1
M a g n e t i c Properties o f the P l a t i n u m Metals a n d T h e i r A l l o y s H. J. ALBERT and L. R. RUBIN Downloaded by 117.244.18.115 on October 30, 2015 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch001
Engelhard Minerals and Chemicals Corp., Newark, N. J. 07105 Although they are paramagnetic, the platinum metals, especially platinum, palladium, and rhodium, are capable of interacting in alloys with other metals to form ferromagnetic or very nearly ferromagnetic materials. Dilute additions of elements of the iron group and its neighbors with platinum and palladium take on enhanced moments which are interpreted as arising from an interaction of the solute moment with the 4d or 5d host electrons. Ferromagnetic and anti-ferromagnetic structures may result from greater additions of the iron group to the platinum metals. Examples are FeRh, Pt Fe, Pd Fe, and PtCo. Compounds of the rare earths with the platinum metals also form magnetic structures with unusual properties. 3
3
*Tphe platinum metals—ruthenium, rhodium, and palladium in the 2nd long row of the periodic system and osmium, iridium, and platinum in the 3rd long row—are all paramagnetic. That is, none of these elements have a permanent magnetic moment associated with it. However, as shown in Table I, the mass susceptibility of these elements varies widely over two orders of magnitude. Further, the "nonmagnetic" platinum metals are the elements immediately beneath the "magnetic" series iron-cobalt-nickel and, of course, are all in the transition group. Platinum, palladium, and rhodium form a number of ferromagnetic alloys with the iron group metals and with manganese. The present paper is not an exhaustive review but presents some of the more interesting magnetic work on the platinum metals which has appeared in the last 10-20 years. Palladium has the highest magnetic susceptibility of the platinum group, and because it is so high it has been termed an "incipient ferromagnet." The implication is that palladium could be induced to become A
1 In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
2
P L A T I N U M
Table I.
GROUP
M E T A L S
A N D
C O M P O U N D S
Mass Susceptibility of the Platinum Metals (Χ
Ru(+0.427)»
10
- 6
cgs U n i t s )
Rh(+0.9903)
0
Pd(+5.231)
c
c
Os(+0.052) Ir(+0.133) Pt(+0.9712) ° Reprinted from Engelhard Industries Technical Bulletin. Determinations made at 25°C. Determinations made at 20°C. b
6
c
6
e
ferromagnetic.
I n a w e a k l y p a r a m a g n e t i c m a t e r i a l , t h e s u s c e p t i b i l i t y of
the m a t e r i a l is i n d e p e n d e n t of t e m p e r a t u r e .
F i g u r e 1 ( 3 9 ) shows this
to b e q u i t e true f o r r h o d i u m . P a l l a d i u m , o n t h e other h a n d , exhibits a Downloaded by 117.244.18.115 on October 30, 2015 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch001
s t r o n g t e m p e r a t u r e d e p e n d e n c e of s u s c e p t i b i l i t y w i t h a p e a k at about 7 0 ° K . T h i s has b e e n t a k e n i n the past as évidence f o r a n a n t i f e r r o m a g n e t i c t r a n s i t i o n . H o w e v e r , n e u t r o n d i f f r a c t i o n has s h o w n n o e v i d e n c e of a n t i f e r r o m a g n e t i s m , a n d i t n o w seems l i k e l y that this effect is c a u s e d b y the F e r m i surface of p a l l a d i u m b e i n g associated w i t h a n extremely sharp p e a k i n t h e density-of-states.
T h e s u s c e p t i b i l i t y vs. t e m p e r a t u r e
curve
f o r t h e p a l l a d i u m - 5 % r h o d i u m a l l o y i n d i c a t e s t h e s e n s i t i v i t y of p a l l a d i u m - b a s e d alloys to electron c o n c e n t r a t i o n a n d t h e density-of-states i n r e l a t i o n to the F e r m i l e v e l
(13).
I r o n i m p u r i t i e s g r e a t l y c o m p l i c a t e t h e s u s c e p t i b i l i t y measurements o n p a l l a d i u m . A s n o t e d a b o v e , p a l l a d i u m is close to b e i n g f e r r o m a g n e t i c ,
I200xl0"
6
1000
800
600 mol 400
200
0.
100
200
Temperature,
300
°K
Weiss, J . R. "Solid State Physics for Metallurgists," Pergamon f
Figure 1. The susceptibility (10~ ergs/gauss?/mole) for palladium, rhodium, and paUadium-5% rhodium as a function of temperature (39) e
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
1.
A L B E R T
Magnetic
A N D R U B I N
50
' ' ΊΟο' '
3
Properties
'
Ι5θ' ' ' T(°K)
ZOO' ' ' 250'
Downloaded by 117.244.18.115 on October 30, 2015 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch001
Journal of Applied Physics
Figure 2. Susceptibility vs. temperature for several "pure" palladium samples (17) φ 3 ppm iron, Ο 2 ppm iron, Δ zone refined, solid line less than 1 ppm iron
TCK)
Journal of Applied
Physics
Figure 3. Susceptibility vs. temperature for phtinum with approximately 3 ppm of iron (17)
a n d s m a l l a d d i t i o n s of i r o n w i l l f o r m f e r r o m a g n e t i c alloys w i t h
Curie
temperatures i n t h e c r y o g e n i c range. T h u s , as s h o w n i n F i g u r e 2 ( 1 7 ) , e v e n parts p e r m i l l i o n of i r o n i n p a l l a d i u m m a y b e n o t i c e d r e a d i l y i n s u s c e p t i b i l i t y measurements
at l o w temperatures.
N e u t r o n scattering
measurements h a v e s h o w n that i r o n i m p u r i t i e s h a v e a n effect f a r b e y o n d the n e a r e s t - n e i g h b o r p a l l a d i u m atoms, e x t e n d i n g p e r h a p s to t h e nearest 100 p a l l a d i u m atoms, a c c o u n t i n g f o r the extreme s e n s i t i v i t y of p a l l a d i u m to i r o n i m p u r i t i e s
(28).
P l a t i n u m , F i g u r e 3 (17), shows b e h a v i o r s i m i l a r t o t h a t of p a l l a d i u m b u t its s u s c e p t i b i l i t y a n d the effect of i r o n i m p u r i t i e s are m u c h s m a l l e r . T h e s m a l l p e a k at 100°Κ is analogous to that f o r p a l l a d i u m .
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
4
P L A T I N U M
GROUP
M E T A L S
A N D
C O M P O U N D S
Local Moments C o n s i d e r a b l e research i n recent years has b e e n c a r r i e d o u t o n the m a g n e t i c properties of alloys of elements of the s e c o n d a n d t h i r d l o n g r o w s of the p e r i o d i c table w i t h s m a l l amounts of elements i n the
first
l o n g r o w . S o m e of the most i n t e r e s t i n g results of this w o r k are c e n t e r e d o n t h e p l a t i n u m metals. O n e aspect of the results is g i v e n i n F i g u r e 4
(11),
s h o w i n g the m a g n e t i c m o m e n t of a n i r o n a t o m d i s s o l v e d i n the s e c o n d r o w t r a n s i t i o n metals. A n e n h a n c e m e n t of the i r o n m o m e n t is a p p a r e n t for alloys w i t h electron concentrations of a b o u t 5.5 to 7 a n d 8.25 to 9. F o r electron concentrations f r o m 9 to 10.25 there is a v e r y l a r g e e n h a n c e m e n t , the m o m e n t e x c e e d i n g t h a t of i r o n i n its b u l k state ( a b o u t 2.2
μ ). Β
Downloaded by 117.244.18.115 on October 30, 2015 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch001
A l l o y s s h o w i n g this large e n h a n c e m e n t are r e g a r d e d as h a v i n g " g i a n t moments."
E n h a n c e m e n t effects of the solute m o m e n t h a v e b e e n f o u n d
i n m a n y a l l o y systems, i n c l u d i n g C r (2), C o (9, 10, 38)
M n (2),
F e (10,
11, 18),
and
i n p a l l a d i u m a n d alloys of p a l l a d i u m a n d r h o d i u m . T h e
e x p e r i m e n t a l t e c h n i q u e w i d e l y u s e d to s h o w the existence of s u c h l o c a l m o m e n t s is the m e a s u r e m e n t of s u s c e p t i b i l i t y . T h e s u s c e p t i b i l i t y is m e a s u r e d as a f u n c t i o n of t e m p e r a t u r e , u s u a l l y f r o m 1.4° Κ to r o o m t e m p e r a ture or higher.
T h e d a t a f r o m alloys w i t h
a
temperature-dependent
s u s c e p t i b i l i t y are fitted to a C u r i e - W e i s s t y p e of c u r v e w h i c h leads to 14
3
4
Y
Zr
5
6
Nb
7
Mo
Re
ELECTRON
8
9
10
11
Ru
Rh
Pd
Ag
Ν
CONCENTRATION
Physical Review
Figure 4. iron atom metals and and alloy)
Magnetic moment in Bohr magnetons of an dissolved in various second row transition alloys {one atomic per cent iron in each metal as a function of electron concentration (11)
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
Downloaded by 117.244.18.115 on October 30, 2015 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch001
1.
A L B E R T
A N D RUBIN
Os . I o.e 0
4
r
Magnetic
I
5
Properties
r
COMPOSITION
p
(ATOMIC
P E R
t
C E N T )
Journal of Applied
Physics
Figure 5. Susceptibility per mole for alloys containing one atomic per cent iron at 3 different temperatures (18) the i n t e r p r e t a t i o n that a l o c a l m o m e n t exists o n the solute a t o m a n d p e r mits the c a l c u l a t i o n of the m o m e n t associated w i t h the a l l o y . A l l o y s of i r i d i u m a n d p l a t i n u m w i t h s i m i l a r s m a l l amounts of i r o n also e x h i b i t e n h a n c e m e n t effects a n d a giant m o m e n t i n the case of i r o n i n p l a t i n u m a n d p l a t i n u m - r i c h alloys as s h o w n i n F i g u r e 5
(18).
It is o b v i o u s that, i n v i e w of the l a r g e m e a s u r e d m o m e n t s o n the solute atoms, there is m o r e i n v o l v e d t h a n s i m p l y the m a g n e t i c
moment
of the solute a t o m . T h e postulate most w i d e l y u s e d suggests a m o d e l i n w h i c h the m o m e n t o n the solute atoms interacts w i t h the m a g n e t i c m o ments o n the i t i n e r a n t 4d or 5d electrons of the host m e t a l . T h i s i n t e r a c t i o n p r o d u c e s a p o l a r i z a t i o n of the spins i n the 4d or 5d b a n d , at t h e same t i m e a l i g n i n g the l o c a l i z e d m o m e n t s on the solute atoms i n the same d i r e c t i o n as the p o l a r i z e d d-electrons.
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
6
P L A T I N U M
GROUP
M E T A L S
A N D
C O M P O U N D S
U s i n g this l o c a l m o m e n t m o d e l , a n d u s i n g b a n d t h e o r y or its v a r i a tions, a n u m b e r of w o r k e r s h a v e b e e n a b l e to f o r m u l a t e expressions w h i c h represent the m e a s u r e d m a g n e t i c d a t a r e a s o n a b l y w e l l , at least for the case w h e r e w e l l - l o c a l i z e d m o m e n t s are d e v e l o p e d o n the solute atoms (11,
18).
H o w e v e r , c o n s i d e r a b l y m o r e d a t a has b e c o m e a v a i l a b l e o n
o t h e r properties of d i l u t e a l l o y s , i n c l u d i n g d a t a o n resistivity a n d specific heat, n e u t r o n scattering, v a r i o u s m a g n e t i c resonance experiments, M o s s b a u e r measurements, K o n d o effect,
a n d the l i k e .
Measurements have
b e e n e x t e n d e d also to alloys of m a n y other systems besides those i n v o l v -
Downloaded by 117.244.18.115 on October 30, 2015 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch001
i n g the p l a t i n u m metals.
Journal of Applied Physics
Figure 6. ceptibility,
(a) Magnetization (at 5 KOe) and inverse initial sus(b) Electrical resistivity of ordered FeRh for increasing (%) and decreasing (O) temperature (25)
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
1.
A L B E R T
A N D
R U B I N
Magnetic
7
Properties
T h e scope of this r e v i e w p r e c l u d e s a d e s c r i p t i o n of these d a t a , b u t the results of some of these experiments h a v e s h o w n weaknesses i n t h e o r i g i n a l b a n d m o d e l a p p r o a c h (9, 20, 34). ments (21,
22, 26)
H o w e v e r , n e w e r t h e o r e t i c a l treat-
are p r o v i d i n g m o r e i n s i g h t i n t o the p r o b l e m .
The
subject of l o c a l i z e d m a g n e t i c states i n d i l u t e m a g n e t i c alloys is s t i l l i n a state of v e r y a c t i v e r e s e a r c h a n d t h e o r e t i c a l d e v e l o p m e n t , as s h o w n b y the p r o g r a m s of e v e n the most recent m a g n e t i c conferences, s u c h as the Fifteenth A n n u a l Conference
on Magnetism and Magnetic Materials,
P h i l a d e l p h i a , P a . , N o v e m b e r 1969.
Downloaded by 117.244.18.115 on October 30, 2015 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch001
Ordered Alloys I n a d d i t i o n to the d i l u t e alloys a l r e a d y discussed, there are a n u m b e r of alloys of the metals of the p l a t i n u m g r o u p w i t h manganese,
iron,
cobalt, a n d n i c k e l w h i c h have m a g n e t i c properties b a s e d o n t h e f o r m a t i o n of o r d e r e d structures at some p a r t i c u l a r c o m p o s i t i o n . C o n s i d e r i n g i r o n alloys first, the i r o n - r h o d i u m system is a n interesti n g e x a m p l e of m a g n e t i c o r d e r i n g . E a r l y m a g n e t i c measurements i n the system (16)
established that alloys of a b o u t 50 a t o m i c %
rhodium in-
creased i n m a g n e t i z a t i o n as t h e i r t e m p e r a t u r e was r a i s e d t h r o u g h a c r i t i c a l v a l u e . Since 1960, a n u m b e r of w o r k e r s (23, 25, 36) change is o w i n g to a
first-order
h a v e s h o w n t h a t this
a n t i f e r r o m a g n e t i c ( A F M ) to f e r r o m a g -
n e t i c ( F M ) t r a n s i t i o n w i t h i n c r e a s i n g t e m p e r a t u r e , the t r a n s i t i o n t e m p e r a t u r e for a 52 a t o m i c % Figure 6 (25).
r h o d i u m b e i n g a b o u t 350°K, as s h o w n i n
X - r a y d i f f r a c t i o n studies h a v e s h o w n that the c r y s t a l
structure a b o v e a n d b e l o w the t r a n s i t i o n t e m p e r a t u r e is a n o r d e r e d C s C l type, the t r a n s i t i o n b e i n g a u n i f o r m r a p i d v o l u m e e x p a n s i o n of about 1 % w i t h increasing temperature.
C h a n g e s i n l a t t i c e d i m e n s i o n s i n this t y p e
of t r a n s f o r m a t i o n r e s u l t f r o m the differences b e t w e e n the magnetoelastic expansion of the f e r r o m a g n e t i c a l l y o r d e r e d lattice a n d the c o n t r a c t i o n o w i n g to the a n t i f e r r o m a g n e t i c lattice. M e a s u r e m e n t s of the l o w - t e m p e r a t u r e specific heat of i r o n - r h o d i u m alloys a n d i r o n - r h o d i u m - p a l l a d i u m alloys a n d of e n t r o p y changes of the t r a n s i t i o n h a v e s h o w n that the difference i n t h e energies of the F M a n d A F M state is r e l a t i v e l y s m a l l . T h i s suggests a m o d e l i n w h i c h b e l o w the t r a n s i t i o n t e m p e r a t u r e i n the A F M state, r h o d i u m atoms, b y s y m m e t r y , h a v e no net field
exchange
exerted b y the i r o n atoms a n d the energy is d o m i n a t e d b y
iron-
i r o n interactions. A b o v e the t r a n s i t i o n t e m p e r a t u r e , i n the F M state, the r h o d i u m atoms are p o l a r i z e d b y a n exchange field w h i c h i n d u c e s a s i g nificant l o c a l m o m e n t o n the r h o d i u m atoms.
This introduces
another
e n e r g y t e r m w h i c h , i f the s u s c e p t i b i l i t y of the r h o d i u m atoms is l a r g e e n o u g h , w i l l a c c o u n t for the c h a n g e to the F M state (-23).
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
Downloaded by 117.244.18.115 on October 30, 2015 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch001
P L A T I N U M
300
GROUP
M E T A L S
A N D
C O M P O U N D S
400 Τ (°K) Journal of Applied
Figure
7.
Magnetization in a 12.5 KOe field of FeRh line is for the bulk alloys (27).
filings.
Physics
The dashed
A n i n t e r e s t i n g effect i n i r o n - r h o d i u m alloys is n o t e d i n c o l d - w o r k i n g the a l l o y . F i l i n g a n a l l o y to m a k e p o w d e r is a c o n v e n i e n t w a y of c o l d w o r k i n g . M a g n e t i c measurements o n filings are s h o w n i n F i g u r e 7
(27).
S t a r t i n g at p o i n t A , the a l l o y is c o o l e d o 7 0 ° K a n d t h e n h e a t e d to 500°K. l
I t is e v i d e n t t h a t i n the c o l d - w o r k e d a l l o y there is no trace of the A F M to F M t r a n s i t i o n i n this range. B e t w e e n 500° to 700 ° C , a n o r m a l C u r i e p o i n t b e h a v i o r emerges a n d , o n c o o l i n g , the reappears.
first-order
transformation
X - r a y d i f f r a c t i o n measurements o n the filings i n d i c a t e d t h a t
i n the as-filed c o n d i t i o n the filings h a v e a d i s o r d e r e d fee structure, b u t q u e n c h i n g f r o m temperatures as h i g h as 1 4 0 0 ° C d i d not result i n the a p p e a r a n c e of the fee structure. F i r s t - o r d e r transitions also exist for the compositions P t F e , b a s e d o n the C u A u - t y p e structure. 3
3
P d F e and 3
I n the o r d e r e d state, the
f o r m e r a l l o y is f e r r o m a g n e t i c a n d the latter is a n t i f e r r o m a g n e t i c .
Inter
m e d i a t e compositions b a s e d o n F e ( P d , P t ) h a v e s h o w n the existence of 3
a state at l o w temperatures i n w h i c h , s t i l l b a s e d o n the o r d e r e d C u A u 3
structure, the i r o n m o m e n t s m o v e i n t o a " c a n t e d " s t r u c t u r e as s h o w n i n F i g u r e 8 (24).
F o r the c o m p o s i t i o n F e P d i . P t i . , the t r a n s i t i o n f r o m a 6
4
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
1.
A L B E R T
Magnetic
A N D R U B I N
9
Properties
s i m p l e f e r r o m a g n e t i c state to this f e r r i m a g n e t i c state w i t h c a n t e d i r o n m o m e n t s occurs at a b o u t 140 °K. T h e a l l o y P t F e w i t h a d d e d i r o n is a n i n t e r e s t i n g case b y itself ( 1 ). 3
T h e o r d e r e d a l l o y is a n t i f e r r o m a g n e t i c w i t h f e r r o m a g n e t i c sheets of i r o n atoms a r r a n g e d o n ( 1 1 0 )
planes a n t i f e r r o m a g n e t i c a l l y a l o n g the
[001]
axis. A s the i r o n content is i n c r e a s e d over the s t o i c h i o m e t r i c 25 a t o m i c % , a different A F M structure appears w i t h the sheets a r r a n g e d o n ( 100 ) planes. A t 30 a t o m i c % i r o n , this structure p r e d o m i n a t e s . B e t w e e n these t w o extremes, b o t h types of s t r u c t u r e coexist.
F r o m neutron diffraction
e x p e r i m e n t s , i t is c o n c l u d e d t h a t phase coherence of the t w o structures occurs o v e r m a n y u n i t cells a n d t h a t there is a n i n t e r t w i n i n g of t h e t w o
Downloaded by 117.244.18.115 on October 30, 2015 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch001
structures r a t h e r t h a n s e p a r a t i o n i n t o d o m a i n s
of
one
or
the
other
structure. T h e platinum—cobalt system is e s p e c i a l l y i m p o r t a n t i n that i t has the o n l y p r e c i o u s m e t a l a l l o y ever to b e d e v e l o p e d f o r p r a c t i c a l use of its m a g n e t i c p r o p e r t i e s . stoichiometric P t C o .
T h i s a l l o y is b a s e d o n s t o i c h i o m e t r i c or n e a r -
It is d i s t i n g u i s h e d b y a v e r y h i g h - e n e r g y p r o d u c t ,
a r e l a t i v e l y l o w r e m a n e n c e , a n d h i g h c o e r c i v i t y . F i e l d s of 30,000 oersteds or h i g h e r are r e q u i r e d for s a t u r a t i o n a n d P t C o magnets are r e g u l a r l y p r o d u c e d w i t h e n e r g y p r o d u c t s greater t h a n 9 m i l l i o n
gauss-oersteds,
coercive forces of 4300 oersteds, a n d r e m a n e n c e near 6400 gauss.
•
Fe
°Pd,Pt Journal of Applied
Figure
8.
Low-temperature canted-ferrimagnetic ofFePd^Pt^ (24)
Physics
structure
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
FePt
10
P L A T I N U M
DISORDERED
CUBIC
GROUP
M E T A L S
ORDERED
{ll0}
c
A N D
C O M P O U N D S
TETRAGONAL
II ( I O I ) t
Downloaded by 117.244.18.115 on October 30, 2015 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch001
C
Figure
9.
Crystallographic relationships disordered and ordered PtCo
between
is i s o m o r p h o u s to P t C o a n d p r e s u m a b l y shares m a g n e t i c h a r d e n i n g m e c h anisms. It has never b e e n u s e d p r a c t i c a l l y because
its c o e r c i v i t y a n d
e n e r g y p r o d u c t s are l o w e r t h a n those of P t C o . P t C o is a n o r d e r i n g a l l o y , f o r m i n g a f a c e - c e n t e r e d - t e t r a g o n a l t y p e structure (c/a tice (31).
CuAu-
— 0.98) f r o m a d i s o r d e r e d face-centered c u b i c l a t -
M a x i m u m c o e r c i v e force a n d m a x i m u m energy p r o d u c t are
a c h i e v e d at less t h a n c o m p l e t e o r d e r , a n d at different stages i n the a p p r o a c h to c o m p l e t e order.
O r d e r i n g starts i n the d i s o r d e r e d a l l o y w i t h
the f o r m a t i o n of a system of o r d e r e d platelets, e a c h c o n t a i n i n g a tetrag o n a l c-axis p a r a l l e l to one of the o r i g i n a l o r t h o g o n a l c u b e axes. are (110)
These
platelets; that is, they are not p a r a l l e l to the " c u b e faces" i n
the d i s o r d e r e d m a t e r i a l . I n a n y g i v e n r e g i o n , p r i m a r i l y as a n a c c o m m o d a t i o n to s t r a i n , o n l y t w o of the three possible p l a t e l e t orientations o c c u r F i g u r e 9 s u m m a r i z e s the c r y s t a l l o g r a p h i c aspects of t h i s system.
(8).
E l e c t r o n m i c r o s c o p i c a n d field i o n m i c r o s c o p i c w o r k has s h o w n t h a t m a x i m u m c o e r c i v i t y is a c h i e v e d i n the t e t r a g o n a l phase w i t h p l a t e l e t w i d t h of 2 0 0 - 5 0 0 angstroms a n d w i t h p l a t e l e t thickness of a b o u t 20 angstroms (30, 33).
T h e d i r e c t i o n of easy m a g n e t i z a t i o n ( c - a x i s ) is n o t i n the p l a n e of
the platelet. T h e degree of t r a n s f o r m a t i o n is f a r f r o m c o m p l e t e at m a x i m u m p r o p e r t i e s , p e r h a p s as little as 5 0 % t r a n s f o r m a t i o n b y v o l u m e
(32).
T h e s a t u r a t i o n m a g n e t i z a t i o n of the d i s o r d e r e d a l l o y is 43.5 gauss c m / g m at 30,000 oersteds (14). 3
T h e m a x i m u m internal magnetization
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
1.
A L B E R T
320
Downloaded by 117.244.18.115 on October 30, 2015 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch001
Magnetic
A N D R U B I N
220
11
Properties
340
0
20
40
200
180
160
f+0
Engelhard Industries Technical Bulletin
Figure 10.
Magnetic anisotropy in a PtCo single crystal (37)
Journal
of Applied
Physics
Figure 11. Crystallite distribution in ordered PtCo (8)
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
12
P L A T I N U M
GROUP
M E T A L S
A N D
C O M P O U N D S
of the o r d e r e d phase has b e e n estimated as 3 5 - 4 0 % l o w e r t h a n t h a t of the d i s o r d e r e d phase (14).
T h e average m a g n e t i c m o m e n t o f d i s o r d e r e d
P t C o at r o o m t e m p e r a t u r e is 1.04 b o h r magnetons w i t h a s p h e r i c a l d i s t r i b u t i o n of m o m e n t ( 8 ) .
T h e easy m a g n e t i z a t i o n d i r e c t i o n i n the or-
d e r e d phase corresponds
to its c-axis a n d the a n i s o t r o p y constant is
a p p r o x i m a t e l y 50 m i l l i o n e r g / c m
3
(8).
S i n g l e - c r y s t a l w o r k b y W a l m e r (37)
(on a fully-ordered crystal)
s h o w e d a m a x i m u m of the coercive force i n the 111 d i r e c t i o n a n d m i n i m a i n the 110 a n d 100 d i r e c t i o n s , the 100 m i n i m u m b e i n g the l o w e r of t h e t w o (Figure 10).
W o r k b y Brissonneau a n d coworkers (8)
o n the d i s t r i b u -
t i o n of platelets i n c o m p l e t e l y - o r d e r e d P t C o has l e d to a m o d e l s h o w n
Downloaded by 117.244.18.115 on October 30, 2015 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch001
i n F i g u r e 11, w h e r e i n e a c h z o n e s h o w n i n the figure contains a f u l l y d e v e l o p e d n e t w o r k of ( 110) platelets o r i e n t e d i n t w o of the three p o s s i b l e orthogonal directions. T h e z o n e m o d e l p r o p o s e d b y B r i s s o n n e a u is consistent n o t o n l y w i t h his o w n field i o n m i c r o s c o p i c observations, b u t also w i t h l a r g e r scale a n d often p u z z l i n g p h e n o m e n a observed.
P t C o magnets, for instance, f o r m
B i t t e r patterns o n a scale q u i t e easily v i s i b l e u n d e r a l i g h t m i c r o s c o p e . B i t t e r patterns d o not fit the p i c t u r e of a " f i n e - p a r t i c l e " h a r d e n i n g m e c h a n i s m unless t h e y also d e s c r i b e a l a r g e r scale p h e n o m e n o n , s u c h as B r i s sonneau zone boundaries. B e c a u s e of the s e n s i t i v i t y of the platelets to strain energy, t h e i r n u c l e a t i o n s h o u l d be sensitive to the w o r k i n g h i s t o r y of the b i l l e t s f r o m w h i c h the a l l o y s p e c i m e n is m a d e , a n d , n o t s u r p r i s i n g l y , P t C o responds w e l l to c o l d w o r k i n g b e f o r e heat t r e a t i n g . W o r k b y S h i m i z u a n d H a s h i m o t o (35),
w h o t e m p e r e d P t C o u n d e r elastic stress f a r b e l o w its elastic
l i m i t , has s h o w n that the a l l o y develops
considerably lower coercivity
Journal of Applied
Physics
Figure 12. Effects of compressive and tensile stresses on PtCo hysteresis curves (35)
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
1.
A L B E R T
Δ
Downloaded by 117.244.18.115 on October 30, 2015 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch001
Magnetic
A N D RUBIN
MRu
13
Properties
2
RARE-EARTH
ELEMENT
I NM R U
2
, M 0S2t Μ ΐ Γ
2
Physical Review
Figure
13. Curie temperatures for MX compounds (M = rare earth, X = Ru, Os, or Ir) (7) 2
( a n d higher remanence)
i n the direction of the a p p l i e d
compressive
stress t h a n at r i g h t angles to i t ( F i g u r e 1 2 ) . T h e y also r e p o r t t h e c o n verse to b e true w h e n tensile stress is a p p l i e d .
Platinum Metal—Rare Earth Alloys T h e m a g n e t i c m o m e n t s o f rare e a r t h elements a r e c a u s e d b y t h e u n p a i r e d electrons i n t h e i r 4f shells. T h e s e shells" are s h i e l d e d b y t h e outer shells so t h a t c h e m i c a l b o n d i n g h a s r e l a t i v e l y l i t t l e effect o n t h e m a g n e t i c m o m e n t s o f these elements. L a v e s phases o f c o m p o s i t i o n M B
2
T h e rare earths f o r m a series o f
( M = rare e a r t h , Β == p r e c i o u s m e t a l )
w h i c h share t h e c h a r a c t e r i s t i c of f e r r o m a g n e t i c c o u p l i n g a t l o w t e m p e r a tures ( 7 ) . F i g u r e 13 shows t h e C u r i e t e m p e r a t u r e s o f a series o f corn-
Table II.
Θ, °K
Compound PrRu PrRh PrOs Prlr PrPt GdRh Gdlr GdPt
40 8.6 >35 18.5 7.9 >77 >77 >77
2 2
2
2
2
2
2
2
° Reprinted from
Ferromagnetic Curie Points
Acta
Crystallographica
a
Compound
Θ, °K
NdRu NdRh Ndlr NdPt
35 8.1 11.8 6.7
2 2
2
2
{12).
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
14
P L A T I N U M
Downloaded by 117.244.18.115 on October 30, 2015 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch001
-12
-8 -4 H, MAGNETIC
GROUP
0 F I E L D IN
M E T A L S
A N D
4 8 KILO-OERSTEDS
C O M P O U N D S
12
(a)
-8
-4
0
4
H, MAGNETIC FIELD IN
8
ΚILO - OERSTEDS
(b) Journal of Applied Physics
Figure 14. Hysteresis loops for 2 GdRu -CeRu ing (a) superconductivity and ferromagnetism, ductivity alone (4) 2
pounds where Β = MgCu
2
2
alloys show (b) supercon
R u , O s , a n d I r . T h e s e c o m p o u n d s f o r m i n the c u b i c
( C 1 5 ) o r the h e x a g o n a l M g Z n
2
( C 1 4 ) structures ( 7 ) .
The Curie
p o i n t is h i g h e s t w i t h c o m p o u n d s c o n t a i n i n g G d a n d decreases w i t h l a r g e r o r s m a l l e r a t o m i c n u m b e r s of the r a r e earths ( F i g u r e 1 3 ) . S i m i l a r results have been obtained w i t h Β =
R h or P t (12)
(Table II).
The variation
i n C u r i e temperatures results p r i n c i p a l l y f r o m the i n t e r a c t i o n b e t w e e n the spins of the 4f shells of the rare earths a n d the c o n d u c t i o n electrons. P s e u d o b i n a r y alloys of ( C e R u - G d R u ) (4), 2
(GdRu^ThRujî)
(6),
(GdOs -LaOs ) 2
2
2
(5),
(YOs -GdOs ) 2
2
(29),
a n d p e r h a p s some others
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
1.
A L B E R T
A N D
Magnetic
R U B I N
15
Properties
s h o w s i m u l t a n e o u s f e r r o m a g n e t i c a n d s u p e r c o n d u c t i n g p r o p e r t i e s over a l i m i t e d range of c o m p o s i t i o n .
T h e system G d R u
2
in CeRu
2
has
been
s t u d i e d extensively. T h i s system shows a s u p e r c o n d u c t i n g t r a n s i t i o n w h e n the c o n c e n t r a t i o n of G d R u more than 6 %
GdRu
2
2
is less t h a n 10 a t o m i c % .
c r e a s i n g w i t h c o n c e n t r a t i o n (4). 8 and 4 % G d R u
2
Alloys containing
are f e r r o m a g n e t i c w i t h C u r i e t e m p e r a t u r e s i n F i g u r e 14 shows hysteresis loops
for
a l l o y s , the latter b e i n g s u p e r c o n d u c t i n g a n d the f o r m e r
being simultaneously superconducting and ferromagnetic.
Both
loops
s h o w the e x c l u s i o n of field c h a r a c t e r i s t i c of s u p e r c o n d u c t i n g m a t e r i a l s ,
Downloaded by 117.244.18.115 on October 30, 2015 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch001
Table III.
Curie Temperature and Coercive Force of R s P d Compounds (3) 2
Θ, °K
Compound Gd Pd 6
Hc(at
4.2°K)oe
335
2
Tb5.10Pd1.90
~30
12,800
Dy5.07Pd1.93
~25
9,700
H o . o P d i •96
~10
1,300
5
4
i.e., n e g a t i v e slope o n i n i t i a l m a g n e t i z a t i o n a n d n e g a t i v e s l o p e n e a r r e m a nence i n the first q u a d r a n t . T h e n o r m a l or n o n f e r r o m a g n e t i c s u p e r c o n d u c t o r exhibits a " r e m a n e n c e " a t t r i b u t e d to " f r o z e n - i n " flux. T h e m a g n e t i z a t i o n c u r v e for the f e r r o m a g n e t i c ( 8 % )
a l l o y lies w e l l a b o v e that
c a l c u l a t e d for a p a r a m a g n e t i c m a t e r i a l of the same G d content, a n d the r e m a n e n c e is also w e l l a b o v e that e x p e c t e d for a p a r a m a g n e t i c s u p e r conductor.
I t is q u e s t i o n a b l e w h e t h e r s u p e r c o n d u c t i v i t y a n d f e r r o m a g -
n e t i s m exist i n the same d o m a i n s i n a g i v e n s p e c i m e n .
T h e minor loop
P Q R S shows t h a t some s u p e r c o n d u c t i v i t y s t i l l exists i n parts of the a l l o y after s u p e r c o n d u c t i v i t y as a w h o l e has b e e n d e s t r o y e d . C o m p o u n d s of n o m i n a l c o m p o s i t i o n Μ Β , w h e r e M is a g a i n a r a r e δ
2
earth ( G d , T b , H o , D y ) a n d Β a precious m e t a l (Pt, P d ) , show m a g netizations close to those c a l c u l a t e d f r o m t h e m o m e n t s of the r a r e e a r t h atoms
(3).
Gd Pd 5
2
is a soft m a g n e t i c m a t e r i a l w i t h a c o e r c i v e
force
less t h a n 100 oersteds b u t w i t h a h i g h s a t u r a t i o n associated w i t h the h i g h m o m e n t of G d ( 3 ) .
T a b l e I I I s u m m a r i z e s the p e r m a n e n t m a g n e t i c p r o p
erties of the p a l l a d i u m alloys. T h e p l a t i n u m alloys are i s o s t r u c t u r a l a n d h a v e t h e same C u r i e t e m p e r a t u r e s ( 19).
E n e r g y p r o d u c t s for T b P d a n d
D y P d at 4.2°K are 20 X
1 0 gauss-oersteds, r e s p e c t i v e l y
5
(3).
1 0 a n d 26 X 6
5
6
W h i l e these e n e r g y p r o d u c t s are h i g h e r t h a n p l a t i n u m - c o b a l t , the
l o w C u r i e t e m p e r a t u r e s p r e c l u d e use of these c o m p o u n d s
i n the u s u a l
platinum-cobalt applications.
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
Downloaded by 117.244.18.115 on October 30, 2015 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0098.ch001
16
PLATINUM GROUP METALS AND COMPOUNDS
Literature Cited (1) Bacon, G. E., Crangle, J., Proc. Roy. Soc. 1963, A272, 387. (2) Barton, E. E., Claus, H., private communication. (3) Berkowitz, A. E., Holtzberg, F., Methfessel, S.,J.Appl. Phys. 1964, 35, 1030. (4) Bozorth, R. M., Davis, D. D., J. Appl. Phys. 1960, 31, 321S. (5) Bozorth, R. M., Davis, D. D., Williams, A. J., Phys. Rev. 1960, 119, 1570. (6) Bozorth, R. M., Matthias, B. T., Davis, D. D., Proc. Intern. Conf. Low Temp. Phys., 7th, Toronto, Canada, 1960, 1961, p. 385. (7) Bozorth, R. M., Matthias, B. T., Suhl, H., Corenzwit, E., Davis, D. D., Phys. Rev. 1959, 115, 1595. (8) Brissonneau, P., Blanchard, Α., Schlenker, M., Laugier, J., J. Appl. Phys. 1969, 39, 1266. (9) Brog, K.C.,Jones, W. H., Booth, J. G.,J.Appl.Phys. 1967, 38, 1151. (10) Cape, J. Α., Hake, R. R., Phys. Rev. 1965, 139, A142. (11) Clogston, A. M.,etal.,Phys. Rev. 1962, 125, 541. (12) Compton, V. B., Matthias, B. T., Acta Cryst. 1959, 12, 651. (13) Doclo, R., Foner, S., Narath, Α.,J.Appl.Phys. 1969, 40, 1206. (14) Dunaev, F. N., Kalinin, V. M., Kryokov, I. P., Maisinovich, V. I., Fiz. Metal i Metaloved. 1965, 20, 460. (15) Engelhard Ind. Tech.Bull.VI, No. 3, December, 1965. (16) Fallot, M., Hocart, R., Rev. Sci. 1939, 77, 498. (17) Foner, S., Doclo, R., McNiff, E. J., Jr.,J.Appl.Phys. 1968, 39, 551. (18) Geballe, T. H.,etal.,J.Appl.Phys. 1965, 37, 1181. (19) Holtzberg, F., Methfessel, S. J., U. S. Patent 3,326,637 (1967). (20) Knapp, G. S.,J.Appl.Phys. 1967, 38, 1267. (21) Knapp, G. S., Phys. Letters 1967, 25A, 114. (22) Kondo, J., Phys. Rev. 1968, 169, 437. (23) Kouvel, J. S.,J.Appl.Phys. 1966, 37, 1257. (24) Kouvel, J. S., Forsyth, J. B.,J.Appl.Phys. 1969, 40, 1359. (25) Kouvel, J. S., Hartelius, C.C.,J.Appl.Phys. 1962, 33, 1343. (26) Lederer, P., Mills, D. L., Phys. Rev. 1968, 165, 837. (27) Lommel, J. M., Kouvel, J. S.,J.Appl. Phys. 1967, 38, 1263. (28) Low, G. G., Holden, T. M., Proc. Phys. Soc. 1966, 89, 119. (29) Matthias, B. T., U. S. Patent 2,970,961 (1961). (30) Mishin, D. D., Greshishkin, R. M., Phys. Status Solidi 1967, 19, K1-K3. (31) Newkirk, J. B., Geisler, A. H., Martin, D. L., Smoluchowski, R.,J.Metals 1950, 188, 1249. (32) Rabinkin, A. G., Tyapkin, Yu. D., Yamaleev, Κ. M., Fiz. Metal i Metaloved. 1965, 19, 360. (33) Ralph, B., Brandon, D. G., Proc. European Conf. Electron Microsco 3rd, Prague 1964 (A) 303. (34) Sarachik, M. P., Phys. Rev. 1968, 170, 679. (35) Shimizu, S., Hashimoto, E.,J.Appl. Phys. 1968, 39, 2369. (36) Tu, P.,etal.,J. Appl. Phys. 1969, 40, 1368. (37) Walmer, M. L., Engelhard Ind. Tech.Bull.1962, 2, 117. (38) Walstedt, R. E., Sherwood, R.C.,Wernicke, J. H., J. Appl. Phys. 1968, 39, 555. (39) Weiss, R. J., "Solid State Physics for Metallurgists," p. 323, Pergamon, New York, 1963. RECEIVED January 16, 1970.
In Platinum Group Metals and Compounds; Rao, U.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.