13 Luminescence as a Probe of Excited
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 23, 2016 | http://pubs.acs.org Publication Date: June 1, 1976 | doi: 10.1021/ba-1976-0150.ch013
State Properties G. A. CROSBY Washington State University, Pullman, Wash. 99163
Quantitative investigations of the photoluminescence of inorganic compounds have led to experimental criteria for assigning orbital and spin labels to their low lying electronic excited states. For d compounds, chemical modification of the sequencing of ligand-field, charge-transfer, and ligand -localized excited states has been demonstrated. The capability of prescribing the lowest excited states has produced a series of materials with unusual optical properties. Details of the charge-transfer-to-ligand excited configurations that have been obtained for ruthenium(II) and osmium(II) complexes provide a new perspective on the role of spin-orbit coupling in defining the properties of the associated states. Systematic study of excited state properties indicates possibilities for dictating the pathways of photochemical reactions, for relating spectroscopy to electrochemistry, and hopefully, for correlating excited state properties with thermal reactivities. 6
m i s s i o n s p e c t r o s c o p y has a l o n g a n d v e n e r a b l e h i s t o r y of p r o v i d i n g v a l u a b l e i n f o r m a t i o n o n the n a t u r e of the l o w l y i n g e x c i t e d states of o r g a n i c molecules
(1,
2),
b u t , u n t i l r e c e n t l y , systematic use of
photo-
l u m i n e s c e n c e as a p r o b e of e x c i t e d state properties of t r a n s i t i o n m e t a l complexes was not w i d e s p r e a d . F o r complexes that c o n t a i n c e n t r a l m e t a l ions o f c e r t a i n configurations, e s p e c i a l l y d
3
a n d d , the e n e r g y l e v e l 6
schemes are p r o p i t i o u s for o c c u r r e n c e a n d d e t e c t i o n of l u m i n e s c e n c e , a n d the s t r u c t u r a l a n d e n v i r o n m e n t a l factors t h a t c o n t r o l the p r o p e r t i e s of the l o w l y i n g e x c i t e d states are b e i n g d e f i n e d t h r o u g h e m i s s i o n spectroscopy.
C r i t e r i a h a v e b e e n d e v e l o p e d f o r assigning o r b i t a l a n d s p i n
labels to e x c i t e d states of complexes ( 3 ) , a n d some p r i m i t i v e attempts t o 149 King; Inorganic Compounds with Unusual Properties Advances in Chemistry; American Chemical Society: Washington, DC, 1976.
150
INORGANIC
COMPOUNDS WITH
UNUSUAL
PROPERTIES
engineer molecules w i t h stipulated electronic properties were (4,5).
successful
I n this p a p e r , a t t e n t i o n is focussed o n those features of the e x c i t e d
states of t r a n s i t i o n m e t a l c o m p l e x e s t h a t differentiate t h e m f r o m t h e w e l l s t u d i e d o r g a n i c ones, o n the m a g n i f i c e n t v e r s a t i l i t y i n h e r e n t i n t r a n s i t i o n m e t a l c h e m i s t r y for d e s i g n i n g m o l e c u l e s w i t h p r e s c r i b e d e l e c t r o n i c p r o p erties, a n d o n the k i n d s of d e t a i l e d i n f o r m a t i o n t h a t c a n b e
obtained
a b o u t the e x c i t e d states of t r a n s i t i o n m e t a l c o m p l e x e s b y e m i s s i o n t e c h niques.
T h e usefulness of this k i n d of i n f o r m a t i o n for other
fields
of
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 23, 2016 | http://pubs.acs.org Publication Date: June 1, 1976 | doi: 10.1021/ba-1976-0150.ch013
c h e m i c a l research is c o n s i d e r e d briefly.
Chemical
Tuning
T h e l o w l y i n g e x c i t e d states of d s t r o n g field c o m p l e x e s that c o n t a i n 6
7r-conjugated l i g a n d s c a n be c o n v e n i e n t l y classified i n t o f o u r o r b i t a l p r o m o t i o n a l t y p e s : ( a ) ΤΓΤΓ* states i n w h i c h the e x c i t a t i o n energy is l o c a l i z e d essentially o n the l i g a n d s a n d the characteristics of the states s t r o n g l y reflect t h e i r l i g a n d parentage, ( b )
CZTT* states i n w h i c h the final states are
d e r i v e d f r o m a c o n f i g u r a t i o n i n w h i c h a n electron has b e e n t r a n s f e r r e d f r o m the m e t a l core to a n a n t i b o n d i n g o r b i t a l d e l o c a l i z e d over the l i g a n d 7Γ system, ( c )
ird states for w h i c h a transfer of c h a r g e f r o m t h e J i g a n d
system to the m e t a l i o n c a n be process, a n d ( d )
v i s u a l i z e d as the p r i m a r y e x c i t a t i o n
dd states that are effectively m e t a l - l o c a l i z e d e l e c t r o n i c
excitations i n w h i c h the l i g a n d s are i n v o l v e d o n l y as c o n t r i b u t o r s of t h e n o n s p h e r i c a l static p o t e n t i a l that d e t e r m i n e s
the
orbital promotional
energy. W i t h the e x c e p t i o n
of ird e x c i t e d states, d e t a i l e d analyses of
the
e m i s s i o n characteristics of d c o m p l e x e s of the s e c o n d a n d t h i r d t r a n s i t i o n 6
series h a v e l e a d to c r i t e r i a for c l a s s i f y i n g these states b y means of e m i s s i o n s p e c t r o s c o p y (3, 6).
Moreover, further investigation revealed that com
plexes c a n be e n g i n e e r e d to possess a p r e d e t e r m i n e d sequence of e x c i t e d states w i t h p r e s c r i b e d o r b i t a l types (4, 5).
This capability, designated
c h e m i c a l t u n i n g , has l e d to series of m o l e c u l e s w h o s e l o w l y i n g e x c i t e d states w e r e chosen s p e c i f i c a l l y a n d w h o s e spectroscopic
properties
were
o r d a i n e d as w e l l . O n c e the gross o r b i t a l types of the lowest e x c i t e d states of c o m p l e x e s are d e t e r m i n e d , s u b t l e alterations i n p r o p e r t i e s c a n be effected b y v a r y i n g l i g a n d substituents, b y m o d i f y i n g the e n v i r o n m e n t of the active
species,
or b y s u b j e c t i n g the m a t e r i a l s to e x t e r n a l p e r t u r b a t i o n s . T h i s fine t u n i n g of s p e c t r o s c o p i c
characteristics has p r o d u c e d a n u m b e r of u n u s u a l e l e c
t r o n i c p r o p e r t i e s w i t h p o t e n t i a l use f o r e x p l o i t a t i o n i n b o t h a f u n d a m e n t a l and a practical way.
W e d i r e c t a t t e n t i o n p a r t i c u l a r l y to charge-transfer
e x c i t e d states.
King; Inorganic Compounds with Unusual Properties Advances in Chemistry; American Chemical Society: Washington, DC, 1976.
13.
Luminescence
CROSBY
Unusual Properties of (CTTL)
151
as a Probe
Charge-Transfer-To-Ligand
Excited States
S y s t e m a t i c investigations of series of r u t h e n i u m ( I I ) osmium (II)
( I I ) , and iridium (III)
(12)
(7,
8, 9,
c o m p l e x e s l e d to t h e e x p e r i
m e n t a l a n d t h e o r e t i c a l c h a r a c t e r i z a t i o n of C T T L e x c i t e d states. p r o p e r t i e s , d e r i v e d f r o m analyses of
10), Their
spectra, d e c a y t i m e s , a n d i n t e r
actions w i t h e x t e r n a l fields, differ f u n d a m e n t a l l y f r o m the e x c i t e d states
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 23, 2016 | http://pubs.acs.org Publication Date: June 1, 1976 | doi: 10.1021/ba-1976-0150.ch013
of o r g a n i c m a t e r i a l s a n d e v e n f r o m states of o t h e r o r b i t a l parentages w i t h i n t h e same m o l e c u l e . Experimental Features of CTTL
Excited States
T h e intense p h o t o l u m i n e s c e n c e e x h i b i t e d b y c o m p l e x e s t h a t d i s p l a y e m i s s i o n o r i g i n a t i n g f r o m CZTT* configurations was n o t w e l l
understood
u n t i l the o b s e r v a t i o n r a n g e w a s e x t e n d e d to t e m p e r a t u r e s b e l o w 77 °K. F o r a s i n g l e e m i t t i n g l e v e l ( or cluster of degenerate levels ), the m e a s u r e d decay time a n d the q u a n t u m y i e l d should be related b y the equation τ =
φτ
0
w h e r e τ , t h e l i m i t i n g d e c a y t i m e n e a r 0 ° K , is e x p e c t e d t o b e 0
temperature independent. ruthenium(II)
(8)
F r o m measurements of τ a n d φ at 7 7 ° Κ o n
and osmium(II)
d i c t e d for series of complexes.
complexes, v a l u e s w e r e p r e
(13)
W h e n the l o w t e m p e r a t u r e
experiments
w e r e p e r f o r m e d , h o w e v e r , i t w a s f o u n d that the m e a s u r e d d e c a y times f a r e x c e e d e d t h e t h e o r e t i c a l l i m i t s , a b e h a v i o r that is s t r o n g l y i n d i c a t i v e of a m a n i f o l d of e m i t t i n g levels, e a c h one w i t h its o w n set of r a d i a t i v e
10
20
30
40
50
60
70
e
K
Figure 1. Temperature dependence of the calculated ( ) and observed ( · · · , Χ X X j lifetimes of tris(l,10-phenanthroline)ruthenium(II) iodide and tris(l,10-phenanthroline)~ osmium(II) iodide in poly(methyl methacrylate). Energy level splittings and individual mean decay times were determined from a computer ft of the experimental lata.
King; Inorganic Compounds with Unusual Properties Advances in Chemistry; American Chemical Society: Washington, DC, 1976.
152
INORGANIC
COMPOUNDS
WITH
UNUSUAL PROPERTIES
a n d radiationless d e c a y constants w h o s e separations are o n the o r d e r of kT i n t h e r a n g e of 5 ° - 5 0 ° K .
T h e s i t u a t i o n is i l l u s t r a t e d i n F i g u r e 1.
B e l o w 77 °K, the d e c a y t i m e of e a c h of t h e l u m i n e s c e n t m o l e c u l e s rises m o n o t o n i c a l l y w i t h d e c r e a s i n g t e m p e r a t u r e , a n d i t e i t h e r fails to r e a c h a l i m i t at the lowest t e m p e r a t u r e s a t t a i n e d or i t approaches a constant v a l u e that exceeds the p r e d i c t e d l i m i t b y m a n y factors.
T h e s e facts are
inconsistent w i t h the presence of a s i n g l e l u m i n e s c e n t l e v e l or a d e g e n erate set of s u c h levels. Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 23, 2016 | http://pubs.acs.org Publication Date: June 1, 1976 | doi: 10.1021/ba-1976-0150.ch013
A second p e r t i n e n t feature of the d e c a y k i n e t i c s of complexes
that
d i s p l a y charge-transfer l u m i n e s c e n c e is the e x p o n e n t i a l i t y of t h e o b s e r v e d transients at a l l temperatures r e a c h e d ( ^ 1 . 5 ° K ) .
T h i s b e h a v i o r is i n
stark contrast to that e x h i b i t e d b y o r g a n i c systems at l o w temperatures. F o r the latter, single e x p o n e n t i a l decays are m a i n t a i n e d to — 1 0 °K, b u t t h e y are r e p l a c e d b y c o m p l i c a t e d k i n e t i c s at l o w e r temperatures
(2).
N o n e x p o n e n t i a l d e c a y s h a v e also b e e n o b s e r v e d at l o w t e m p e r a t u r e f o r tris complexes of r h o d i u m ( I I I ) t h a t e x h i b i t ττπ* states lowest 3
(14).
Energy Level Schemes A l t h o u g h the e m i s s i o n spectra t h a t o r i g i n a t e f r o m dw* e x c i t e d states of
complexes
have
s t r u c t u r e , the v i b r a t i o n a l b a n d w i d t h s e x c e e d
the
splittings of the e l e c t r o n i c levels. T h e r e is little s h a r p e n i n g at l o w t e m p e r a t u r e , a n d i n c o r p o r a t i o n i n t o a l a t t i c e does not a p p e a r to i m p r o v e t h e resolution (15).
N o n e t h e l e s s , i t is possible to o b t a i n the l e v e l s p l i t t i n g s
f r o m the d e c a y d a t a .
I f one assumes a m a n i f o l d of e x c i t e d states i n
t h e r m a l e q u i l i b r i u m at a l l temperatures, e a c h d e c a y i n g w i t h t e m p e r a t u r e i n d e p e n d e n t d e c a y constants, one arrives at a n a n a l y t i c a l expression f o r t h e t e m p e r a t u r e d e p e n d e n c e of the m e a n d e c a y t i m e of t h e
ensemble
(8,9,10):
A c o m p u t e r fit of this expression y i e l d s the ki's f o r the levels.
Analyses
of this t y p e w e r e m a d e f o r series of drr* emitters a n d the e n e r g y l e v e l schemes d e r i v e d f r o m t h e d e c a y curves are i n c l u d e d i n F i g u r e 1. T h e l e v e l schemes f o r [ R u ( p h e n ) ] 3
1,10-phenanthroline)
2 +
and [ O s ( p h e n ) ] 3
+ 2
(phen
—
are r e p r e s e n t a t i v e of the clusters of l o w l y i n g elec
t r o n i c states t h a t arise f r o m άπ* configurations of m a n y r u t h e n i u m ( I I ) , o s m i u m ( I I ) , a n d i r i d i u m ( I I I ) complexes.
T h e y are h i g h l y u n u s u a l s i n c e
t h e y h a v e d e c a y p a r a m e t e r s t h a t he b e t w e e n t h e ranges e x p e c t e d
for
c o n v e n t i o n a l singlet a n d t r i p l e t states a n d b e c a u s e of the m a g n i t u d e s of t h e s p l i t t i n g s themselves.
T h e s e p a r a m e t e r s c o n t r o l t h e n a t u r e of dm*
King; Inorganic Compounds with Unusual Properties Advances in Chemistry; American Chemical Society: Washington, DC, 1976.
13.
153
Luminescence as a Probe
CROSBY
p h o t o l u m i n e s c e n c e a n d are r e s p o n s i b l e f o r its h i s t o r y o f a s s i g n m e n t a n d reassignment ( 1 6 ) . Coupling Model In order to rationalize the behavior of the luminescence f r o m nd complexes 6
observed
that d i s p l a y ίίπ* e m i s s i o n a n d t o a c c o u n t f o r t h e
exceptional splittings a n d decay parameters obtained for them, a m o d e l
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 23, 2016 | http://pubs.acs.org Publication Date: June 1, 1976 | doi: 10.1021/ba-1976-0150.ch013
for t h e e x c i t e d states has e m e r g e d t h a t emphasizes t h e r o l e o f s p i n - o r b i t c o u p l i n g i n c o n t r o l l i n g t h e i r p r o p e r t i e s ( 1 7 , I S ) . A n e x c i t e d άπ* c o n figuration
is v i e w e d as a n a b o r t i v e o x i d a t i o n o f the d c o m p l e x that p r o 6
d u c e s a system w i t h a d
core a n d a p r o m o t e d
5
(optical)
electron dis
t r i b u t e d i n a n a n t i b o n d i n g o r b i t a l e n c o m p a s s i n g the π-conjugated l i g a n d s . T h e core is v i e w e d as a K r a m e r s i o n w i t h a set o f e l e c t r o n i c states w h o s e positions a r e d e f i n e d b y electrostatic, s p i n - o r b i t , a n d l i g a n d - f i e l d i n t e r actions. T h e s e c o r e states define a v e c t o r space.
A second vector space
is d e f i n e d b y the set o f m o l e c u l a r s p i n o r b i t a l s o p e n t o the e x c i t e d e l e c t r o n r e s i d i n g o n t h e l i g a n d s . T h e final eigenspace
f o r t h e t o t a l e x c i t e d d?
system is d e t e r m i n e d b y d i a g o n a l i z i n g t h e d i r e c t p r o d u c t space o f t h e t w o subsystems u n d e r t h e f u l l H a m i l t o n i a n o f t h e six-electron p r o b l e m . F o r t h e l o w e s t