K.; Goldberg, B. B.; Ruoff, R. S. Transfer of CVD-Grown Monolayer Graphene onto Arbitrary Substrates. ACS Nano 2011, 5, 6916–6924. (50) Schneider, C. A.; Rasband, W. S.; Eliceiri, K. W. NIH Image to ImageJ: 25 Years of Image Analysis. Nat. Methods 2012, 9, 671–675.

ACS Paragon Plus Environment

39

ACS Applied Materials & Interfaces

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 40 of 41

(51) Igathinathane, C.; Pordesimo, L. O.; Columbus, E. P.; Batchelor, W. D.; Methuku, S. R. Shape Identification and Particles Size Distribution from Basic Shape Parameters using ImageJ. Comput. Electron. Agr. 2008, 63, 168–182. (52) Lassiter, J. B.; McGuire, F.; Mock, J. J.; Ciracì, C.; Hill, R. T.; Wiley, B. J.; Chilkoti, A.; Smith, D. R. Plasmonic Waveguide Modes of Film-Coupled Metallic Nanocubes. Nano Lett. 2013, 13, 5866–5872. (53) Catchpole, K. R.; Polman, A. Design Principles for Particle Plasmon Enhanced Solar Cells. Appl. Phys. Lett. 2008, 93, 191113. (54) You, J.; Dou, L.; Yoshimura, K.; Kato, T.; Ohya, K.; Moriarty, T.; Emery, K.; Chen, C.C.; Gao, J.; Li, G.; Yang, Y. A Polymer Tandem Solar Cell with 10.6% Power Conversion Efficiency. Nat. Commun. 2013, 4, 1446. (55) Catchpole, K. R.; Polman, A., Plasmonic Solar Cells. Opt. Express 2008, 16, 21793– 21800. (56) Johnson, P. B.; Christy, R. W. Optical Constants of the Noble Metals. Phys. Rev. B: Condens. Matter Mater. Phys. 1972, 6, 4370–4379. (57) Palik, E. D. Handbook of Optical Constants of Solids. Academic Press: San Diego, CA, 1985, 519–533. (58) Mock, J. J.; Hill, R. T.; Degiron, A.; Zauscher, S.; Chilkoti, A.; Smith, D. R. DistanceDependent Plasmon Resonant Coupling between a Gold Nanoparticle and Gold Film. Nano Lett. 2008, 8, 2245–2252.

ACS Paragon Plus Environment

40

Page 41 of 41

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Applied Materials & Interfaces

(59) Chou, C.-H.; Kwan, W. L.; Hong, Z.; Chem, L.-M.; Yang, Y. A Metal-Oxide Interconnection Layer for Polymer Tandem Solar Cells with an Inverted Architecture. Adv. Mater. (Weinheim, Ger.) 2011, 23, 1282–1286.

Table of Contents

ACS Paragon Plus Environment

41